


# Nanoscale

Accepted Manuscript





This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



Nanoscale

## **RSCPublishing**

View Article Online

## **PAPER**

Cite this: DOI: 10.1039/x0xx00000x

Received ooth August 2015, Accepted ooth August 2015

DOI: 10.1039/x0xx00000x

www.rsc.org/

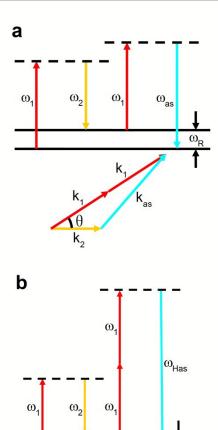
## Revealing Silent Vibration Modes of Nanomaterials by Detecting Anti-Stokes Hyper-Raman Scattering with Femtosecond Laser Pulses

Jianhua Zeng,<sup>a</sup> Lei Chen,<sup>a</sup> Qiaofeng Dai,<sup>a</sup> Sheng Lan\*<sup>a</sup> and Shaolong Tie\*<sup>b</sup>

We proposed a scheme in which normal Raman scattering is coupled with hyper-Ramar scattering for generating strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using single-layer MoS<sub>2</sub> on a SiO<sub>2</sub>/Si substrate, 17 nm-thick MoS<sub>2</sub> on an Au/SiO<sub>2</sub> substrate and 9 nm-thick MoS<sub>2</sub> on a SiO<sub>2</sub>-SnO<sub>2</sub>/Ag/SiO<sub>2</sub> substrate which were confirmed to be highly efficient for second harmonic generation. Strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots seassembled into "coffee" rings and tubular Cu-doped ZnO nanorods. In all cases, many Raman inactive vibration modes were clearly revealed in the anti-Stokes hyper-Raman scattering Apart from strong anti-Stokes hyper-Raman scattering, Stokes hyper-Raman scattering with small Raman shifts was detected during the ablation process of thick MoS<sub>2</sub> layers. It was also observed by slightly defocusing the excitation light. The detection of anti-Stokes hyper-Raman scattering may serve as a new technique for studying the Raman inactive vibration modes in nanomaterials.

#### 1 Introduction

Raman scattering in which the scattered photons carry the information of the target material has been developed as a powerful technique for material analysis. Although both Stokes and anti-Stokes components are expected to appear in a Raman scattering spectrum, only the Stokes component is observed in most cases because of the much larger population of the ground state. In the cases when the excitation intensity of the laser light is sufficiently strong, one can anticipate the observation of second-order Raman (or hyper-Raman) scattering whose intensity is much weaker than the first-order one. Hyper-Raman scattering was demonstrated many years ago by using highpower nanosecond or picosecond lasers. 1-5 Since some vibration modes are Raman inactive but hyper-Raman active due to the different symmetry selection rules, 6-10 hyper-Raman scattering has become a complementary tool of normal Raman scattering for revealing silent vibration modes that are invisible in both Raman and infrared absorption spectra.


So far, most hyper-Raman scattering measurements are performed by using nanosecond or picosecond lasers with large average powers and low repetition rates. <sup>1-5</sup>, <sup>11-16</sup> In this case, the

Stokes hyper-Raman component is found to be much stronger than the anti-Stokes one, similar to that observed in norm Raman scattering. The advantage of using nanosecond and picosecond lasers is the narrow linewidth of the laser pulses which offers a good spectral resolution for the vibration mou However, the long pulse width and low repetition rate of nanosecond and picosecond lasers generally lead to a long integration time (e.g., several hours or one day) for the wear hyper-Raman scattering signal.<sup>2,4</sup> For this reason, femtosecond (fs) lasers with large peak powers and high repetition rates have been employed in the excitation of hyper-Raman scattering signal. 17-19 It was found that hyper-Raman scattering signal could be efficiently generated and the integration time wa significantly reduced to a few seconds. 18,19 More interestingly it was noticed that the intensity of the anti-Stokes hyper-Rama 1 component was comparable or even stronger than that of the Stokes one. 18 This behavior is quite important because in son cases the observation of stokes hyper-Raman scattering is severely disturbed by other nonlinear optical signals such as two-photon-induced luminescence when fs lasers are used. Previously, the second harmonic generation (SHG) of silico

Paper Nanoscale

(Si) nanoparticles was investigated by using fs laser pulses and strong anti-Stokes hyper-Raman scattering was observed together with the extremely efficient SHG.<sup>20</sup> The phenomena described above indicate the possibility of generating highly efficient anti-Stokes hyper-Raman scattering by using fs laser pulses with high repetition rates and also raise the question why anti-Stokes hyper-Raman scattering appears to be much stronger than Stokes one in the case of fs laser excitation.

If we review the physical mechanism for the well-established technique of coherent anti-Stokes Raman scattering,<sup>21</sup> which is shown in Fig. 1(a), we can easily propose a scheme for generating highly efficient anti-Stokes hyper-Raman scattering by utilizing the coupling between normal



**Fig. 1** (a) Principle of the coherent anti-Stokes Raman scattering technique. The emission of an anti-Stokes Raman scattering photon ( $\omega_{as}$ ) is induced by the interaction of two photons ( $\omega_1$  and  $\omega_2$ ) with a frequency difference equal to  $\omega_R$ . The relationship between the wavevectors of the four photons involved in the coherent anti-Stokes scattering process is shown in the inset. (b) Schematic showing the coupling between a normal Raman scattering and a hyper-Raman scattering. The population of the excited state is induced by the normal Raman scattering ( $\omega_1 \rightarrow \omega_2$ ). The transition from the excited state to the virtual state and the emission of an anti-Stokes hyper-Raman scattering photon is induced by the hyper-Raman scattering process ( $2\omega_1 \rightarrow \omega_{Has}$ ). The relationship between the wavevectors of the five photons involved in the coupled scattering process is shown in the inset.

