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Abstract

The free random walk approach has been used to analyze the attenuation of the NMR signal due to spin dephasing in the pres-
ence of a constant and pulsed parabolic magnetic field. The spin echo sequence was chosen to examine the attenuation of the NMR
signal resulting from self-diffusion. In the framework of the gaussian approach, the long-time limit calculations predict more pro-
nounced diffusion weighting for the parabolic field than for linear magnetic field. Analytical results were obtained and compared
with those from other approaches based on a variety of different of approximations.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The use of linearly varying magnetic fields has been a
critical component of diffusion NMR experiments, espe-
cially in the light of the growing applications of NMR in
medicine. The consequences of magnetic field imperfec-
tions can be divided into geometrical distortions and
inaccurate quantifications of physical properties. The
first is a consequence of B0 inhomogeneity, eddy cur-
rents, and differences in susceptibility. The second is of-
ten a result of different assumptions utilized in system
modeling. Simulations and experiments show that non-
uniformity induces over- and underestimation (10–
30%) in diffusion coefficients [1] and cannot be neglected
in anisotropic diffusion tensor calculations. Non-unifor-
mities of magnetic field gradients can cause serious arti-
facts in diffusion imaging and lead to image warping and
spatially dependent errors in the direction and magni-
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tude of diffusion encoding. As a consequence, fiber
tracking analyses [2] become inaccurate and unreliable.
Efficient correction algorithms are in the process of
being developed and have not yet been implemented
on clinical NMR scanners. Until recently, however,
the influence of magnetic field imperfections in diffusion
experiments has not been fully appreciated. Moreover,
vigorous interest has grown in the theoretical and prac-
tical consideration of spatially non-linear magnetic
fields, in particular the second order (parabolic) mag-
netic field as a means of increasing the diffusion weight-
ing effect.

One of the most important applications of diffusion
imaging in the medical arena is diffusion tensor imaging
and fiber tracking in the brain. This application has ad-
vanced significantly in recent years through advances in
gradient coil design and performance. Improved perfor-
mance, that is maximum gradient strength and maxi-
mum slew rate, has been achieved through various
compromises. One of these compromises is a reduction
in the volume over which the gradients are linear.
It has been shown recently [1] that by expressing the
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Fig. 1. (A) Schematic representation of the absolute value and
direction of a centric parabolic magnetic field ~B2. G2 characterizes
the intensity of parabolic magnetic field. With regard to the particular
question of interest here, the directions ~B0, ~B2 and the direction of the
positive hops are aligned. (B) Brownian motion of a particle with step
n � R along z axis during a mean time, ss between steps.
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gradient field using a spherical harmonic expansion,
the contribution of the gradient non-uniformities may
be characterized. It has been shown [1] that the errors
in the absolute diffusivity, for example, ranged from
about �10% to +20%. This is clear evidence that the
influence of higher-order gradient magnetic fields can
be of great importance and account must be taken of
these factors.

In the current work, we present an accurate solution
to the problem of using the free random walk approach
[3] in a parabolic magnetic field and prove that a more
pronounced signal decay envelope occurs due to diffu-
sion. Our theoretical results agree well with those of
other approximation methods, such as the variation of
local field method [4–6], the gaussian phase approxima-
tion [7], the Green�s function method [8], and the prop-
agator method [9,10].

