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Abstract Long-term motor skill learning can induce

plastic structural and functional reorganization of the brain.

Our previous studies detected brain structural plasticity

related to long-term intensive gymnastic training in world

class gymnasts (WCGs). The goal of this study was to

investigate brain functional plasticity in WCGs by using

network measures of brain functional networks. Specifi-

cally, we acquired resting-state fMRI data from 13 WCGs

and 14 controls, constructed their brain functional net-

works, and compared the differences in their network

parameters. At the whole brain level, we detected signifi-

cantly decreased overall functional connectivity (FC) and

decreased local and global efficiency in the WCGs com-

pared to the controls. At the modular level, we found intra-

and inter-modular reorganization in three modules, the

cerebellum, the cingulo-opercular and fronto-parietal net-

works, in the WCGs. On the nodal level, we revealed

significantly decreased nodal strength and efficiency in

several non-rich club regions of these three modules in the

WCGs. These results suggested that functional plasticity

can be detected in the brain functional networks of WCGs,

especially in the cerebellum, fronto-parietal network, and

cingulo-opercular network. In addition, we found that the

FC between the fronto-parietal network and the sensori-

motor network was significantly negatively correlated with

the number of years of training in the WCGs. These find-

ings may help us to understand the outstanding gymnastic

performance of the gymnasts and to reveal the neural

mechanisms that distinguish WCGs from controls.

Keywords Brain functional network � Cerebellum �
Fronto-parietal network � Cingulo-opercular network

Introduction

Motor skill training refers to the process by which move-

ments come to be performed effortlessly through repeated

practice and interactions with the environment (Willing-

ham 1998). The acquisition of a motor skill is characterized

first by a short-term fast learning stage in which the per-

formance improves rapidly, and then followed by a long-

term slow learning stage in which the performance gains

are incremental. Motor skill training can induce brain

structural and functional plasticity (Doyon et al. 2009;

Dayan and Cohen 2011), and short- and long-term motor

skill training involve distinct brain networks (Dayan and

Cohen 2011). Previous studies (Floyer-Lea and Matthews

2005; Dayan and Cohen 2011) suggested that the short-

term motor skill training is associated primarily with a

cortical network specific for learned movements, whereas

the long-term motor skill training involves a bihemispheric

cortical–subcortical network.
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Professional athletes typically undergo long-term motor

skill training, beginning their skill learning from very early

in childhood, practicing several hours a day, and main-

taining the training for their entire careers. Through this

long-term intensive training, they acquire excellent abili-

ties in perception, stimulus discrimination, decision mak-

ing, motor preparation, and execution (Nakata et al. 2010).

Neuroimaging techniques have revealed brain structural or

functional plasticity in a number of types of professional

athletes, including skilled golfers (Jancke et al. 2009),

world class mountain climbers (Di Paola et al. 2013),

formula racing-car drivers (Bernardi et al. 2013), bad-

minton players (Di et al. 2012), and world class archers

(Kim et al. 2008). These studies revealed that long-term

motor skill training indeed caused plastic reorganization in

brain structure and function and suggested that the reor-

ganization may vary in different types of athletes.

Professional gymnasts perform a variety of exercises

which require physical strength, flexibility, power, agility,

coordination, grace, balance, and control. Because world

class gymnasts (WCGs) have extraordinary balance,

strength, and flexibility, they can excel in gymnastics

competition (Wang et al. 2013a). We previously investi-

gated the brain structural plasticity of gymnasts by ana-

lyzing their brain diffusion-weighted and structural

magnetic resonance imaging (MRI) data (Wang et al.

2013a; Huang et al. 2013). In those studies, we found that

WCGs showed structural plasticity in the network param-

eters of the whole brain structural network and especially

in the brain regions responsible for motor, attention, and

cognitive control (Wang et al. 2013a; Huang et al. 2013).

Structural connectivity networks have been shown to be the

physical substrate of functional connectivity networks (van

den Heuvel et al. 2008; Greicius et al. 2009; van den

Heuvel et al. 2009). But inconsistencies exist between

structural and functional networks (Zhang et al. 2011;

Skudlarski et al. 2010). However, up to now, we have no

knowledge about the brain functional network of the

WCGs.

