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Abstract Parkinson’s disease (PD) is considered as a neuro-
degenerative disorder of the brain central nervous system. But,
to date, few studies adopted the network model to reveal to-
pological changes in brain structural networks in PD patients.
Additionally, although the concept of rich club organization
has been widely used to study brain networks in various brain
disorders, there is no study to report the changed rich club
organization of brain networks in PD patients. Thus, we col-
lected diffusion tensor imaging (DTI) data from 35 PD pa-
tients and 26 healthy controls and adopted deterministic
tractography to construct brain structural networks. During

the network analysis, we calculated their topological proper-
ties, and built the rich club organization of brain structural
networks for both subject groups. By comparing the
between-group differences in topological properties and rich
club organizations, we found that the connectivity strength of
the feeder and local connections are lower in PD patients
compared to those of the healthy controls. Furthermore, using
a network-based statistic (NBS) approach, we identified uni-
formly significantly decreased connections in two modules,
the limbic/paralimbic/subcortical module and the cognitive
control/attention module, in patients compared to controls.
In addition, for the topological properties of brain network
topology in the PD patients, we found statistically increased
shortest path length and decreased global efficiency. Statistical
comparisons of nodal properties were also widespread in the
frontal and parietal regions for the PD patients. These findings
may provide useful information to better understand the ab-
normalities of brain structural networks in PD patients.

Keywords Rich club organization . Diffusion tensor
imaging . Edge architecture . Network-based statistic

Introduction

Parkinson’s disease (PD), a chronic neurodegenerative disease
of the central nervous system, is clinically characterized by
resting tremor, muscle rigidity, bradykinesia, and other abnor-
mal postures and pace (Jankovic 2008; Lees et al. 2009).
Besides motor deficits, PD patients also usually experi-
ence cognitive declines and visual impairments (Chaudhuri
et al. 2006; Diederich et al. 2009). According to previous
neurobiological studies (Dauer and Przedborski 2003; Drui et
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al. 2014), the main pathogenesis of Parkinson’s disease begins
in the basal ganglia, and then results in widespread brain abnor-
malities in PD patients. However, no study has reported abnor-
mal topological properties of brain structural networks in PD
patients.

Diffusion tensor imaging (DTI) is an available non-
invasive technique to detect white matter (WM) microstruc-
tures of the human brain and to estimate connectivity strength
between distinct regions in vivo (Le Bihan and Johansen-Berg
2012). Most previous PD-related DTI studies (see the
summary in Table 5) focused on detecting alterations in some
specified regions or WM tracts indicated by fractional anisot-
ropy (FA) and mean diffusivity (MD). For instance, Karagulle
et al. (2008) found lower FA values in the bilateral frontal
cortices, supplementary motor area, and anterior cingulum in
PD patients. Agosta et al. (2014) found widely decreased FA
values in the bilateral superior longitudinal fasciculus, corona
radiata, corpus callosum, and uncinate fasciculus of PD pa-
tients with cognitive deficits, compared to PD patients without
remarkable cognitive deficits. Although these studies provide
us a better understanding of the white matter structural alter-
ation in PD, most of them were limited to only detecting the
alterations in some specified regions or WM tracts by map-
ping the alteration of FA and MD, or focused on some spec-
ified white matter structural connectivity.

The human brain can be modeled as a network and its
topological properties, such as the small-worldness, hub re-
gions, and modules, can be estimated with graph theory
(Rubinov and Sporns 2010). Graph theory has been adopted
in previous studies (Zalesky et al. 2011; Wang et al. 2013;
Tewarie et al. 2014) exploring the abnormal network proper-
ties in various brain diseases, including Alzheimer’s disease,
multiple sclerosis, and schizophrenia. For PD patients, the
descriptions of brain structural network can offer us the pos-
sibilities of more systematical analysis of specific brain cir-
cuits. Noticeably, recent studies (van den Heuvel and Sporns
2011; Kocher et al. 2015) also proposed that brain networks
contain a rich club organization, comprised of highly intercon-
nected regions (namely Bhubs^) and can be used to represent a
core neuropathology characteristic of neuropsychiatry
(Crossley et al. 2014). The rich club connections that consti-
tuted among central hub regions form a backbone of global
communication. Several multimodal studies (van den Heuvel
et al. 2013; Ball et al. 2014; Daianu et al. 2015; Harrington
et al. 2015) using the concept of rich club organization have
estimated their changes in brain networks across various pop-
ulations. For instance, Ball et al. (2014) revealed significant
disruptions in short-distance cortico-coritical connections
(more specified to the connections among non-hub regions)
in a premature cohort. Daianu et al. (2015) suggested those
connections among hub regions were relatively preserved,
while connections among low-degree regions were signifi-
cantly disrupted in the Alzheimer’s disease patients.

However, few studies explored the changes of brain structural
networks in PD patients, especially the rich club organizations
in PD patients.

With the aim of uncovering abnormal topology of brain
networks in PD patients, we constructed brain structural net-
works for both the patients and controls, and then compared
their differences in both topological properties and rich club
organizations. Using a network-based statistic (NBS) ap-
proach, we identified the disrupted structural connections in
PD patients. Moreover, we assessed the robustness of our
findings by using different definitions of edge weights, thresh-
olds of streamline counts, and brain parcellation schemes.

Materials and methods

Subjects

Thirty-five idiopathic PD patients (18 F / 17 M, age=61.26
±11.02 years) were recruited between August 2011 and April
2013 from the Guangdong General Hospital in Guangzhou.
All patients underwent a standardized clinical examination by
two neurologists (LW and YZ) who have specialized in diag-
nosing movement disorders for more than 10 years. In this
study, the PD patients fulfilled the clinical diagnostic criteria
of the UK Parkinson’s Disease Society Brain Bank (Daniel
and Lees 1993). All patients had an obvious delay in move-
ment initiation, and their clinical behavior performances were
recorded in detail (Table S1 in supplementary materials). The
severity of disease for each patient was evaluated by using the
third part of Unified Parkinson’s Disease Rating Scale
(UPDRS-III) and the Hoehn and Yahr scale (H-Y stages,
Table S2). The general cognitive abilities for all patients were
assessed by using the Chinese Version of the Mini-Mental
State Examination (MMSE). The exclusion criteria for the
PD patients were as follows: (i) PD caused by other psychiat-
ric and neurological disorders, such as brain stroke, traumatic
brain injury, and brain tumor; (ii) taking any antipsychotics;
(iii) patients with a progressive supranuclear palsy or multiple
system atrophy; and (iv) patients with a MMSE score <25
because subjects with such low scores were considered to
have the cognitive impairments. Additionally, we enrolled
26 healthy subjects as the controls (16 F / 10 M, age=62.81
±10.80 years). The inclusions for the controls were: (i) no
history of neurological or psychiatric disorders or brain inju-
ries, and (ii) MMSE score≥25. Table 1 lists the demographic
information for all the PD patients and the controls. All sub-
jects were right-handed according to their self-report. The
protocol was approved by the Medical Research Ethical
Committee of the Guangdong General Hospital. Written in-
formed consent was obtained from each subject prior to the
study. Under the care of clinical neurologists, the PD patients
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who used medications were requested to stop taking any med-
ications for about 12 h before the MRI scanning.