k<sub>Has</sub>

Raman and hyper-Raman scattering processes, as shown in Fig. 1(b). In this case, the effective population of the excited state is induced by the Raman scattering process 10.46555104661616 transition to a virtual state can be achieved by simultaneously absorbing two photons of the fundamental light provided that the transition rate is larger than the decay rate of the excite the state to the ground state. Apparently, such a condition can be satisfied by using fs laser pulses with large peak powers and high repetition rates and nanomaterials with large second-order nonlinear susceptibilities ( $\chi^{(2)}$ ) which render a large transitio rate from the excited state to the virtual state.

In general, nanometer-sized materials possess much large second-order nonlinear susceptibilities  $(\chi^{(2)})$  as compared with their bulk counterparts. For bulk materials with centre symmetry such as Si and gold (Au), their second-order nonlinear susceptibilities  $(\chi^{(2)})$  are expected to vanish. However it has been shown that Si and Au nanoparticles exhibit efficier. SHG because of the deviation from symmetric shape and the breaking of symmetry at interfaces. 20,22,23 For two-dimension materials such as MoS<sub>2</sub>, efficient SHG was observed only in MoS<sub>2</sub> with odd layers especially single-layer MoS<sub>2</sub>. <sup>24-29</sup> The of single-layer  $MoS_2$  (~10<sup>-7</sup> m/V) was found to be seven or ... of magnitude larger than that of bulk  $MoS_2$  (~ $10^{-14}$  m/V).<sup>24</sup> Similar behavior was observed in ZnO and other semiconductors. For bulk ZnO, the  $\chi^{(2)}$  was found to be  $\sim 10^{-1}$ m/V while that of ZnO quantum dots (QDs) was determined to be  $\sim 10^{-9}$  m/V. <sup>30</sup> Besides, a large  $\chi^{(2)}$  of  $\sim 10^{-4}$  m/V was found in InAs/GaAs self-assembled QDs. 31 All these phenomena clearly indicate that the proposed scheme is highly suitable ic. detecting the silent vibration modes in nanomaterials.

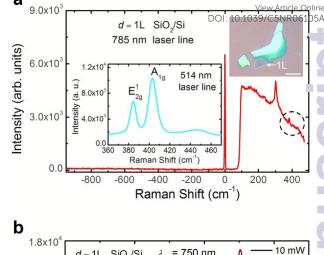
In this article, we demonstrated the proposal mainly by using  $MoS_2$ , a two-dimensional material which has attracted tremendous interest in recent years because of its potential applications in the fabrication of electronic and photonic devices. The addition, we also confirmed, by using Si QDs self-assembled into "coffee" rings and tubular Cu-doped Zn nanorods (NRs) as examples, that the observation of strong anti-Stokes hyper-Raman scattering is a popular phenomenor when nanomaterials with large  $\chi^{(2)}$  are excited by fs laser pure The detection of anti-Stokes hyper-Raman scattering may become a new technique for studying the Raman inactive vibration modes in nanomaterials.

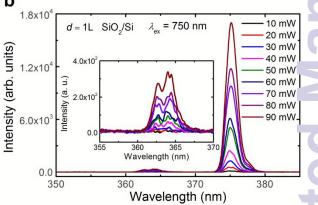
#### 2 Experimental section

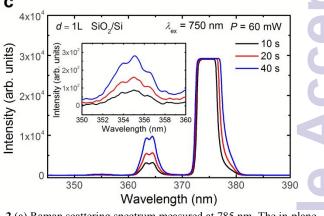
Several nanomaterials were chosen to study the proposed anti-Stokes hyper-Raman scattering by using fs laser excitation, including thin  $\text{MoS}_2$  layers on different substrates, Si QDs self-assembled into "coffee" rings, and tubular Cu-doped ZnO NR. The common feature of these nanomaterials is the verified large  $\chi^{(2)}$  and efficient SHG.

In our experiments, Si QDs were prepared *via* a chemica etching by using Si powder as precursor and the mixture of 6° wt% HNO<sub>3</sub> and 46 wt% HF as solution, respectively. The detailed ascription can be found in previous literature. The transmission electron microscopy observation revealed that the

diameter of the obtained Si ODs was 2±0.25 nm. It was found that Si QDs were self-assembled into "coffee" rings after the evaporation of water. Such "coffee" rings composed of Si QDs exhibited strong SHG under the excitation of fs laser pulses. The detailed method for preparing tubular Cu-doped ZnO NRs can be found in our recent publication.<sup>43</sup> MoS<sub>2</sub> layers were exfoliated on a SiO<sub>2</sub>/Si substrate with a 300 nm-thick SiO<sub>2</sub> film, an Au/SiO<sub>2</sub> substrate composed of a 50 nm-thick Au film on a silica substrate of ~360 μm, and a SiO<sub>2</sub>-SnO<sub>2</sub>/Ag/SiO<sub>2</sub> substrate composed of a 20 nm-thick SiO<sub>2</sub>-SnO<sub>2</sub> layer and a 50 nm-thick Ag film on a silica substrate of  $\sim$ 360 µm (see ESI, Fig. S1(a)). The colors exhibited by the MoS<sub>2</sub> layers on different substrates were examined under a microscope. Basically, we can easily calculate the reflection spectrum of a thin MoS2 layer with a certain thickness and deduce the chromaticity coordinate of the MoS<sub>2</sub> layer. By correlating the calculated chromaticity coordinate with the actually observed color, one can give a rough estimation for the thickness of the MoS<sub>2</sub> layer (see ESI, Fig. S2). The normal Raman spectra of the MoS2 layers were measured by using a Raman spectrometer (Invia, Renishaw) at excitation wavelengths of 514 and 785 nm (see ESI, Fig. S3).