The model system we consider consists of a group of
nuclear spins confined in a magnetic field. The field is
composed of a homogeneous Zeeman field, B0, and
the parabolic magnetic field, B2, which can be either sta-
tic or pulsed. The diffusion process is modeled by allow-
ing the spins to execute a one-dimensional Markov
chain random walk [11] in an infinite, homogeneous iso-
tropic medium. Following the method proposed by Carr
and Purcell [3], the self-diffusion of the particle is pic-
tured as a succession of infinitesimal and discrete hops
with motion resolved along the direction of the centric
parabolic magnetic field (Fig. 1A). Motion in other
dimensions is treated as independent and does not influ-
ence the coherence of the transverse magnetization.
Pythagoras�s theorem can be applied to calculate the to-
tal displacement. We describe the spin displacements by
discrete random variables with each spin accumulating
phase in an amount determined by the path it takes
through the inhomogeneous field. The phase of a spin
at any time can be expressed in terms of its initial posi-
tion and the random variables that characterize its
movement. We make the representation of the unknown
distribution function of random shifts in phase as a ser-
ies over a small parameter on the assumption that that
the second moment dominates [12]. The results obtained
are applicable in diffusion imaging and also in a series of
problems associated with the calculation of signal decay
by diffusion in porous media (in the case of unrestricted
‘‘short-time’’ diffusion).
2. Model and assumptions

Let the nuclear spins be confined to a region which
occupies the interval �R < z < R along the z axis. The
end surfaces of the sample are perpendicular to the axis
and its shape and area play no role in the following der-
ivations. The normalized spin density along z is denoted
by q (z0) = d (z0), which is valid when considering self-
diffusion. The magnitude of the Zeeman field, B0, is
much greater than the magnitude of the non-linear field
B2 (z) = G2z

2, where G2 is a coefficient of the parabolic
magnetic field. For the sake of simplicity we have taken
the two fields, B0 and B2, to be parallel to each other;
this is illustrated in Fig. 1A.

Let the diffusion process be modeled by the one-di-
mensional Markov random walk with a step n � R
along the z-axis and a mean time, ss, between steps
(Fig. 1B). The movement of the spins obeys the follow-
ing rule: each spin remains at some position for a fixed
period ss, then instantly jumps to a new position whose
z coordinate differs from the previous one by a fixed
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amount n. The hops occur in the positive or the negative
direction with equal probability. This is described by set-
ting z[(j + 1)ss] = z[(jss)] + na j + 1, where j is the number
of jumps, aj ¼ fþ1;�1g; j ¼ 1; n and a0 = 0, and aj is a
random variable with a probability distribution, P, gi-
ven by P ({aj = ±1}) = 1/2. Suppose the starting posi-
tion of the spin is z0 = ln. Then, after time s = nss and
n jumps, the spin arrives at zðnssÞ ¼ z0 þ n

Pn
i¼1ai. The

spin at this time will be in a magnetic field of
B0 þ G2ðz0 þ n

Pn
i¼1aiÞ

2 with the local Larmor frequency
xðnssÞ ¼ cðB0 þ G2z20Þ þ Dx , where

DxðnssÞ ¼ cG2 2z0n
Xn
k¼0

ak þ n
Xn
i¼0

ai

 !2
2
4

3
5: ð1Þ

This means that the local frequency, x (nss), consists of a
spatially dependent contribution, cðB0 þ G2z20Þ, and a
randomly fluctuating contribution, Dx (Fig. 2A). The
fluctuating frequency change can be simplified as
DxðnssÞ ¼ cG2n

2Pn
i¼1Ai with Ai ¼ 2aið

Pi�1
k¼0akÞ þ a2iþ

2lð
Pi

k0¼0ak0 Þ (Fig. 2B). Therefore, the cumulative phase
change after time s is

DuðnssÞ ¼ cG2ssn
2
Xn
m¼1

cmAm; ð2Þ

where cm ¼ nþ 1� m; m ¼ 1; n. An explanation of Eq.
(2) can be found in [14]. A summation over index m is
illustrated in Fig. 2A. The sum of jump units aj along
the row squared is proportional to the precessional fre-
quency change Eq. (1). The sign at the end of each row
indicates whether the jump after time s is positive or
negative with respect to the parabolic magnetic field
direction. The cumulative phase shift, Du, at time s in
the parabolic magnetic field is given by the sum within
the shaded triangle (Fig. 2A). The same summation
can be rearranged (Eq. (2)) and represented by the
sum of factors Ai (Æ) (Fig. 2B). The advantage of this
treatment is that the view of the sum of Eq. (2) maxi-
mally corresponds to the case of a linear magnetic field
and all rules of summation, developed for the linear
magnetic field, can be applied automatically to the par-
abolic case. Again the cumulative phase shift Du is rep-
resented by the shaded area.