Data acquisition

All MRI data were acquired on a 3T GE MRI scanner with a
standard 8-channel phased-array receiver-only head coil at the
Guangdong General Hospital. The DTI data for each subject
were acquired using a spin-echo diffusion-weighted EPI se-
quence with the following parameters: repetition time
(TR) = 15,275 ms, echo time (TE) = 75 ms, flip angle
(FA)=90°, field of view (FOV)=320×320 mm2, data ma-
trix = 128 × 128, 25 diffusion-sensitive directions with b
value=1000 s/mm2 and a volume of non-diffusion weighting
(b0) images, slice thickness=2.5 mm, and 60 axial slices with-
out gap covering the whole-brain. We also acquired high-
resolution T1-weighted 3D using rapid interference phase gra-
dient echo flip recovery pulse sequence (FSPGRUSR). The
imaging parameters were: TR/TE= 8.4/3.3 ms, FA= 13°,
FOV = 240 × 240 mm2, matrix size = 256 × 256, slice
thickness=1 mm, voxel size=0.94×0.94×1 mm3, and 146
sagittal slices covering the whole-brain.

Data preprocessing

By using the FSL/FDT Toolbox (Version 5.0; www.fmrib.ox.
ac.uk/fsl), we first corrected the eddy current by realigning all
the diffusion-weighted images to the b0 images, and then

stripped non-brain tissue from the whole head to reduce the
intensity inhomogeneity for each individual DTI data. Then,
we processed the corrected DTI data with DTIStudio (Version
3.0.2; https://www.mristudio.org). The WM streamlines for
the whole-brain were built based on the Fiber Assignment
by Continuous Tracking (FACT) algorithm (Mori and van
Zijl 2002), a deterministic tractography approach implement-
ed in DTIStudio. Fiber tracking was terminated at voxels
where FA<0.2 or where the angle between two eigenvectors
to be connected by the tracking was greater than 45°.

Network construction

Brain structural network was constructed for each subject ac-
cording to the Automatic Anatomical Label (AAL) atlas
(Tzourio-Mazoyer et al. 2002), which parcellates the whole-
brain into 90 regions and is referred to as AAL-90 (Table S2 in
supplementary materials). Following previous studies (Gong
et al. 2009; Zhang et al. 2015), we took each brain region as a
node and the inter-regional WM streamline as the edge to
construct a 90-by-90 matrix. To reduce the potential effect of
noise or other factors during diffusion tractography caused by
data acquirement, preprocessing or processes, we followed
previous studies (Lo et al. 2010; Shu et al. 2011) to set a
threshold of streamline counts to ensure the major connections
among cortical regions. That is, we assumed that any pair of
regions i and j were connected if the number of streamlines
(NOS) was at least three, or NOS ≥3, between these two re-
gions, and took the mean FA value along the inter-regional
streamlines as the edge weights. In this way, we constructed a
FA-weighted brain structural network for each subject (the
details described in the supplementary materials).

Network analysis

Edge architecture

The edge architecture of brain networks can be characterized
by using a rich club organization, which is defined as those
connections among hub regions (Brich club^). The Brich club^
refers to nodes with higher degrees within brain networks and
a higher connectivity strength of inter-nodal connections com-
pared to those composed by randomly selected brain regions
(van den Heuvel et al. 2012). We constructed the group-
averaged FA-weighted structural connectivity network for
each group. In brief, for a given subject group, we first
retained the inter-nodal connections of each of these connec-
tions was presented in at least 50 % of all the subjects, and
then averaged all values for each connection to generate the
group-averaged FA-weighted network for this group. In this
study, we used the equation that appeared in Tian et al. (2011)
to calculate the integrated rich club, feeder and local connec-
tions, respectively.

Table 1 Basic demographics and clinical characteristics of the patients
with Parkinson’s disease (PD) and the healthy controls (HC) in this study

Characteristics PD (n= 35) HC (n= 26) p-value

Gender (Male/Female) 18 / 17 16 / 10 0.43

Age (years) 61.26 ± 11.02 62.81± 10.08 0.31

MMSE 27.03 ± 2.28 28.46± 1.82 0.02*

UPDRS-III 30.04 ± 9.73 NA NA

H-Y stages, no. (mean ± SD)

Range: 1–2 7 (1.14 ± 0.24) NA NA

Range: 2–3 22 (2.18 ± 0.25) NA NA

Range: 3 6 (3 ± 0.00) NA NA

Damaged body part, No. (%)

LB 4 (11 %) NA NA

RB 14 (40 %) NA NA

LB & RB 17 (49 %) NA NA

Disease duration, No. (mean ± SD)

0–5 years 25 (1.82 ± 1.15) NA NA

5–10 years 10 (7.70 ± 2.16) NA NA

Abbreviations MMSE Mini-Mental State Examination, UPSRS-III
Unified Parkinson Disease Rating Scale-III, H-Y Hoehn and Yahr scale,
LB (RB) left (right) body part, NA not applicable,% percentage relative to
whole population of the group
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The rich club nodes and the rich club organization were
determined according to the following four steps. Step-1, we
determined the value of degree k for a node i, counting the
number of connections that the node i shared with other nodes
in the group-averaged network. For the degree value k, we
removed the nodes whose degree ≤ k from the group-
averaged network and selected the remaining nodes as the
prominent nodes. Step-2, we calculated the number of con-
nections E>k for those among the selected prominent nodes
that were connected with each other, and obtained the sum of
the edge weights (i.e., sum of FA values), W, of these inter-
nodal connections. Step-3, we ranked all of the edge weights
(or elements of the group-averaged FA-weighted matrix) in
descending order of their values to generate a vector
W ranked. We also estimated the sum of the edge weights (or
sum of FA values) for those strongest connections in the
Wranked, which has the same number as the connections
E> k of Step-2. Step-4, we calculated the rich club co-
efficient ϕw(k) for the group-averaged FA-weighted net-
work, which is given by the ratio of the results from Step-2
and Step-3 by the following equation:

ϕw kð Þ ¼ W>k
X E>k

l¼1
Wranked

l

; ð1Þ

where the superscript ‘w’ indicates the FA-weighted net-
work. We also calculated the normalized rich club coef-
ficient ϕnorm

w (k) by:

ϕw
norm kð Þ ¼ ϕw kð Þ

ϕrand kð Þ ð2Þ

where ϕrand(k) is the averaged rich club coefficient over
5,000 random networks, each preserving the same numbers of
nodes, strength, and degree distribution as the real brain net-
work (Rubinov and Sporns 2010). Finally, we computed
ϕnorm
w (k) at each level of degree k. Using a nonparametric

permutation t-test, we determined the statistical significances
of these normalized rich club coefficients between the PD
patients and the controls by following a previous study (van
den Heuvel and Sporns 2011).

For a specified value of degree k, a network is considered to
have a rich club organization if ϕnorm

w (k) >1. Following previ-
ous studies (Collin et al. 2014a, b), we referred those brain
regions whose degrees greater compared to a specified value k
as Brich club^ nodes, while the remaining brain regions as the
non-rich club nodes. Based on these categorizations, the edges
of the whole-brain network was classified into three types of
connections (Collin et al. 2014a): (i) Brich club^ connections,
connecting rich club nodes to each other, (ii) Bfeeder^ connec-
tions, connecting rich club nodes to non-rich club nodes, and
(iii) Blocal^ connections, connecting non-rich club nodes to

each other. For a specified degree k, we calculated the connec-
tivity strength for each type of connections in the brain struc-
tural networks. That is, all of the FA values belonging to rich
club connections (RC), feeder connections (Feeder), and local
connections (Local) were separately collected. Using the per-
mutation t-test, we compared the between-group difference in
the connectivity strength for each type of the rich club, feeder,
and local connections. In order to detect the between-group
differences in the length of streamlines (unit: mm) between the
PD patients and the controls, we also generated the length of
streamlines and compared them (see supplementary materials
for details).

Although the statistical test can be used to test the existence
of rich club organization in human brain networks, variances
in the selected k value might affect the choices of rich club and
non-rich club nodes of brain networks. This may result in
variances of the between-group comparisons in any of the
three types of connections. To avoid the effects of different
selected degree k on network analyses, we used the integrated
rich club connections (RCint), integrated feeder connections
(Feederint), and integrated local connections (Localint)
across the range of degrees from 16 to 21 rather than
the connectivity strength of RC, Feeder, and Local at a
specified degree k to compare the between-group differ-
ences. According to a previous study (Tian et al. 2011),
the integrated rich club, feeder and local connections were
defined as summations:

X int ¼
X25

k¼16

X kΔsð ÞΔs; ð3Þ

where X can be represented any of the rich club connection
(RC), feeder connection (Feeder), or local connection (Local)
at as specified degree k whose ϕnorm

w (k) >1 (16≤ k≤21 in our
study, please see Fig. 1a). The degree interval wasΔs=1. For
each group, the FAvalues or length of streamlines correspond-
ing to RCint, Feederint, and Localint were calculated according
to Eq. (3).

Network parameters

Global properties of brain networks can be characterized by
the following seven parameters: clustering coefficient (Cp),
shortest path length (Lp), global efficiency (Eglob), local effi-
ciency (Eloc), normalized clustering coefficient (γ), normal-
ized shortest path length (λ), and small-worldness (σ). We
utilized three parameters γ, λ, and σ, to measure the small-
world property. For a given network, if γ>1 and λ≈1, or
σ> 1, we regarded this network as a small world network
(Watts and Strogatz 1998). The definitions and interpretations
for all of these global parameters are given in Table 2.
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We also assessed nodal properties of brain structural net-
works by using the following three parameters: nodal strength
(Ki), nodal efficiency (Ei), and nodal betweenness (Bi). Their
definitions and interpretations are also listed in Table 2. In this

study, both the global and nodal parameters were computed
using software packages of BCT (Rubinov and Sporns 2010)
and GRETNA (Wang et al. 2015).

Statistical analysis

Comparison of network parameters

First, we conducted a multiple linear regression for each group
to regress out the three covariates, the gender, age, and gender-
age interaction. Second, we determined significant between-
group differences for each of the global and nodal parameters
by using a nonparametric permutation t-test (Nichols
and Holmes 2002). For a given parameter, we randomly
reassigned each subject into any group of the patients or con-
trols letting the two new randomly generated groups generated
the same numbers of subjects as the two original groups, and
calculated the p-value (two sample two-tailed t-test). This pro-
cedure was repeated 5,000 times and resulted in a null distri-
bution of p-values for the given parameter. Thus, the signifi-
cant two-sided p-value of between-group difference was cal-
culated by its percentile position, that is, the proportion of
those p-values that were larger than the real p-value in the 5,
000 repetitions. We set p<0.05 as the level of significant
between-group difference for each parameter. In this study,
we also respectively examined the statistical significance in
RCint, Feederint, and Localint between the PD patients and the
controls using the permutation t-test (5,000 repetitions,
p<0.05). Similarly, we conducted the same statistical compar-
isons for length of streamlines between the two groups. In this
study, we used the FWE-correction (p=0.05) to correct the
false positive results caused by multiple comparisons.
Unfortunately, we found non-significant between-group dif-
ferences in each of these topological parameters when
adopting the FEW correction.

Network-based statistic analysis

Network-based statistic (NBS) approach (Zalesky et al.
2010a) was applied to probe those significant different
connections between the PD patients and the controls.
In short, we first reconfigured brain networks using
p < 0.01 as the significance level to discover those supra-
threshold connections for each connection. Then we de-
termined any connected components and their corre-
sponding size (number of connections). By means of
5,000 randomized repetitions, we obtained the null dis-
tribution of the retained maximal size M of the connect-
ed components. Following a study of Zalesky et al.
(2010b), we assigned the corrected p-value (two-sided)
by calculating the proportion of the number of retained max-
imal size M that exceeded the real M within the null distribu-
tion over 5,000 repetitions.