A variety of human brain network models derived from

resting-state fMRI (R-fMRI) data have been widely used to

detect the plasticity of brain functions (Guerra-Carrillo

et al. 2014; Duan et al. 2012; Taubert et al. 2011; Luo et al.

2012). Graph theory analysis can be used to characterize

the topological properties, including the local and global

efficiency of information communication, of whole brain

functional networks (Sporns 2013; Newman 2012).

Because whole brain networks can be divided into a set of

sparsely interconnected (but densely intra-connected)

functional modules, modularity analysis can help to reveal

intra- and inter-modular connectivity properties (He et al.

2009). In addition, since nodes and inter-nodal connections

are basic elements of brain functional networks, the

network-based statistic (NBS) approach can be used to

determine changes in inter-nodal connections (Zalesky

et al. 2010), and rich club analyses can be used to deter-

mine the organization of vital nodes in networks (van den

Heuvel and Sporns 2011).

In this study, we acquired R-fMRI data from 13 world

class gymnasts and 14 normal controls, constructed their

functional networks, and determined the differences in

their network parameters (Zalesky et al. 2010; Sporns

2013; Newman 2012; van den Heuvel and Sporns 2011).

Our earlier findings revealed that brain structural plasticity

of WCGs exists throughout the whole brain structural

network, especially in the brain regions responsible for

motor, attention, and cognitive control (Wang et al. 2013a;

Huang et al. 2013). Besides, previous studies by other

groups (Floyer-Lea and Matthews 2005; Dayan and Cohen

2011) suggested that long-term motor skill training

involves a bihemispheric cortical-subcortical network.

Thus, we hypothesized that brain functional plasticity of

WCGs exists throughout the whole brain network, espe-

cially in brain regions responsible for motor, attention, and

cognitive control functions. Further, rich club regions or

hub regions have been found mainly in the bilateral pre-

cuneus, superior frontal and superior parietal cortex, and

insula (van den Heuvel and Sporns 2011; Collin et al.

2014a; van den Heuvel et al. 2013). Considering the rich

club regions less overlapped with brain regions showing

brain functional plasticity induced in motor skill learning,

we hypothesized the brain functional plasticity of WCGs

may mainly occur in non-rich club regions. In addition, we

investigated whether these reorganized network parameters

were significantly correlated with the number of years of

training of the WCGs and whether they were sufficient to

allow us to distinguish the WCGs from the controls.

Materials and methods

Subjects

Thirteen world class gymnasts (6 M/7 F, age 17–26 years,

mean ± SD = 20.5 ± 3.2 years) participated in this

study. Table 1 lists the detailed demographics for all of

these champions. Each gymnast had won at least one gold

medal in the Gymnastics World Cup or the Olympic

Games since 2007. Each had started gymnastic training at

about 4.5 years old and had been in training for more than

12.5 years by the time of this experiment, with a mean

training time of 6 h per day. All of them were right-handed

according to their self-report. We also recruited 14 healthy

undergraduate/graduate volunteers (7 M/7 F, aged 19–28

years, mean ± SD = 20.3 ± 2.5 years) who were age-,

gender-, and handedness-matched to the gymnasts. No
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significant between-group difference was found either in

age (two-sample t test, t = -1.33, and p = 0.20) or in

gender (v2-test, v2ð1Þ = 0.04, and p = 0.84).

None of the subjects had a history of neurological or

psychiatric disorders or brain injuries. The study was

approved by the Institutional Review Board of the State

Key Laboratory of Cognitive Neuroscience and Learning at

Beijing Normal University (BNU). Written informed con-

sent was obtained from each subject prior to the study.

Data acquisition

All MRI datasets were obtained on a 3T Siemens Trio Tim

MR scanner with the use of a 12-channel phased-array

receiver-only head coil. The R-fMRI datasets were acquired

using a gradient echo EPI sequence with the following

parameters: repetition time (TR) = 2000 ms, echo time

(TE) = 30 ms, flip angle = 90�, field of view

(FOV) = 224 mm 9 224 mm, data matrix = 64 9 64,

thickness/gap = 3.6 mm/0.7 mm, 33 transverse slices cov-

ering the whole brain, and 240 volumes acquired in 8 min.