The fs laser light with a repetition rate of 76 MHz and a duration of 130 fs delivered by a fs oscillator (Mira 900S, Coherent) was focused on the nanomaterials by using the  $60 \times$  objective lens (NA = 0.85) of an inverted microscope (Axio Observer A1, Zeiss). The nonlinear optical signals generated by the nanomaterials were collected by using the same objective lens and directed to a combination of a spectrometer (SR-500i-B1, Andor) and a coupled-charge device (DU970N, Andor) for analysis (see ESI, Fig. S1(b)).


#### 3 Results and discussion


## 3.1 Anti-Stokes hyper-Raman scattering observed in single-layer $MoS_2$ on a $SiO_2/Si$ substrate

Since single-layer MoS<sub>2</sub> on a SiO<sub>2</sub>/Si substrate was known to possess a large  $\chi^{(2)}$ , 24-29 we first examined the linear and nonlinear optical responses of a single-layer MoS<sub>2</sub> whose microscope image is shown in the inset of Fig. 2(a). The Raman spectra of the single-layer MoS<sub>2</sub> were measured at two different excitation wavelengths of 514 and 785 nm, as shown in Fig. 2(a). The Raman signal obtained at 514 nm, which is presented in the inset, was much stronger than that obtained at 785 nm because of the resonant excitation of the single-layer MoS<sub>2</sub> with a bandgap energy of ~1.9 eV.44,45 Two peaks located at 384.5 cm<sup>-1</sup> and 403.1 cm<sup>-1</sup>, which are attributed to the in-plane ( $E_{20}^{1}$ ) and out-of-plane  $(A_{1g})$  vibration modes, were clearly resolved. The MoS<sub>2</sub> layer was confirmed to be a single-layer one by the frequency difference between the two modes which is estimated to be 18.6 cm<sup>-1</sup>.46 No anti-Stokes Raman scattering was observed in the Raman spectra.

In Figs. 2(b), we present the nonlinear response spectra of the single-layer  $MoS_2$  measured by using a fs laser light at 750 nm. The exposure time of the CCD, which corresponds to the integration time of the nonlinear optical signals, was chosen to

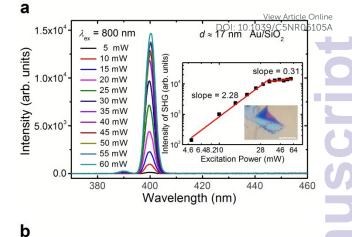


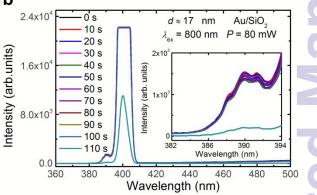




**Fig. 2** (a) Raman scattering spectrum measured at 785 nm. The in-plane  $(E^1{}_{2g})$  and out-of-plane  $(A_{1g})$  vibration modes are indicated by tl  $\stackrel{?}{_{2g}}$  dished circle. The Raman spectrum measured at 514 nm in which the two vibration modes are clearly resolved and the microscope image  $\epsilon$  the single-layer  $MoS_2$  on the  $SiO_2/Si$  substrate are shown in the inse The length of the scale bar is  $10~\mu m$ . (b) Nonlinear response spectra of the single-layer  $MoS_2$  measured at different excitation powers with  $\epsilon$  exposure time of 0.5~s. The anti-Stokes hyper-Raman signal magnified in the inset. (c) Nonlinear response spectra of the single-layer  $MoS_2$  measured at an excitation power of 60~mW with differe  $\epsilon$  exposure times of 10, 20, and 40~s. In this case, the intensity of the SHG was beyond the detection region of the CCD. The weak anti-Stokes hyper-Raman signal with a larger Raman shift appearing in tl  $\epsilon$  350-360 nm wavelength range is magnified in the inset.

Paper Nanoscale


be 0.5 s. Apart from the strong second harmonic (SH) observed at 375 nm, one can see a nonlinear signal composed of two peaks appearing at the short-wavelength side of the SH (see the inset of Fig. 2(b)). They are attributed to the anti-Stokes hyper-Raman scattering related to two vibration modes with Raman shifts of about 793 cm<sup>-1</sup> and 923 cm<sup>-1</sup>, respectively. These two modes are not found in the normal Raman spectrum of MoS<sub>2</sub>. <sup>47</sup> Contrary to the normal Raman scattering, Stokes hyper-Raman scattering was not observed in the nonlinear response spectra of the single-layer MoS<sub>2</sub>. Early in 2000, Nayfeh et al. also observed strong anti-Stoke hyper-Raman scattering in the microcrystalline films composed of ultrasmall Si nanoparticles which exhibited extremely strong SHG.<sup>20</sup> In their case, the intensity of the anti-Stokes hyper-Raman scattering was even stronger than that of the SH.