Fig. 1 Comparison of rich club organization between the PD patients and
the healthy control (HC). a Normalized rich club coefficient, ϕnorm

w (k).
Each symbol B○^ in red (blue) indicates the normalized rich club
coefficient for the patients (controls) at a specific degree k. The light
white area indicates ϕnorm

w (k) > 1 from degrees k= 16 to 21 for both the
PD patients and the controls. b Integrated local connections, Localint,
integrated feeder connections, Feederint, and integrated rich club
connections, RCint. We found significant between-group differences in
both Localint and Feederint, but not in RCint. c Box plot of streamline
lengths for three types of integrated connections. The PD patients had
significantly deceased length of streamlines in the Feederint and Localint,
but not in the RCint, compared to the controls. The asterisk (*) indicates a
significant between-group difference at p< 0.05. The top and bottom of a
box plot indicate 25 and 75 % percentiles across all values of each group,
the middle line of a box plot represents 50 % percentile. The top and
bottom of white line outside a box plot indicate 10 and 90 % percentiles
across all values of each group, and outlier is represented by B○^
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Relationship between network parameters and clinical
variables

We examined the relationship between the connectivity
of the NBS-derived subnetwork and each of the clinical
variables (MMSE score, H-Y scale, duration of diseases,
and UPDRS-III score) for the PD patients. More de-
tailed, we calculated the connectivity of NBS-derived
subnetwork by averaging FA values of all structural
connections derived from NBS approach for each sub-
ject. By taking each of the clinical variables (MMSE
score, H-Y scale, duration of diseases, and UPDRS-III
score) as the independent variable and the connectivity
of NBS-derived subnetwork as the dependent variable,
we utilized a Spearman’s rank order approach to esti-
mate their correlation. The significant level was set at
p< 0.05. Similarly, we also assessed the relationship between
each of the significant changed global or nodal parameters and
each of the clinical variables (MMSE score, H-Y scale, dura-
tion of diseases, and UPDRS-III score) in the patients. In the
calculations, we regressed out three covariates, the gender,
age, and gender-age interaction.

Validation: robustness of our main results

The topological properties of brain structural networks may be
affected by several factors, mainly included selected defini-
tions of edge weights (Zhong et al. 2015), threshold ofNOS in
retaining valid network connections (Cheng et al. 2012), and
brain parcellation schemes (Wang et al. 2009). In this context,
we conducted following strategies to validate the robustness
of our main findings.

Definitions of the edge weights For the given two brain re-
gions, if NOS-3, we retained these values as the edge weights;
Otherwise we assumed no connections existed between these
two regions. Then, we adopted another two definitions of the
edge weights to construct the brain networks, and repeated the
network analysis. These two definitions were as follows. i)We
took the number of streamlines (NOS) as the edge weights. ii)
We used the definition of edge weights adopted in Hagmann
et al. (2007),

w eð Þ ¼ 2

si þ s

X

f ∈Fe

1

l fð Þ ; ð4Þ

Table 2 Definitions and interpretations of topological parameters for a given network G (N, V)

Measures Definitions Notes

Global parameters Shortest path
length Lp Gð Þ ¼ 1

N N−1ð Þ ∑
N

i¼1
∑
N

j¼1;i≠ j
Li j

Lij is the shortest path length between node i and node j by using a
Bharmonic mean^ between all pairs of nodes (Watts and
Strogatz 1998). Lp(G) can reflect the ability of information
transfer in parallel over the whole brain network.

Global
efficiency Eglob Gð Þ ¼ 1

N N−1ð Þ ∑
N

i¼1
∑
N

j¼1;i≠ j

1

Li j

1/Lij represents the reciprocal of the Bharmonic mean^ of shortest
path length. Eglob(G) can quantify the global efficiency of the
parallel information process.

Local efficiency

Eloc Gð Þ ¼ 1
N ∑

N

i¼1
Eglob Gið Þ

Eglob(Gi) indicates the global efficiency of the subgraph Gi

composed of the neighbors of node i. Gi represents a subgraph
of G. The local efficiency reflects how much the network is
fault tolerant, suggesting how efficient the communication is
among the neighbors of node i when it is removed (Latora and
Marchiori 2001).

Clustering
coefficient C ið Þ ¼ 2

ki ki−1ð Þ ∑
j;k

wi jw jkwki

� �
1=3

ki represents the degree of node i. The clustering coefficient Cp of
a network is the average of the clustering coefficient over all
nodes, which indicates the extent of local interconnectivity or
cliquishness in a network (Onnela et al. 2005).

Small worldness
σ ¼ γ

λ ¼
Creal
p =Crand

p

Lrealp =Lrandp

Cp
rand and Lp

rand are the averaged values of cluster coefficients and
shortest path length of 100 random networkswith the sameN,V
and degree distribution as to the real network. We adopted the
Maslovs’ wiring algorithm (Rubinov and Sporns 2010).

Nodal parameters Nodal strength

Knod ið Þ ¼ ∑
N

j¼1;i≠ j
ei j

eij is the edge for the node i with any connected nodes. The
strength of a node is the sum of the network strengths across all
the nodes over the whole network.

Nodal efficiency

Enod ið Þ ¼ 1
N−1 ∑

N

j¼1;i≠ j

1

Li j

Enod(i) measures the average shortest path length between a given
node i and all of the other nodes in the network. It quantifies the
ability of node i in communication transfer within a network.

Betweenness
centrality Bnod ið Þ ¼ 1

N−1ð Þ N−2ð Þ ∑
N

h¼1
∑
N

j¼1;h≠ j≠i

ρh j ið Þ
ρh j

ρhj(i) is the total numbers of shortest path lengths between node h
and j which passes through h for a specific node i.
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where si and sj represent any two brain regions i and j, Fe

represent all streamlines existing these two regions, and l( f )
represent the length of streamlines f along its trajectory.

Thresholds of streamline counts To examine the effects of
network sparsity on our findings, we took two different values
of NOS to define the threshold of inter-regional connection,
NOS>0 and NOS ≧ 5. After re-constructing the whole-brain
networks for all subjects, we then repeated the network anal-
ysis using same procedures as described in the subsections of
BNetwork construction^ and BNetwork analysis^.