During theR-fMRI scan, each subjectwas asked to keep their

eyes closed but not to fall asleep and to relax their minds but

not to think about anything in particular. In addition, we also

acquired high-resolution brain structural images (1 mm3

isotropic) for each subject using a T1-weighted 3D magne-

tization-prepared rapid gradient echo (MP-RAGE)

sequence. The sequence parameters were TR/TE =

1900 ms/3.44 ms, inversion time (TI) = 900 ms, slice

thickness = 1 mm, flip angle = 9�, FOV = 256 mm 9

256 mm, data matrix = 256 9 256, BW = 190 Hz/pixel,

and 176 sagittal slices acquired over about 10 min. For each

subject, the R-fMRI data and 3D high-resolution brain

structural images were acquired in the same session.

Data preprocessing

The R-fMRI data were preprocessed using SPM8 (http://

www.fil.ion.ucl.ac.uk/spm/) and DPARSF (Yan and Zang

2010). For each subject, the first ten volumes of the

R-fMRI dataset were discarded to allow for MR signal

equilibrium, leaving 230 volumes for further analysis. The

remaining images were first corrected for the acquisition

time delay between slices within the same TR and were

then realigned to the first volume to correct for inter-TR

head motions. This realigning calculation provided a record

of head motions within the R-fMRI scan. All of the sub-

jects in this study satisfied our criteria for head motion,

displacement\2 mm in any plane and rotation\2� in any

direction. In order to test the influence of head motion on

the functional images (Mowinckel et al. 2012), we com-

pared the root mean squares of the head displacements and

the head rotations, respectively, between the two subject

groups. Statistical analyses showed no significant between-

group differences in either head displacement (p = 0.58)

or head rotation (p = 0.11). The R-fMRI data were spa-

tially normalized to the T1-weighted brain structural ima-

ges in the standard MNI-152 template and were resampled

to a voxel size of 3 9 393 mm3. The waveform for each

voxel was detrended and passed through a band-pass filter

within 0.01–0.08 Hz to reduce the effects of low-frequency

drift and high-frequency physiological noise.

Table 1 Characteristics of the world class gymnasts (WCGs) participating in this study

Champions Best medal record

since 2007

Sex Age

(years)

Age of commencement

(years)

Years of

training

sub01 OC M 24 4.5 19.5

sub02 WC M 24 4.5 19.5

sub03 WC M 23 4.5 18.5

sub04 WC M 26 4.5 21.5

sub05 WC M 21 4.5 16.5

sub06 WC M 23 4.5 18.5

sub07 WC F 19 4.5 14.5

sub08 OC F 18 3.5 14.5

sub09 OC F 21 4.5 16.5

sub10 WC F 17 4.5 12.5

sub11 OC F 17 4.5 12.5

sub12 OC F 17 4.5 12.5

sub13 OC F 17 4.5 12.5

Mean ± SD 20.5 ± 3.3 4.4 ± 0.3 16.1 ± 3.3

All gymnasts had won individual or team gold medals in the Gymnastics World Cup or Olympic Games since 2007

OC Olympic Champions, WC World Champions or World Cup Champions
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Constructing brain functional networks

Using the GRETNA toolbox (http://www.nitrc.org/pro

jects/gretna/), we constructed the brain functional network

for each subject according to the Dos-160 template, which

consists of 160 regions of interest (ROIs) derived from an

fMRI meta-analysis (Dosenbach et al. 2010) and is regar-

ded as an optimal template for constructing brain func-

tional networks (Yao et al. 2015). The names and the

abbreviations of these ROIs are listed in Table S1 (Sup-

plementary Materials). We calculated the time series for

each ROI (spherical radius of 5 mm) by averaging the time

courses of all the voxels within a ROI, and performed a

linear regression to remove the effects of the following

eight nuisance covariates: signals from the brain white

matter and cerebrospinal fluid as well as three translation

and three rotation parameters of head motion (Wang et al.

2014; Jiang et al. 2013). Due to controversy about

removing the global signal when preprocessing R-fMRI

data (Fox et al. 2009; Murphy et al. 2009), we did not

regress out the global signal (Wang et al. 2013b; Lynall

et al. 2010).