The factor a = cG2ssn
2 in Eq. (2) is quite small and

shows the scale of the phase change after a single jump
of the spin. Du is a function of random {aj} and there-
fore itself becomes a random variable. To avoid ambigu-
ity we assume that the phase, Du, takes the principal
value within an interval of length 2p.

If P ðuÞ ¼
R R
�R qðz0Þpðujz0Þdz0 is a probability distri-

bution of random phase shifts, Du, then the second
moment can be expressed as

R1
�1
R R
�RðuÞ

2qðz0Þpðujz0Þ
dz0 duðfaigÞ, where p(ujz0) is a conditional probability
function yielding the probability that the phase of a spin
which started at z0 will be found within a phase range,
Du. In this double integral, interchanging the order of
integrating is permissible since the averages are carried
out over different independent variables. After averaging
over z0, the variable diffusion coefficient must be treated
as a global characteristic of a homogeneous sample in a
parabolic magnetic field. On the other hand, if R is the
voxel size, then the diffusion coefficient reflects the aver-
aged characteristics of a single voxel.

The ensemble-averaged transverse magnetization is
phase modulated and weighted by the coefficient
Æexp(iDu(s)æ, where Æ� � �æ is an averaging of random vari-
ables together with a probability distribution function.
Since function p (ujz0) is not known, then the probabil-
ity distribution P (u) cannot be found either. This partic-
ular problem can be solved by the method of moments
[12,15] which states that the unknown density probabil-
ity function can be recovered fully from its moments if
they are limited and the characteristic density probabil-
ity function is a series

hexpðiDuðsÞÞi ¼ exphiDuðsÞi: ð3Þ
It is clear that the first moment of Du is equal to

zero, meaning that the sample magnetization will refo-
cus in the same direction as if no diffusion had taken
place. Only the second moment of random value Du
stores the dominating information about distribution
function. The remaining moments answer the question
of how much the distribution deviates from being
gaussian [12,13]. According the central limit theorem,
the gaussian distribution approximates the unknown
density probability with good accuracy when the num-
ber of spin jumps is large. Therefore we concentrate
our attention on the second moment in the following
calculations.

2.1. Translational motion of spins in the presence of a

parabolic magnetic field

First consider motion of the spins in a parabolic mag-
netic field following a 90� RF pulse. In order to evaluate
ÆDu2 (s)æ, the phase change in Eq. (2) is squared:

Du2ðnssÞ ¼ ðcG2ssn
2Þ2½R1 þ R2 þ R3�; ð4Þ

where

R1 ¼
Xn
m¼1

ðnþ 1� mÞa2m

 !2

; ð5aÞ

R2 ¼
Xn
m¼1

ðnþ 1� mÞðAm � a2mÞ
 !2

; ð5bÞ

R3 ¼ 2
Xn
m¼1

ðnþ 1� mÞ
Xn
m0¼1

ðnþ 1� m0ÞðAm0 � a2m0 Þ
 !2

:

ð5cÞ



Fig. 2. (A) The sum of jump units along the row followed by squaring is proportional to the precessional frequency change. The sign at the end of each
row indicates whether the jump after time interval, s, is positive or negative with respect to the parabolic magnetic field direction. The cumulative phase
shift at time s in the parabolic magnetic field is given by the sum within the shaded triangle. For the case of a linear magnetic field, a description may be
found in [14]. (B) The square of jump units can be represented by the sum of factors Ai (Æ). The cumulative phase shift is presented in the shaded area.
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Thus Eq. (5a) gives R1 ¼ n4