Nodes based on different brain parcellation schemes We
repeated network analysis by defining the nodes according to
two parcellation schemes, the Harvard-Oxford Structural Atlas
(HOA-110) (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) and a
high-resolution AAL-1,024 atlas. After we obtained a 110-by-
110 matrix and a 1,024-by-1,024 matrix, we repeated same
procedures as described above. Results were used to test the
effect of brain parcellation schemes on network analysis.

Results

Demographic and clinical variables

Table 1 lists the age, gender, MMSE score, and other demo-
graphics for both the PD patients and the controls. The PD
patients had significantly decreasedMMSE score compared to
the controls (two-tailed t-test, p = 0.02). No significant
between-group difference was found either in age (p=0.31,
two-sided t-test) or in gender (p=0.43, χ2 −test).

Disrupted the edge architecture of PD patients

We found, for both the PD patients and the controls, the nor-
malized rich club coefficients ϕnorm

w (k) over the range of de-
grees k from 16 to 21 (Fig. 1a) were larger than 1 and signif-
icant between the two groups. Across a series of degrees k,
both the integrated feeder connections (Feederint, p=1.29e-
07) and integrated local connections (Localint, p=6.17e-06)
were significantly decreased in the PD patients compared to
the controls (Fig. 1c). No significant between-group differ-
ence was found in the integrated rich club connections
(RCint, p=0.179) (Fig. 1c). According to Eq. (3), we calculat-
ed the connectivity strength of RCint, Feederint, and Localint

for both the groups. For each k value, the connectivity strength
of RCint, Feederint, and Localint in the PD patients were lower
than those of the controls (please see Table 3). In addition,
statistical analysis showed that the PD patients had significant-
ly deceased length of streamlines in the Feederint (p=0.0056)
and in the Localint (p=0.0258) but not in the RCint (p=0.300)
compared to the controls (Fig. 1d). T
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Figure 2b shows a significantly decreased structural
subnetwork (p = 0.001, corrected) that derived from
NBS approach in the PD patients compared to the con-
trols. This subnetwork contains 62 nodes (including 20
hub regions when k > 16) and 76 inter-nodal connec-
tions, which are presented in Fig. 2a and listed in
Table S3 (in the supplementary materials). Further cor-
relation analysis indicated that the connectivity strength
of the NBS-derived subnetwork in the PD patients was
significantly negatively correlated with the duration of disease
(r=−0.434, p=0.013), as shown in Fig. 2c.

Altered network parameters in PD patients

Figure 3a plots the changed global parameters for both the PD
patients and the controls. We obtained γ > 1 and λ≈1, or σ
>1, which suggested that both the PD patients and the controls
exhibited the small-world attributes. We found significantly
decreased Eglob (p=0.038) but increased Lp (p=0.036) in
the PD patients compared to the controls (Fig. 3a).

We also analyzed the correlations between the global pa-
rameters and clinical variables in the PD patients. Figure 3b
shows that Lp was significantly positively correlated (r=0.55,
p=0.001) but Eglob was significantly negatively correlated
(r=−0.55, p=0.001) with the duration of disease.

We compared between-group differences in nodal parame-
ters. Table 4 lists the identified 16 brain regions with uniform-
ly significantly decreased nodal parameters in the PD patients
compared to the controls. Among these regions, five brain
regions were located in the right frontal cortex, six in the
temporal cortex, and the others in the subcortical, occipital,
and parietal cortices.

For the brain regions listed in Table 4, we also performed
correlation analyses between the normalized nodal parameters
and the clinical variables. Only five brain regions (SFGmed.L,
CUN.R, FFG.L, ORBsup.L, and SOG.L) showed their nodal
parameters were significantly correlated with the clinical
variables in the PD patients (Fig. 4). In SFGmed.L, we
found UPDRS-III score was significantly positively cor-
related not only with the nodal strength Ki (r = 0.53,
p = 0.002) but also with the nodal efficiency Ei (r=0.48,
p=0.005). In ORBsup.L, the nodal efficiency Ei was signifi-
cantly positively correlated with MMSE score (r = 0.37,
p=0.037). However, in SOG.L, the nodal betweenness Bi

was significantly negatively correlated with the duration of
disease (r = 0.40, p = 0.025). The nodal efficiency Ei in
CUN.R was significantly positively correlated with UPDRS-
III (r=0.45, p=0.009). And the nodal efficiency Ei in FFG.L
was significantly positively correlated with H-Y scale
(r=0.52, p=0.003).

Fig. 2 NBS-derived subnetwork in the PD patients compared to the
healthy controls (HC). a The identified rich club (hub) regions whose
degree k> 16 for both PD patients and the controls. b Distributions of
the rich club, feeder, and local connections within NBS-derived
subnetwork. c Significant correlation between the structural

connectivity (SC) strength of NBS-derived subnetwork and the duration
of disease in the PD patients. The symbol ○ in red (green) represents each
subject of the PD (HC) group. For illustrative purposes, we also plotted
connectivity strength for the controls
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Validation: robustness of our results

In this study, we estimated the robustness of detected changes
in both the edge architecture and global properties of PD pa-
tients. By taking two other definitions of the edge weights, we
reconstructed the brain structural networks and repeated the

network analysis. Table S4 and Fig. S1 (supplementary mate-
rials) shows the change tends of corresponding global param-
eters in the PD patients, which is consistent with the main
results of this study.

When taking NOS> 0 or NOS ≧ 5 as the thresholds of
streamlines counts to define the edge weights, we found that

Fig. 3 Global parameters of
brain structural networks and
correlations with clinical
variables in PD patients. a Bar
plot of global parameters. b
Scatter plot of significant positive
correlation between Lp and the
duration of disease for the PD
patients. c Same to (b) but for
Eglob. A significant negative
correlation was obtained between
Eglob and duration of disease. For
illustrative purposes, we also
plotted global parameters for the
controls

Table 4 Brain regions showing
significantly decreased nodal
parameters in the PD patients
compared to the healthy controls
based on the AAL-90 atlas