For each subject, we first used the residuals of the time

series for each ROI to calculate a Pearson’s linear corre-

lation and the significance level (i.e., p value) of a given

inter-regional correlation. Then we obtained a 160 9 160

symmetric correlation matrix and the corresponding

p value matrix for each subject. To de-noise spurious

correlations, we retained only those correlations whose

corresponding p values passed through a statistical

threshold p\ 0.05 (Bonferroni correction); otherwise, we

set the correlations to zero (Cruse et al. 2011). By taking

the remaining Pearson’s coefficients as edge weights, we

obtained a weighted 160 9 160 FC matrix, which was used

to conduct the subsequent analysis for each subject. The

flowchart for constructing a brain functional network is

presented in Fig. S1 (Supplementary Materials).

Network analysis

Global parameters

Graph theory was used to analyze the topological proper-

ties of the human brain functional networks. We used six

parameters, the clustering coefficient (Cw), characteristic

path length (Lw), normalized clustering coefficient (c),
normalized characteristic path length (k), global efficiency
(Eglob), and local efficiency (Eloc), to characterize the glo-

bal topological properties of the brain networks. Their

definitions and descriptions can be found in Table S2

(Supplementary Materials) and in Rubinov and Sporns

(2010). The small-world properties of a network can be

characterized by the normalized clustering coefficient,

c = Cw
real/Cw

rand, and normalized characteristic path length,

k = Lw
real/Lw

rand, where Cw
real and Lw

real are the clustering

coefficient and characteristic path length of the real brain

network, in which Cw
rand and Lw

rand are the mean values of

the corresponding parameters derived from 100 matched

random networks with the same number of nodes, edges,

and distribution of degrees as the real brain network.

Typically, a small-world network satisfies the following

criteria: c � 1 and k & 1, or r = c/k[ 1 (Uehara et al.

2014).

Nodal parameters

We also used two parameters, nodal strength (Si
w) and

nodal efficiency (Ei
w), to characterize the nodal properties

of the brain networks. Their definitions and descriptions are

also listed in Table S2 (Supplementary Materials).

Modular parameters

To provide more information about the Dos-160 template,

Dosenbach et al. (2010) have performed a community

detection analysis according to the modularity optimization

algorithm proposed by Newman (2006) and classified these

160 ROIs into six modules, the default mode network

(DMN), fronto-parietal network (FPN), cingulo-opercular

network (CON), sensorimotor network (SMN), occipital

network (ON), and the cerebellum (CN). These six mod-

ules are shown in Fig. S2 (Supplementary Materials). We

calculated the values of the intra- and inter-modular FC for

both the WCG and control groups. For any subject, the

strength of the intra-modular FC was defined as the mean

of all the inter-nodal FCs within the selected module, while

the strength of the inter-modular FC was defined as the

mean of the FCs between any two nodes of the two selected

modules.

Rich club organization and connection density

The rich club nodes are brain regions with a high degree,

low clustering, short path length, and a high degree of

centrality and participation in modules across a network

and which are more densely connected among themselves

than with others. Previous studies (van den Heuvel and

Sporns 2011; de Reus and van den Heuvel 2013b) indi-

cated that the presence or absence of rich club organization

can provide important information about the level of resi-

lience, hierarchal ordering, and specialization of a network.

In this study, we identified the ‘rich club’ regions for the

weighted networks based on the normalized rich club

coefficient /w
norm kð Þ, where k is the degree that represents

the number of links from a given node to other nodes in the
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network. A network is considered to have a rich club

organization if /w
norm kð Þ[ 1 for a specific degree k. The

/w
norm kð Þ is described in the Supplementary Materials and

in van den Heuvel and Sporns (2011).

The rich club organization was determined using the

method from these previous studies: van den Heuvel and

Sporns (2011, 2013) and Ray et al. (2014). We first

obtained the group-averaged correlation matrix and the

nodal degrees for each subject group. Then we sorted all

the nodal degrees and took the nodes in the top 12 % of the

ranked nodes as the rich club nodes (k C 11). The

remaining brain regions were classified as non-rich club

nodes. On the basis of this categorization, we classified the

network edges into three types: ‘rich club’ connections

linking rich club nodes to each other, ‘feeder’ connections

linking rich club nodes to non-rich club nodes, and ‘local’

connections linking non-rich club nodes to each other

(Collin et al. 2014b; Harriger et al. 2012). For a given

connection type, we determined its FC strength by aver-

aging all the inter-nodal FCs of this connection type.