In order to resolve more vibration modes in the nonlinear response spectra, we increased the integration time from 10 to 40 s, as shown in Fig. 2(c). Six vibration modes were clearly revealed and their Raman shifts were estimated to be 772 cm<sup>-1</sup>, 888 cm<sup>-1</sup>, 1378 cm<sup>-1</sup>, 1492 cm<sup>-1</sup>, 1594 cm<sup>-1</sup> and 1667 cm<sup>-1</sup>, respectively (see ESI, Fig. S4 for the details of extracting the Raman shifts of these vibration modes).

In Fig. 1(b), it can be seen that the transition rate from the excited state to the virtual state should be larger than the decay rate of the excited state to the ground state in order to observe the anti-Stokes hyper Raman scattering. In this case, the hyper-Rayleigh scattering, which corresponds to SHG, is also strong because of the large transition rate from the excited state to the virtual state. For this reason, an enhancement in hyper-Raman scattering is also accompanied by an enhancement in SHG, as shown in Fig. 2(c) where the integration time for the nonlinear signals is increased. In other words, any method which can be employed to enhance SHG will also benefit to the enhancement in hyper-Raman scattering.

## 3.2 Anti-Stokes hyper-Raman scattering observed in 17 nm MoS<sub>2</sub> layer on an Au/SiO<sub>2</sub> substrate

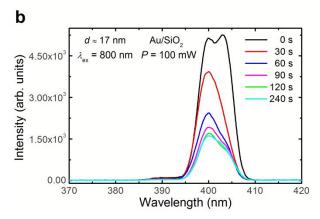
Very recently, we have demonstrated that the SHG of a MoS2 layer can be enhanced by using a thin gold film. 48 For the MoS<sub>2</sub> layers on an Au/SiO<sub>2</sub> substrate, the strongest SHG is no longer achieved in single-layer MoS<sub>2</sub> which exhibits the strongest SHG on a SiO<sub>2</sub>/Si substrate. Based on the calculation of the enhancement factor for SHG, it was found that the strongest SHG was obtained in the 17 nm-thick MoS<sub>2</sub> layer on the Au/SiO<sub>2</sub> substrate. 48 Therefore, we measured the nonlinear response spectra for the 17 nm-thick MoS<sub>2</sub> layer on the Au/SiO<sub>2</sub> substrate, as shown in Fig. 3. In Fig. 3(a), we present the evolution of the nonlinear response spectrum obtained at 800 nm with increasing excitation power. The dependence of the SHG intensity on the excitation power is provided in the inset where a slope of ~2.28 was extracted by fitting the experimental data plotted in a double logarithmic coordinate, in good agreement with the second-order nature of SHG. In Fig. 3(b), strong anti-Stokes hyper-Raman scattering was observed at an excitation power of 80 mW. In this case, the intensity of the SHG exceeded the detection range of the CCD. In order to see clearly the hyper-Raman scattering, the spectra were magnified in the wavelength range of 382-394 nm, as shown in the inset. The intensity of the hyper-Raman scattering was

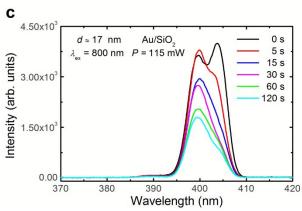




**Fig. 3** (a) Evolution of the nonlinear response spectrum with increas..., excitation intensity measured at 800 nm with 50 gain value for the 17 nm-thick MoS<sub>2</sub> layer on the Au/SiO<sub>2</sub> substrate. The integration tin 3 was chosen to be 0.5 s. The dependence of the SHG intensity on the excitation intensity and the microscope image of the 17 nm-thick MoS layer on the Au/SiO<sub>2</sub> substrate included within the dotted ellipse 3 shown in the inset. The length of the scale bar is 10  $\mu$ m. (b) Evolution of the nonlinear response spectrum with increasing irradiation time measured at an excitation intensity of 80 mW for the 17 nm-thick MoS layer on the Au/SiO<sub>2</sub> substrate. The integration time was chosen to be 10 s. In this case, the intensity of the SHG was beyond the detection region of the CCD.

found to increase with increasing integration time. Howeve, does not exhibit a linear increase because of the saturation of the SHG for excitation powers larger than 35 mW (see the inset of Fig. 3(a)). When the ablation of the MoS<sub>2</sub> layer occurred, decrease in both the SHG and the hyper-Raman scattering was observed, as shown in Fig. 3(b). The Raman shifts for the four vibration modes resolved in the anti-Stokes hyper-Raman scattering were derived to be ~542 cm<sup>-1</sup>, ~655 cm<sup>-1</sup>, ~761 cm and ~846 cm<sup>-1</sup> (see ESI, Fig. S4 and Table S1/S2 for the details of extracting the Raman shifts of these vibration modes). The four vibration modes are also not found in the normal Ramai. spectrum of MoS<sub>2</sub>.<sup>47</sup> In addition, it is noticed that the vibratio modes observed in the 17 nm-thick MoS<sub>2</sub> layer on the Au/SiC \ substrate are different from those observed in the single-layer MoS<sub>2</sub> on the SiO<sub>2</sub>/Si substrate. Apart from the difference i thickness, this behavior implies that the enhancement in hyper-Raman scattering provided by the thin gold film is selective More experiments are needed to clarify this issue.