Brain regions p-value

Ki Ei Bi

Frontal Precental gyrus (R) 0.045* 0.0004* 0.052

Olfactory cortex (R) 0.001* 0.0004* 0.019*

Superior frontal gyrus, medial (L) 0.032* 0.035* 0.119

Superior frontal gyrus, orbital part (L) 0.497 0.439 0.026*

Superior frontal gyrus, dorsolateral (R) 0.074 0.562 0.033*

Temporal Heschl gyrus (L) 0.035* 0.071 0.054

Fusiform gyrus (L) 0.414 0.350 0.020*

Fusiform gyrus (R) 0.326 0.303 0.014*

Middle temporal gyrus (R) 0.035* 0.066 0.017*

Inferior temporal gyrus (L) 0.055 0.036* 0.139

Temporal pole: superior temporal gyrus (R) 0.026* 0.042* 0.164

Subcortical Thalamus (R) 0.065 0.040* 0.295

Occipital Superior occipital gyrus (L) 0.057 0.027 * 0.149

Calcarine fissure and surrounding cortex (R) 0.022* 0.004* 0.171

Parietal Cuneus (R) 0.086 0.030* 0.409

Paracentral lobule (R) 0.037* 0.138 0.032*

The asterisk (*) indicates significant between-group difference at p< 0.05

Abbreviations R (L), right (left) hemisphere; nodal degree (Ki), nodal efficiency (Ei), and nodal betweenness (Bi)
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Feederint and Localint were significantly decreased in PD pa-
tients compared to the controls (Supplementary Fig. S2). The
same results were obtained when we adopted the other two
parcellation schemes, HOA-110 and AAL-1024, to construct
brain structural networks. We found the distributions of ab-
normal structural connectivity of the NBS-derived subnet-
works (Supplementary Fig. S3) were similar to those generat-
ed from the AAL-90 atlas (see Figs. 1 and 3).

Discussion

In this study, there are three main findings: i) We found that
the PD patients showed significant reductions of the integrated
feeder connections and the integrated local connections com-
pared to the controls, but no significant between-group differ-
ence in the integrated rich club connections. ii) Using the NBS
approach, we also detected a significantly decreased subnet-
work with 62 nodes and 76 inter-nodal structural connections
in the PD patients. iii) For network properties, we found the
PD patients had significantly increased shortest path length
and decreased global efficiency compared to the controls.
And for the changed local properties, there were wide disrup-
tions in the frontal and parietal regions.

Disrupted edge architecture in PD

We detected significantly decreased Feederint and Localint, but
not in RCint, in the patients (Fig. 1 and Table 3). This may
suggest that the rich club connections, acted as the backbone

of edge architecture, are relatively intact in the PD patients
compared to the controls. This result also indicated that non-
rich club connections (Feederint and Localint) were prone to be
disrupted in the PD patients. This finding of disrupted non-
rich club connections was also reported in other brain dis-
eases, such as Huntington’s disease and Alzheimer’s disease
(Daianu et al. 2015; Harrington et al. 2015). Ball et al. (2014)
constructed brain structural networks based on diffusion im-
ages of PD patients and found significantly decreased short-
distance cortico-coritical connections (more specified to the
connections among non-hub regions) in premature cohort
compared to the term-born cohort. Daianu et al. (2015) ana-
lyzed diffusion images in patients with Alzheimer’s disease
and found that the connections among high-degree regions or
hub regions were relatively preserved, while connections
among low-degree regions or non-hub regions were signifi-
cantly disrupted. When selected degree > 16, we identified
seventeen rich club regions or hubs, bilateral ORBsup, INS,
HIP, LING, FFG, PCUN, PUT, ITG, and right PreCG, for
both the PD patients and controls. These results were consis-
tent with several previous fMRI studies (Buckner et al. 2009;
Gottlich et al. 2013), which detected prominent hubs in the
medical/lateral frontal, lateral parietal, lateral temporal cortex
in healthy controls.

In this study, we categorized 90 brain regions (based on the
AAL-90 atlas) into sensorimotor, visual processing, attention
processing, default mode, and limbic/paralimbic/subcortical
(He et al. 2009). However, several fMRI studies (Vincent
et al. 2008; Cole et al. 2014) suggested that the frontoparietal
network, which was composed by anterior insula, medial

Fig. 4 Scatter plots of significant
correlations between nodal
parameters and clinical variables
in the PD patients. The symbol ○
in red (green) represents each
subject of the PD (HC) group. For
illustrative purposes, we also
plotted the nodal parameters for
the controls. Abbreviations: L
(R), left (right) hemisphere; H-Y
scale, Hoehn and Yahr scale;
UPSRS-III, Unified Parkinson
Disease Rating Scale-III; MMSE,
Mini-Mental State Examination
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frontal cortex, and lateral frontal and parietal regions, were
highly overlapped with attention processing module (Scolari
et al. 2015). In this context, we redefined the attention pro-
cessing module as cognitive control/attention module. First,
we detected abnormal structural connections between several
striatal regions (i.e., thalamus, putamen and pallidum) and
cortical regions (i.e., superior frontal regions and anterior cin-
gulum, Fig. 2 and Table S3) in the PD patients. For the PD
patients, dopaminergic and serotonergic dysfunctions (Kim
et al. 2002; Dauer and Przedborski 2003) that began from
the substantia nigra can impair the physiological microstruc-
tures of the basal ganglia and subcortical regions, as well as
others overall whole brain. These structural abnormalities of
the specific striatal- and cortical-regions are also consistent
with previous findings of DTI-related studies in PD patients
(Table 5). Previous fMRI/PET studies (Helmich et al. 2010;
Jahanshahi et al. 2010) have suggested that the striatal-cortical
circuits are closely associated with motor ability in PD
patients, typically for the freezing of gait (Shine et al.
2013a, b; Peterson et al. 2014). For example, Shine et al.
(2013a) summarized a series of concise findings about the
freezing behaviors and proposed a model of basal ganglia
impairments for explaining the role of frontostriatal circuit.
From the evidence of diffusion images in PD patients,
Vercruysse et al. (2015) used a tract-based spatial statistic
(TBSS) analysis and found the disrupted striatofrontal tracts
through putamen, caudate, and pallidum in PD patients with
freezing of gait. Thus, we suggest that the disrupted striatal-
cortical structural connections might provide a structural basis
for understanding motor deficits in PD patients.