4
ð1þ 2

n þ 1
n2Þ. When the num-

ber of hops, N, is large but
ffiffiffiffi
N

p
� R

n (this assumption
is valid for time scales of 1ms in many liquids [7,16]),
the latter expression gives

hR1iðn>NÞ ¼
n4

4
; ð6aÞ

where Æ� � �æ denotes an average over the whole configu-
ration of {aj}. A validation of Eq. (6a) can be found in
Appendix A. The ensemble average of Eq. (5b) is
hR2i ¼ 4

Pn
m¼1ðn� mÞ2m and for a large number of

hops

hR2iðn>NÞ ¼
n4

3
: ð6bÞ

Eq. (5c) is exactly zero after the ensemble average proce-
dure. Substituting Eqs. (6a) and (6b) into (4), the
squared phase change is:

hDu2ðnssÞi ¼ 7
12
ðcG2ssn

2n2Þ2: ð7Þ

Defining the self-diffusion coefficient as
Fig. 3. The cumulative phase shift for spin echo formation at time 2s in a
occurring before and after the 180� RF pulse: trapezium and triangle. After th
rearrangement of this double series is treated in [14].
D ¼ n2=2ss: ð8Þ
Eq. (7) can be simplified to:

hDu2ðsÞi ¼ 7
3
ðcG2DÞ2s4: ð9Þ

Therefore, Eq. (3) can be expressed now as an exponen-
tial function of the diffusion factor

hexpðiDuðsÞÞi ¼ exp �7
6
ðcG2DÞ2s4

h i
: ð10Þ
2.2. Effect on the echo in the presence of a constant

parabolic magnetic field

The dephasing effect, which produces an echo at
time 2s in the presence of the constant parabolic mag-
netic field, must now be considered. The phase dia-
gram for this case is shown in Fig. 3. The 180� RF
pulse reverses all phase shifts that existed before time
s. Following the method described above, the cumula-
tive phase change after time 2s is exactly as in Eq. (2)
but with n replaced by 2n, cm ¼ m� 1; m ¼ 1; n and
constant parabolic magnetic field is given by the subtraction of that
is procedure just two shaded triangles are left (uncorrelated parts). The
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cm ¼ 2n� mþ 1; m ¼ nþ 1; 2n. In order to evaluate
ÆDu2(2s)æ, the phase change in Eq. (2) can be squared:

Du2ð2nssÞ ¼ ðcG2ssn
2Þ2½R1 þ R2 þ R3�; ð11Þ

where

R1 ¼
X2n
m¼1

cma2m

 !2

; ð12aÞ

R2 ¼
X2n
m¼1

cmðAm � a2mÞ
 !2

; ð12bÞ

R3 ¼ 2
X2n
m¼1

cm
X2n
m0¼1

cm0 ðAm0 � a2m0 Þ
 !2

: ð12cÞ

Therefore, Eq. (12a) gives

hR1i ¼ n4: ð13aÞ
Details concerning the averaging of Eq. (12a) are given
in Appendix B. The ensemble average of Eq. (12b) is
hR2i ¼ 4½

Pn
m¼1ðm� 1Þ3 þ

P2n
m¼nþ1ð2n� mþ 1Þ2ðm� 1Þ�

and for a large number of hops,
Fig. 4. The cumulative phase shift in a pulsed parabolic magnetic field is given
the phase shift calculation is exactly the same as that discussed in [14].
hR2iðn>NÞ ¼
8n4

3
: ð13bÞ

Eq. (12c) equals exactly zero after the ensemble average
procedure. Taking Eqs. (13a) and (13b) and substituting
into Eq. (11), we obtain:

hDu2ð2nssÞi ¼ 11
3
ðcG2ssn2n

2Þ2: ð14Þ

Given Eq. (8), Eq. (14) can be written as

hDu2ð2nssÞi ¼ 44
3
ðcG2s

2
s n

2DÞ2; ð15Þ

and the diffusion factor can be expressed as

hexpðiDuð2sÞÞi ¼ exp �22
3
ðcG2DÞ2s4

h i
: ð16Þ
2.3. Effect on the echo in the presence of pulsed parabolic

magnetic field

For a pulsed parabolic magnetic field, it is apparent
that the phase shift is obtained by summing two
uncorrelated triangular regions and the rectangular
one (Fig. 4). If n is the number of hops during the
by the sum of factors Ai (Æ) within the shaded region. The procedure of
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pulsed parabolic magnetic field pulse and p is a
number of hops between two pulses of the parabolic
magnetic field, then the following net phase shift cal-
culation is applicable. First, consider the rectangular
part:

Durect ¼ cG2ssn
2n
Xp
m¼n

Am: ð17Þ

The square and ensemble-average of the result in Eq.
(17) gives

hDu2irect ¼ ðcG2ssn
2nÞ2ðhR1i þ hR2iÞ; ð18Þ

where

hR1i ¼ n2ðp � nÞ2; ð19aÞ

hR2i ¼ 2n2ðp2 � n2Þ: ð19bÞ
Intermediate steps of this calculation are given in
Appendix C. Taking into account Eq. (9), the triangular
parts in Fig. 4 give

hDu2itr ¼ 7
6
ðcG2ssn

2n2Þ2: ð20Þ

If d = nss and D = pss (the time delay D should not be
confused with the notation for phase fluctuation), then
the total diffusion factor is

hexpðiDuÞi ¼ exp �4ðcG2DÞ2d2D
3

2
D� dþ 1

12D
d2

� �� �
;

ð21Þ
where Eq. (8) has been used. If we suppose that D � d2/
12, then Eq. (21) can be rewritten as

hexpðiDuÞi ¼ exp �6ðcG2DÞ2d2D D� 2
3
d

� �h i
: ð22Þ

When diffusion attenuation occurs mostly during time
D, then a ‘‘frozen’’ fluctuation scale can be introduced
as 2DD ¼ z2 which leads to a particular form for
Eq. (22):

hexpðiDuÞi ¼ exp �3ðcG2Þ2Dz2d2 D� 2
3
d

� �h i
: ð23Þ
Table 1
Diffusion factors j lnðM=M0Þj for different models in the case of s < T �

2; T 2; T
p
2 RF pulse
steady para
magnetic fie

Variation of local field method —

Green�s function method, gaussian phase approximation 2
3c

2G2
2D

2s4

Propagator method —

Present work 7
6c

2G2
2D

2s4

T �
2, T2, and T1 are the transverse and longitudinal relaxation times.
3. Comparative analysis of results obtained

Estimation of the diffusion decay coefficients is a cru-
cial factor in many theoretical studies since it provides
an insight into questions about the scales of the effect.
If the magnitude of the signal is large enough relative
to hardware noise effects, then the applicable aspects
of the diffusion phenomena can be demonstrated. In
Table 1, diffusion factors obtained with different ap-
proaches have been summarized. All the other methods
were developed for pore size estimation (local magnetic
field variation), so our results are comparable only in the
case of the so-called ‘‘short-time’’ limit (unrestricted free
diffusion). Here the characteristic times are s � R2

D and
d;D � R2

D , meaning that the size, R, of the sample (or
the size of the pores or the voxel size) does not play a
role. Moreover, in the previous studies the micro
changes of ðr!BÞ2 were taken into consideration and
averaged. In the current work, we have taken account
of the evolution of phase shift in the presence of an
external nonlinear field for homogeneous samples. Nev-
ertheless, analogous results exist and this offers the pos-
sibility for comparison. The calculated attenuation
factors can be applied in the case of homogeneous voxels
in medical applications of diffusion imaging. As can be
seen from Table 1, the differences in diffusion attenua-
tion factors in the presence of parabolic magnetic fields
calculated with other methods and those resulting from
the present work are within 30%. This can be considered
as one of the possible explanations of overestimation
diffusion coefficients in some NMR experiments and in
medical applications of diffusion imaging where such
contributions have been wholly neglected until very
recently [1].