## 3.3 Stokes hyper-Raman scattering observed in the ablation (MoS<sub>2</sub> layers


Page 5 of 9 Nanoscale

Nanoscale

When the excitation power of the fs laser light exceeds a critical value, the ablation of the MoS<sub>2</sub> layer will occur, leading to the reduction in the thickness. Since the maximum SHG is achieved in the 17 nm-thick MoS<sub>2</sub>, a decrease in SHG is expected with the decrease of the thickness. In the inset of Fig. 4(a), we present the microscope images of the 17 nm-thick MoS<sub>2</sub> layer before and after the ablation. A color change was

a 5x10 d≈ 17 nm Au/SiO, = 800 nm P = 80 mW4x10 Intensity (arb. units) ntensity of SHG (a. u.) 3x10 180 s 240 s 2x10 270 s 1x10<sup>3</sup> 180 t (s) 440 400 420 380 460 Wavelength (nm)



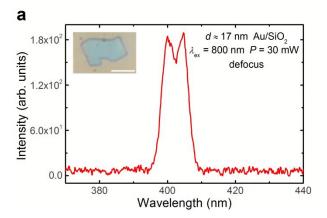


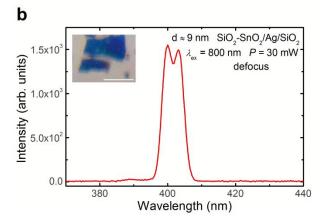
**Fig. 4** (a) Evolution of the nonlinear response spectrum of the 17 nm-thick  $MoS_2$  on the  $Au/SiO_2$  substrate with increasing ablation time observed at an excitation power of 80 mW. The dependence of the SHG intensity on the ablation time and microscope images of the 17 nm-thick  $MoS_2$  before and after the ablation by using high-power fs laser light are shown in the inset. The length of the scale bar is 10  $\mu$ m. (b) and (c): Evolution of the nonlinear response spectrum with increasing ablation time observed at excitation powers of 100 and 115 mW, respectively. In all cases, the integration time was all chosen to be 0.5 s.

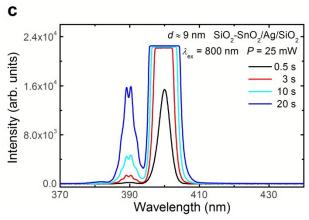
observed at the ablation points. In Fig. 4(a), we show the evolution of the nonlinear response spectrum with increasing ablation time when the excitation power was fixed at 80 mWe. In this case, a monotonic reduction in the SHO intensity was observed with increasing ablation time, as summarized in inset. If we raised the excitation power further to 100 or 115 mW, a new peak whose intensity is comparable to that of the SH emerged at the long-wavelength side of the SH, as can be seen in Figs. 4(b) and 4(c). We attributed this peak to the Stokes hyper-Raman scattering of a certain vibration mode whose Raman shift was estimated to be about 270 cm<sup>-1</sup> (see ESI, Fig. S4 and Table S1/S2). With increasing ablation time, the intensity of the Stokes hyper-Raman scattering decreased and finally appeared as a shoulder on the right side of the SH.

**Paper** 

When the MoS<sub>2</sub> layer was ablated by the high-power fs laser light, the high temperature in MoS<sub>2</sub> accelerated the deca, of electrons from the excited state to the ground state. As result, the excited state is no longer effectively populated leading to the decoupling between the normal Raman scatterin and the hyper-Raman scattering proposed in Fig. 1(b). In this case, the anti-Stokes hyper-Raman scattering was reduced while the Stokes component became visible in the nonlinear response spectra because of the increased population of the ground state, as evidenced in Fig. 3(b) and Fig. 4.


Basically, MoS<sub>2</sub> possesses semiconducting 2H phase and 1T/1T' phase. 49-52 While the 2H phase in thermodynamically stable, the 1T phase is inherently unstab or metastable. The conversion of 2H phase to 1T phase can be realized through the intercalation of alkali-metal (Li and K) du to the charge transfer from alkali atoms to MoS<sub>2</sub> <sup>49-52</sup> Very recently, it has been demonstrated experimentally that the reversion of the 1T phase to the 2H phase can be realized t irradiating fs laser pulses, making it possible to fabricate a 1T/1T' to 2H heterojunction.<sup>49</sup> It is noticed, however, that the laser power used to induce the phase transition was only 150 μW and an ablation of MoS<sub>2</sub> occurred when a higher lase power was employed. Physically, the possibility of introducing a phase transition from 2H to 1T/1T' by using fs lase. irradiation is quite small because the former is stable while the latter is metastable. As compared with metallic 1T/1T' -MoS the absorption of laser energy by semiconducting 2H–MoS<sub>2</sub>. much smaller. Consequently, the fs laser power we used was almost three orders of magnitude larger than that reported for inducing the 1T/1T' to 2H phase transition. In order to confirm that the change in SHG intensity and film color was caused by ablation rather than phase transition, we measured the Raman scattering spectra for the un-ablated and ablated areas and found no change in the Raman scattering peaks (see ESI, Fig S3b). This result indicates that the irradiation of fs laser pulse results in the ablation of MoS<sub>2</sub> rather than the 2H to 1T/T phase transition.


## 3.4 Stokes hyper-Raman scattering observed in the case defocusing


Previously, it was shown that the third harmonic generatic (THG) and the associated hyper-Raman scattering exhibited a conical emission due to the phase-matched condition (c.