Meanwhile, we also found disrupted connections between
limbic/paralimbic regions (especially for the hippocampus,
parahippocampus, and amygdala) and other cortical regions
(i.e., bilateral insular and left fusiform, Fig. 2b) in PD patients.
The hippocampus and parahippocampus are vital regions for
working memory ability (Carlesimo et al. 2012) and the
amygdala is responsible for emotion processes (Surdhar
et al. 2012). Previous structural imaging studies (Nagano-
Saito et al. 2005; Melzer et al. 2012) also suggested that the
morphology of these brain regions were impaired in PD pa-
tients contrasted with healthy individuals. van Mierlo et al.
(2015) indicated that decreased gray matter volumes in the
right amygdala and bilateral hippocampus were significantly
negatively correlated with increased scores on the Beck
Depression Inventory in PD patients. As the deficits of emo-
tion and cognitive ability are the core dysfunction of PD pa-
tients, therefore, our current findings of structural disconnec-
tions between amygdala/hippocampus and other cortical re-
gions in PD patients may provide evidence to illustrate PD
disease related to neuropathology changes.

In addition, we detected abnormal structural connections in
the frontal cortex based on the NBS approach (Fig. 2b and
Table S3). As we know, abnormal frontal-striatal network

(Lewis et al. 2003; Owen 2004; Jahanshahi et al. 2010) is
primarily related to motor deficits in PD patients, abnormal
fronto-parietal network (FPN) (Williams-Gray et al. 2007;
Tessitore et al. 2012) is associated with the disabilities of the
goal-directed behaviors and executive functions in PD pa-
tients, and abnormal salience network (Cools et al. 2010) is
connected with the disrupted top-down attention control in PD
patients. In addition, several DTI studies in PD patients (see
the summary in Table 5) also reported structural alterations in
frontal-related regions. For instance, Zheng et al. (2014) con-
ducted correlations analysis between diffusion properties (FA
and MD) using region of interest analysis and scores of vari-
ous cognitive domains (executive function, language, atten-
tion, memory, and visuospatial skills) in PD patients. This
study showed that executive function in PD patients was sig-
nificantly positively correlated with FA values and negatively
correlated with MD values in frontal WM tracts, while scores
on the attention domain was significantly positively correlated
with FA values and negatively correlated with MD values
cingulum gyrus. Taken together, we infer that the NBS-
derived subnetwork may be an effective indicator for
depicting the structural basis of motor deficits and cognitive
impairments in PD patients.

Abnormal network parameters

We found both the PD patients and the controls exhibited
small-worldness (Fig. 3a), indicating their brain structural net-
works not only had a high local clustering coefficient but also
a short path length. However, for global properties (Fig. 3a),
PD patients showed significantly decreased global efficiency
and increased shortest path length compared to the controls.
Global efficiency represents the averaged ability of inter-nodal
information transformation over the whole brain. The finding
of decreased efficiency may suggest that the inter-nodal orga-
nization of the whole brain is unoptimizable in PD patients
compared to controls. Notably, a similar result was also re-
ported in previous studies using other imaging modalities
(Skidmore et al. 2011; Olde et al. 2014). More detailed, a
previous R-fMRI study (Skidmore et al. 2011) constructed
brain functional networks, and detected significantly
decreased global efficiency in PD patients compared to
controls. Olde et al. (2014) performed a longitudinal study
on 43 PD patients using the magnetoencephalography
(MEG), and detected lower global efficiency in PD patients.
The disrupted global properties may reflect the overall infor-
mation miscommunication in PD patients.

We also observed significantly decreased nodal parameters
(nodal strengthKi, nodal efficiency Ei, and nodal betweenness
Bi) in 16 brain regions in PD patients compared to controls
(Table 4). Four of them, PreCG.R, SFGmed,L, ORBsup.L,
and SFGdor.L, are located in the prefrontal cortex involved
with attention, executive, and memory abilities in PD patients
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(Karagulle et al. 2008; Kamagata et al. 2012). Decreased nod-
al parameters (Ki, Ei, or Bi) in another four brain regions,
including bilateral FFG, right CAL, and left SOG may reflect
abnormalities of visual processing in PD patients (Meppelink
et al. 2009; Tinaz et al. 2011). Noticeably, all of these three
nodal parameters (Ki, Ei, and Bi) in PD patients showed sig-
nificant decreases in the right olfactory cortex, which is con-
sidered as a potential biomarker of early-stage PD by several
R-fMRI studies (Rolheiser et al. 2011; Zhang et al. 2011).
Thus, our findings of abnormal nodal parameters in patients
might provide the locally pathological impairments in
Parkinson’s disease.

Correlations between network parameters and clinical
variables

Correlation analysis showed the connectivity strength of NBS-
derived subnetwork was significantly negatively correlated
with the duration of disease in patients (Fig. 2c). This indicated
that the longer the patients suffered from PD disease, the weak-
er the inter-nodal WM connectivity. For global properties, we
found the increased shortest path length Lp was significantly
positively and the decreased global efficiency Eglob was signif-
icantly negatively correlated with disease duration in PD pa-
tients (Fig. 3b). This means that the duration of disease affects

Table 5 Overview findings reported in previous DTI studies of patients with Parkinson’s disease (PD)

Refs Subjects and Age Method Altered brain regions in PD patients

Shin et al. (2008) 8 HC (51.3 ± 11.1 years)
10 PD (52.3 ± 11.5 years)

VBA ↓ FA:
bilateral OFC, PONs, cerebellum, midbrain, parietal, and temporal

Kendi et al. (2008) 13 HC (58.0 ± 7.30 years)
12 PD (62.1 ± 12.7 years)

VBA ↓ FA:
bilateral SMA, PreSMA, and ACG

Gattellaro et al. (2009) 10 HC (58.1 ± 8.0 years)
10 PD (63.8 ± 15.7 years)

ROI ↓ FA & ↑ MD:
bilateral gCC, and SLF;
↑ MD:
bilateral SN, and CG

Zhan et al. (2012) 20 HC (67.2 ± 8.0 years)
12 PD (67.4 ± 8.0 years)

VBA & ROI ↓ FA:
PreCG, PUT, SN, SMA, and striatum

Zhang et al. (2011) 25 HC (54.8 ± 9.3 years)
25 PD (54.8 ± 9.8 years)

VBA ↓ FA & ↑ MD:
bilateral OFC, OLF, and cerebellum

Kamagata et al. (2012) 20 HC (69.5 ± 6.9 years)
20 PD (69.8 ± 5.9 years)
20 PDD (71.3 ± 5.6 years)

TBSS ↓ FA:
PFC WM, and gCC (PDD vs. PD)

Kim et al. (2013) 64 HC (63.0 ± 8.9 years)
64 PD (62.9 ± 9.0 years)