Eq. (2) is similar to the fluctuations of phase shift in
the presence of a linear magnetic field. That is why the
effective media approach (variation of local field meth-
od) gives results similar to the more complex methods
such as the gaussian phase approximation, the Green�s
function method, and the propagator method. If the
coefficients {Ai} in Eq. (2) are treated as random
1

in a
bolic
ld

p
2 � s� p� s RF pulses
in a steady parabolic
magnetic field

p
2 � s� p� s RF pulses in
a pulsed parabolic
magnetic field

8
3c

2G2
2DR

2s3 —

1
12c

2Dð2sÞ3ðrBÞ2 c2Dd2 D� 1
3d

� �
ðrBÞ2

2
3c

2Ds3ðrBÞ2 4c2G2
2Dd

2z2 D� 1
3d

� �
22
3 c

2G2
2D

2s4 6c2G2
2D

2d2D D� 2
3d

� �
3ðcG2Þ2Dz2d2 D� 2

3d
� �
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variables, generated by linear transformation of vari-
ables {ai}, then it is possible to consider the problem
as in a linear magnetic field but with the renormalized
coefficient of magnetic field G�

1 ! G1 þ G2z2. Represen-
tation of phase fluctuations through independent collec-
tive variables, however, leads to the singularity problem
after using geometric progression (see [7]). In principle,
{Ai} = f ({ai}) is a non-linear transformation by defini-
tion and it is difficult to find {ai} = f�1({Ai}) analyti-
cally. Of course, in the limit the effective media
(classical) results can be obtained if we neglect R1 in
Eqs. (4), (11), and (18).
4. Discussion

We have presented the solution of the free diffusion of
spins in the presence of parabolic magnetic fields. The
treatment of such a problem gives heavier diffusion
attenuation factors than those obtained from the
Green�s function method, gaussian phase approxima-
tion, and variation of local field method. We assume
these discrepancies originate from the fact that we have
not neglected fourth order terms such as ha2i a2j ii 6¼j. In
addition, our calculation show that non-linear magnetic
fields increase attenuation due to diffusion effects; this
can be clearly seen from a comparison of Eq. (21) and
the well-known Stejskal–Tanner equation [17].
Appendix A.

Let us consider the averaging procedure for R1 (Eq.
(5a)). Because a2j ¼ 1, we have to find a sum
ð
Pn

m¼1ðnþ 1� mÞÞ2. This is nothing else other than a
square of an arithmetic series. According to the well-
known formula

Pn
m¼1ðnþ 1� mÞ ¼ nþ 1

2
ðn� 1Þn, the

square of it gives

nþ 1

2
ðn� 1Þn

� �2

¼ n4

4
þ n3

2
þ n2

4
!
n>N

n4

4
; ðA:1Þ

which corresponds to Eq. (6a). The averaging procedure
for Eqs. (5b) and (5c) is more complex and demands ac-
count of the terms a2i a

2
j and a2i ajak where i „ j „ k. After

the averaging procedure, only terms of the first kind
ha2i a2j i 6¼ 0 give a non-zero contribution in the second
moment of the phase shift.
Appendix B.

As mentioned in Appendix A we can apply arithmetic
series summation rules to calculate the average value of
Eq. (12a):
R1 ¼
X2n
m¼1

cm

 !2

¼
Xn
m¼1

ðm� 1Þ þ
X2n

m¼nþ1

ð2n� mþ 1Þ
 !2

¼ n
n� 1

2

� �
þ n

nþ 1

2

� �� �
!
n>N

n4: ðB:1Þ

The averaging procedure for Eqs. (12b) and (12c) is
the same and involves calculation of ha2i a2j i 6¼ 0,
ha2i ajaki ¼ 0, and Æaiajakalæ = 0, where i „ j „ k „ l.
Appendix C.

For the rectangular part in Fig. 4 we consider the
square of the sum ð

Pp
m¼nAmÞ2 ¼ ð

Pp
m¼nð2am

Pi�1
k¼0akþ

1ÞÞ2. Opening of the brackets leads to different kind of
forth order combinations of random variable ai. Only
even order combinations give non-zero terms in averag-
ing procedure.
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