Paper Nanoscale

momentum conservation) that needs to be satisfied in the nonlinear optical process. <sup>18</sup> Since the wavevector of the anti-Stokes hyper-Raman scattering is larger than that of the Stokes one, the conical angle for the anti-Stokes component should be smaller while that for the Stokes one should be larger than that of the THG. Similar situation is expected in the hyper-Raman scattering associated with SHG as we studied in this work. For



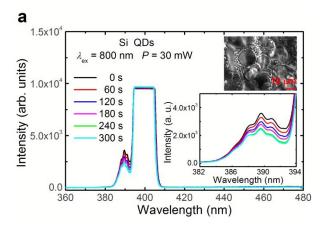




**Fig. 5** Nonlinear response spectra measured by using defocused fs laser light for the 17 nm-thick MoS<sub>2</sub> layer on the Au/SiO<sub>2</sub> substrate (a) and the 9 nm-thick MoS<sub>2</sub> layer on the SiO<sub>2</sub>-SnO<sub>2</sub>/Ag/SiO<sub>2</sub> substrate (b). The microscope images for the corresponding MoS<sub>2</sub> layers are shown in the insets. The length of the scale bar is 10  $\mu$ m. (c) Nonlinear response spectra measured for the 9 nm-thick MoS<sub>2</sub> layer on the SiO<sub>2</sub>-

 $SnO_2/Ag/SiO_2$  substrate by using focused fs laser light and the increased integration time from 0.5 to 20 s.

View Article Online


this reason, the Stokes hyper-Raman component has Profit of collected by the objective in the case of focusing because of larger conical angle, especially for those vibration modes with large Raman shifts. A possible way to observe the Stoke; hyper-Raman scattering with small Raman shifts is to increase the conical angle for collecting signals by moving the objective towards the sample or by defocusing upwards. In this way, the signals with conical angles larger than the incident angle can be collected by the objective, enabling the observation of the Stokes hyper-Raman scattering with small Raman shifts. However, the excitation intensity is also reduced by defocusing leading to the reduction in the intensity of the SHG and hype. Raman scattering. In Fig. 5(a), we show the nonlinear responsa spectra measured for a 17 nm-thick MoS<sub>2</sub> layer on the Au/SiO<sub>2</sub> substrate by using defocused fs laser light at 800 nm. In this case, the anti-Stokes hyper-Raman scattering was too weak t be observed. As expected, the Stokes component with a Rama shift of 278 cm<sup>-1</sup> was clearly resolved in the spectrum, similar to the Stokes component observed in the ablation process of the MoS<sub>2</sub> layer. If we refocused the excitation light on the MoS<sub>2</sub> layer, the Stokes component disappeared and the anti-Stc component appeared. We also examined the nonlinear response spectrum for a 9 nm-thick MoS<sub>2</sub> layer on a SiO<sub>2</sub>-SnO<sub>2</sub>/Ag/S substrate which exhibited very strong SHG even in the case of defocusing, as shown in Fig. 5(b). A Stokes hyper-Ramon scattering with a Raman shift of 226 cm<sup>-1</sup> was observed Actually, the observation of Stokes hyper-Raman scattering with less strong laser field similar to the case of defocusing way also found in the study of the hyper-Raman scattering spectrum of hydrogen atoms. <sup>53</sup> Similarly, strong anti-Stokes hype Raman scattering was revealed in the nonlinear response spectra of the 9 nm-thick MoS<sub>2</sub> layer on the SiO SnO<sub>2</sub>/Ag/SiO<sub>2</sub> substrate by increasing the integration time from 0.5 to 20 s, as shown in Fig. 5(c). Their Raman shifts wer calculated to be 527 cm<sup>-1</sup>, 620 cm<sup>-1</sup>, 703 cm<sup>-1</sup>, and 792 cm respectively (see ESI, Fig. S4 and Table S1/S2).

## 3.5 Anti-Stokes hyper-Raman scattering observed in Si QDs and ZnO NRs

As depicted in Fig. 1(b), the transition rate from the excited state to the virtual state is determined not only by the excitation intensity but also by the  $\chi^{(2)}$  of the nanomaterials which is indirectly reflected in the efficiency of the hyper-Rayleigh scattering or the intensity of SHG. Therefore, anti-Stokes hyper-Raman scattering should also be observed in other nanomaterials with large  $\chi^{(2)}$ . Here, we show two typical examples where strong anti-Stokes hyper-Raman scattering ..... successfully observed. The first one is Si QDs self-assemble into "coffee" rings. Such a nanomaterial is quite similar to the microcrystallite films composed of ultrasmall Si nanoparticle reported previously.<sup>20</sup> The second one is tubular Cu-doped Zn NRs. The nonlinear response spectra measured for these two nanomaterials are presented in Figs. 6(a) and 6(b) while the scanning electron microscope (SEM) images are shown in the insets. The magnified spectra showing clearly the anti-Stoke hyper-Raman scattering are also provided as insets. For the \$ QDs, four vibration modes with Raman shift of about 578 cm<sup>-1</sup> 666 cm<sup>-1</sup>, 763 cm<sup>-1</sup>, 859 cm<sup>-1</sup> are deduced (see ESI, Fig. S4 They are not found in the Raman scattering spectrum of Si. 54, Similarly, two peaks with Raman shifts of about 859 cm<sup>-1</sup> an 995 cm<sup>-1</sup> were clearly identified in the anti-Stokes hype.

Nanoscale **Paper** 

Raman scattering of the tubular Cu-doped ZnO NRs (see ESI, Fig. S4 and Table S1/S2). These two vibration modes are also not found in the Raman scattering spectrum of ZnO.<sup>56-59</sup>



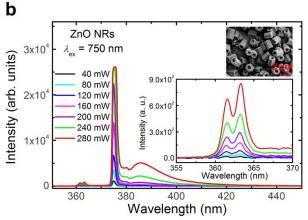



Fig. 6 (a) Evolution of the nonlinear response spectrum with increasing integration time measured for the Si QDs self-assembled into coffee rings. The excitation wavelength was chosen to be 800 nm and the excitation power was fixed at 30 mW. The SEM image of the selfassembled Si QDs and the magnified anti-Stokes hyper-Raman scattering are shown in the insets. (b) Evolution of the nonlinear response spectrum with increasing excitation power measured for the tubular Cu-doped ZnO NRs. The excitation wavelength and the integration time were chosen to be 750 nm and 0.5 s, respectively. The SEM image of the tubular Cu-doped ZnO NRs and the magnified anti-Stokes hyper-Raman scattering are shown in the insets.