TBSS ↑ MD:
CP, CG, CC, CAU, EC, FX, IC, RC, SLF, TR, UF, THA, PUT,

PAL, and PCUN

Melzer et al. (2013) 32 HC (70.1 ± 9.0 years)
63 PD (64.0 ± 9.2 years)
18 PDD (73.7 ± 6.5 years)
28 MCI-PD (71.0 ± 7.3 years)

TBSS ↓ FA and ↑ MD:
CC (PD vs HC)

Auning et al. (2014) 19 HC (64.6 ± 6.5 years)
18 PD (66.7 ± 5.1 years)
18 MCI-AD (65.6 ± 5.6 years)

VBA & TBSS ↑ RD:
bilateral ERC WM, LING, and PCUN (PD vs HC)

Agosta et al. (2014) 33 HC (64.0 ± 7.3 years)
43 PD (65.8 ± 7.9 years)
13 PD-Cu (63.9 ± 7.1 years)
30 MCI-PD (66.6 ± 8.2 years)

TBSS ↓ FA:
CR, CC, and SLF (MCI-PD vs HC)
↓ FA:
CR, gCC, bCC, UF, and SLF (MCI-PD vs PD-Cu)

Zheng et al. (2014) 16 PD (62.2 ± 9.6 years) VBA & ROIs ↓ FA & ↑ MD:
FA and MD of IC, gCC correlated with the executive function;
FA and MD of frontal WM, CG corrected with the language and

attentional performance
↑ MD:
MD of FX correlated with the memory impairment

Abbreviations ↑ PD>HC, ↓ PD<HC,MCImild cognitive impairment, PD-Cu PD patients with unimpaired cognition, PDD PD patients with dementia,
ROI region of interest, TBSS tract-based spatial statistics,VBAvoxel-based analysis,WMwhite matter,CG cingulate gyrus, ACG anterior cingulate gyrus,
CC corpus callosum, bCC body of corpus callosum, gCC genu of corpus callosum, CAU caudate, CP cerebral peduncle, CR corona radiata, EC external
capsule, ERC entorhinal cortex, FX fornix, IC internal capsule, LING lingual gyrus, OFC orbitofrontal cortex, OLF olfactory, PCUN precuneus, PFC
prefrontal cortex, PUT putamen, PreSMA pre-supplementary motor area, PreCG precentral gyrus, SLF superior longitudinal fasciculus, SMA supple-
mentary motor area, SN substantia nigra, THA thalamus, TR thalamic radiations,UF uncinate fasciculus, FA fractional anisotropy,MDmean diffusivity,
RD radial diffusivity
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the network connectivity of PD patients. These results are con-
sistent with previous studies (Huang et al. 2007; Olde et al.
2014) the duration of illness could worsen brain microstruc-
tures of patients with Parkinson’s disease, especially for the
midbrain and striatal regions. More detailed, Huang et al.
(2007) performed a longitudinal PET study for early stage
PD patients at baseline, 24 and 48 moths to compared
changed network metabolisms that were associated with
motor and cognitive abilities. With increasing duration of
disease, they found increasing metabolisms in subthalamic
nucles, internal globus pallius, dorsal pons, and primary
motor cortex, while decreasing metabolisms in prefrontal and
inferior parietal regions. Olde et al. (2014) acquired the mag-
netoencephalography (MEG) data of 70 PD patients for 4 years
and detected differences of network topology using graph the-
ory. Their findings suggested that disrupted local efficient and
network decentralization are early characteristics of
Parkinson’s disease that continue to progress over time, togeth-
er with decreased global efficiency.

Limitations

Our study has several limiting factors. First, the selection of
brain parcellation schemes for constructing brain networks
may bias the results of network analysis. Several previous
studies (Wang et al. 2009; Zalesky et al. 2010b) have sug-
gested that it is quite controversial to select which brain
parcellation schemes to construct whole-brain networks. And
various brain parcellation schemes, including the Harvard–
Oxford Atlas (HOA-110) and LPBA40-atlas (LONI
Probabilistic Brain Atlas), have been adopted in constructing
brain structural networks (Cao et al. 2013). In the current
study, we selected three brain schemes, AAL-90, HOA-110,
and AAL-1,024, to test the robustness of our results
(Supplement Table S4). Second, we collected the DTI data
using an 8-channel rather than 32-channel coil as we were
limited to realistic situations. Several previous studies
(Parikh et al. 2011; Salomon et al. 2014) suggested that using
a multi-channel phased-array head coil with a parallel imaging
technique can accelerate acquisition and reduce susceptibility
artifacts, especially in the frontal cortex. In the future, we need
adopt advanced DTI techniques to reduce susceptibility arti-
facts and to reduce the scanning time. Third, the estimation of
inter-regional structural connectivity may be affected by our
choice of fiber tracking algorithm. In this study, we took the
(FACT) algorithm (Mori and van Zijl 2002), a single-tensor
deterministic fiber tracking approach to draw fiber streamlines.
Previous studies (Alexander et al. 2001; Behrens et al. 2003)
have suggested that the single-tenor model is incapable of
resolving complex fiber configurations, such as crossing,
kissing, or merged fiber bundles. Therefore, some advanced
algorithms or imaging sequences, including a probabilistic
tractography algorithm (Behrens et al. 2007) and diffusion

spectrum imaging (DSI) technique (Wedeen et al. 2012), were
introduced to resolve the question of complex fiber configura-
tions for accurately measuring the fiber tracking. In the end,
we did not use any multiple comparisons correction in analyz-
ing the changes of global or nodal parameters. To remedy this
issue, we adopted a two-sample t-test with a nonparametric
permutation test (1,000 repetitions) to assess the statistical sig-
nificances in our study (Nichols and Holmes 2002). Our re-
sults, to some extent, are more tended to an exploratory study.

In this study, we used diffusion tensor imaging and graph
theoretical approach to detect the abnormalities of brain struc-
tural networks in PD patients. The structural disconnections of
edge architecture in the PD patients were more concentrated
among non-hub regions involving the limbic/paralimbic/sub-
cortical and cognitive control/attention modules. For network
properties, PD patients showed reduced global efficiency and
increased short path length, as well as decreased local proper-
ties mainly in the frontal and parietal regions. Thus, our main
findings suggest that the backbone of brain networks in PD
patients was still intact, but the others were impaired
companied with disrupted network properties. Our study also
suggests that the edge architecture and topological properties
would be an effective way to depict PD-related cognitive and
motor dysfunction alterations.
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