#### Conclusion

In summary, we proposed a scheme for generating anti-Stokes hyper-Raman scattering by using fs laser pulses and demonstrated the proposal by using MoS2 layers on different substrates, Si QDs self-assembled into "coffee" rings and tubular Cu-doped ZnO NRs that exhibited efficient SHG. In addition, Stokes hyper-Raman scattering was observed in the ablation process of MoS<sub>2</sub> layers and also in the case of defocusing the excitation light. With appropriate improvement, the detection of strong anti-Stokes hyper-Raman scattering may become a new technique for studying the Raman inactive vibration modes in nanomaterials.

#### Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51171066 and 11374109). View Article Online DOI: 10.1039/C5NR06105A

#### Notes and references

<sup>a</sup>Guangdong Provincial Key Laboratory of Nanophotonic Function, <sup>1</sup> Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, P. R.China. E-mail: slan@scnu.edu.cn

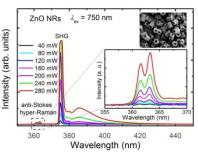
<sup>b</sup>School of Chemistry and Environment, South China Normal Universit Guangzhou 510006, P. R. China. E-mail: tiesl@scnu.edu.cn

Supplementary Information DOI: 10.1039/b000000x/

- H. Vogt, Phys. Rev. B, 1988, 38, 5699-5708.
- 2 K. Inoue and K. Watanabe, Phys. Rev. B, 1989, 39, 1977-1980
- K. Watanabe and K. Inoue, J. Phys. Soc. Jpn., 1989, 58, 726-732.
- Y. Tezuka, S. Shin and M. Ishigame, Phys. Rev. B, 1994, 49, 9312 9321.
- K. Watanabe, K. Inoue and F. Minami, Phys. Rev. B, 1992, 46, 202
- S. J. Cyvin, J. E. Rauch and J. C. Decius, J. Chem. Phys., 1965. 4083-4095.
- J. H. Christie and D. J. Lockwood, J. Chem. Phys., 1971, 54, 111
- D. L. Andrews and T. Thirunamachandran, J. Chem. Phys., 1978, 68 2941-2951
- W. P. Acker, D. H. Leach and R. K. Chang, Chem. Phys. Letter 1989, 155, 491-495.
- 10 A. V. Baranov, Y. S. Bobovich and V. I. Petrov, Sov. Phys. Ust. 1990, 33, 812-832,
- 11 H. Vogt and G. Neumann, Phys. Status Solidi B, 1979, 92, 57-63.
- 12 H. Vogt, J. A. Sanjurjo and G. Rossbroich, Phys. Rev. B, 1982, 26, 5904-5910.
- 13 A. V. Baranov, K. Inoue, K. Toba, A. Yamanaka, V. I. Petrov and A V. Fedorov, Phys. Rev. B, 1996, 53, R1721-R1724.
- 14 K. Inoue, A. Yamanaka, K. Toba, A. V. Baranov, A. A. Onushchenko and A. V. Fedorov, Phys. Rev. B, 1996, 54, R8321 R8324.
- 15 M. Mizuno, H. Hamaguchi and T. Tahara, J. Phys. Chem. A, 2002, 106, 3599-3604.
- 16 J. Kneipp, H. Kneipp and K. Kneipp, PNAS, 2006, 103, 17149-1715
- 17 S. O. Konorov, D. A. Akimov, A. A. Ivanov, M. V. Alfimov and A M. Zheltikov, Journal of Experimental and Theoretical Physics, 2004 99. 19-27.
- 18 D. Homoelle, K. D. Moll, A. L. Gaeta and R. W. Boyd, Phys. Rev. A 2005, 72, 011802(R)
- 19 Fontes, K. Ajito, A. A. R. Neves, W. L. Moreira, A. A. de Thomaz, J. C. Barbosa, A. M. de Paula and C. L. Cesar, Phys. Rev. E, 200 **72**, 012903.
- 20 M. H. Nayfeh, O. Akcakir, G. Belomoin, N. Barry, J. Therrien and Gratton, Appl. Phys. Lett., 2000, 77, 4086-4088.
- 21 A. Zumbusch, G. R. Holtom and X. S. Xie, Phys. Rev. Lett., 1999, & 4142-4145.

anoscale Accepted

Paper Nanoscale


- 22 C. Hubert, L. Billot, P. -M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo and A. Fort, *Appl. Phys. Lett.*, 2007, 90, 181105
- 23 G. Liu, H. Deng, G. Li, L. Chen, Q. Dai, S. Lan and S. Tie, Plasmonics, 2014, 9, 1471–1480.
- 24 N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou and H. Zhao, *Phys. Rev. B*, 2013, **87**, 161403(R).
- 25 L. M. Malard, T. V. Alencar, A. P. M. Barboza, K. F. Mak and A. M. dePaula, *Phys. Rev. B*, 2013, 87, 201401(R).
- 26 Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean and T. F. Heinz, *Nano Lett.*, 2013, 13, 3329-3333.
- 27 W. T. Hsu, Z. A. Zhao, L. J. Li, C. H. Chen, M. H. Chiu, P. S. Chang, Y. C. Chou and W. H. Chang, ACS Nano, 2014, 8, 2951-2958.
- 28 X. B. Yin, Z. L. Ye, D. A. Chenet, Y. Ye, K. O'Brien, J. C. Hone and X. Zhang, *Science*, 2014, **344**, 488-490.
- 29 R. Wang, H. C. Chien, J. Kumar, N. Kumar, H. Y. Chiu and H. Zhao, Appl. Mater. Interfaces, 2014, 6, 314-318.
- 30 D. Maikhuri, S. P. Purohit and K. C. Mathur, AIP Advances, 2015, 5, 047115.
- 31 S. Sauvage, T. Brunhes, P. Boucaud, A. Lemaitre, J.-M. Gerard, F. Glotin, R. Prazeres, and J.-M. Ortega, *Phys. Status Solidi B*, 2001, 224, 595–598.
- 32 L. Liu, S. B. Kumar, Y. Ouyang and J. Guo, *IEEE Trans. Electron Devices*, 2011, **58**, 3042-3047.
- 33 Y. Yoon, K. Ganapathi and S. Salahuddin, *Nano Lett.*, 2011, 11, 3768-3773.
- 34 H. Wang, L. Yu, Y. -H. Lee, Y. Shi, A. Hsu, M. Chin, L. -J. Li, M. Dubey, J. Kong and T. Palacios, *Nano Lett.*, 2012, 12, 4674-4680.
- 35 B. Radisavljevic, M. B. Whitwick and A. Kis, ACS Nano, 2011, 5, 9934-9938.
- 36 S. Bertolazzi, J. Brivio and A. Kis, ACS Nano, 2011, 5, 9703-9709.
- 37 Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu, X. Huang and H. Zhang, *Small* 2012, 8, 2994-2999.
- 38 J. Pu, Y. Yomogida, K. -K. Liu, L. -J. Li, Y. Iwasa and T. Takenobu, *Nano Lett.*, 2012, **12**, 4013-4017.
- 39 Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen and H. Zhang, ACS Nano, 2012, 6, 74-80.
- 40 H. S. Lee, S. -W. Min, Y. -G. Chang, P. M. Kyu, T. Nam, H. Kim, J. H. Kim, S. Ryu and S. Im, *Nano Lett.*, 2012, 12, 3695-3700.
- 41 M. Shanmugam, T. Bansal, C. A. Durcan and B. Yu, *Appl. Phys. Lett.*, 2012, **100**, 153901.
- 42 K. Sato, H. Tsuji, K. Hirakuri, N. Fukata and Y. Yamauchi, *Chem. Commun.*, 2009, **25**, 3759–3761.
- 43 X. Wan, X. Liang, C. Zhang, X. Li, W. Liang, H. Xu, S. Lan, and S. Tie, *Chem. Eng. J.*, 2015, **272**, 58–68.
- 44 K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, *Phys. Rev. Lett.*, 2010 **105** 136805
- 45 H. Zeng, J. Dai, W. Yao, D. Xiao and X. Cui, *Nat. Nanotechnol.*, 2012. **7**, 490-493.
- 46 H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier and D. Baillargeat, *Adv. Funct. Mater.*, 2012, **22**, 1385-1390.
- 47 B. C. Windom, W. G. Sawyer and D. W. Hahn, *Tribol Lett.*, 2011, 42, 301–310
- 48 J. Zeng, M. Yuan, W. Yuan, Q. Dai, H. Fan, S. Lan and S. Tie, *Nanoscale*, 2015, **7**, 13547-13553.

- 49 Y. Guo, D. Sun, B. Ouyang, A. Raja, J. Song, T. F. Heinz and L. E. Brus, *Nano Lett.*, 2015, 15, 5081–5088.
- 50 X. Fan, P. Xu, D. Zhou, Y. Sun, Y. C. Lejo M<sub>10</sub>A<sub>0</sub> 3E/O Support MA Terrones and T. E. Mallouk, *Nano Lett.*, 2015, **15**, 5956 –5960.
- 51 M. Chhowalla, D. Voiry, J. Yang, H. S. Shin and K. P. Loh, MRS Bulletin, 2015, 40, 585-591.
- 52 G. Gao, Y. Jiao, F. Ma, Y. Jiao, E. Waclawik and A. Du, 2015. http://eprints.qut.edu.au/84406.
- 53 Z. Zhou and J. Yuan, Phys. Rev. A, 2008, 77, 063411.
- 54 M. H. Brodsky, M. Cardona and J. J. Cuomo, *Phys. Rev. B*, 1977, 1 3556-3571.
- 55 R. Wang, G. Zhou, Y. Liu, S. Pan, H. Zhang, D. Yu and Z. Zhan Phys. Rev. B, 2000, 61, 16827-16832.
- 56 X. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu and R. H. Chang, *Journal of Crystal Growth*, 2001, 226, 123–129.
- 57 F. J. Manjón, B. Marí, J. Serrano and A. H. Romero, J. Appl. Phys 2005, 97, 053516.
- 58 N. H. Nickel, F. Friedrich, J. F. Rommeluère and P. Galtier, App. Phys. Lett., 2005, 87, 211905.
- 59 S. -S. Lo and D. Huang, Langmuir, 2010, 26, 6762-6766.

Nanoscale

The table of contents entry: Strong anti-Stokes hyper-Raman scattering was observed in nanomaterials with largers see the larger susceptibilities by using femtosecond laser pulses and many Raman inactive vibration modes were clearly revealed.

### **Table of Contents Graphic**



noscale Accepted