Statistical analysis

Between-group comparisons: A non-parametric permuta-

tion test (van den Heuvel et al. 2010; Nichols and Holmes

2002) was used to detect between-group differences in the

number and strength of existing connections in the FC

matrices for each of the global parameters (Cw, Lw, Eloc,

Eglob, c, k, and d) and nodal parameters (Si
w and Ei

w), for

each parameter derived from the rich club analysis (rich

club, local, and feeder connections), and for each of the

intra- and inter-modular FCs. For a given parameter, we

first computed the t value of the between-group difference

and then obtained an empirical distribution of the differ-

ence. Specifically, we randomly assigned the parameter

values for all subjects in this study into two groups and re-

calculated the differences in the mean values of the

parameter between the two re-sampled groups. This per-

mutation was repeated 10,000 times, resulting in a null

distribution of the between-group differences for this

parameter. Finally, we set a threshold of p = 0.05 to

determine the significance level of the between-group dif-

ferences at 95 % of the empirical distribution in a two-

tailed test. In the calculations, we took age, gender, and

age-gender interaction as nuisance covariates throughout

the entire analysis to regress out any potential covariate-

related effects (Wang et al. 2013b; Tian et al. 2011). Once

a significant between-group difference was observed for a

parameter, we estimated its effect size (Cohen d) and sta-

tistical power according to the Cohen’s definition (1992).

Based on each individual FC network, we also used a

network-based statistic (NBS) approach (Zalesky et al.

2010) to identify subnetworks, clusters of connections, in

which each edge showed a significant between-group dif-

ference. This approach can control the family-wise error

rate when mass-univariate testing is performed at every

connection comprising the subnetwork (Zalesky et al.

2010). A detailed description of the NBS is presented in the

Supplementary Materials and can also be found in Zalesky

et al. (2010). For the NBS-derived subnetwork, we esti-

mated the average value across all the FCs in this subnet-

work as its FC strength. When performing the NBS

calculation, we set the primary threshold for each inter-

nodal FC as t[ 3.42 and p\ 0.001 (5000 permutations).

Correlations between network parameters and years

of training

For any of the network parameters that showed a signifi-

cant between-group difference, we performed a partial

correlation to describe their relationships with the number

of years of training for the WCG group, controlling for age,

gender, and age–gender interactions (p\ 0.05). If the

network parameters were significantly correlated with the

number of years of training, we calculated its correlation

with age to estimate the age effect, since the age and the

number of years of training are closely correlated for the

obvious reason that most gymnasts started gymnastic

training at about 4.5 years of age (Table 1).

Robustness analysis

The robustness of the network parameters is a key issue in

network analysis (Zuo et al. 2014; Zuo and Xing 2014;

Liang et al. 2012; Deuker et al. 2009; Telesford et al.

2013). To determine if the observed differences in the

network parameters reflected true differences, not artifacts,

we repeated the network analysis by adopting different

preprocessing strategies, different brain templates, and a

binary network type.

Preprocessing strategies: Previous studies (Braun et al.

2012; Wang et al. 2011; Garrison et al. 2015) revealed that

different preprocessing strategies may affect the calculated

network parameters of brain network. To test the robust-

ness of the findings, besides of the main strategy (both the

positive and negative correlations after thresholding were

included in the FC matrices, and the global signal was not

regressed out), we also took four other preprocessing

strategies, (1) Sparsity, (2) Regressing-Global, (3)

Smoothing, and (4) Positive-Only, as defined below, to

repeat the network analysis. In the Sparsity strategy, we

estimated a threshold range by using a measure of sparsity

(the ratio of the total number of edges to the possible

maximum number of edges in a network) and applied

different values of sparsity as the thresholds for the FC
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matrices. In the Regressing-Global strategy, we constructed

brain networks using the functional signal but regressed out

the global brain signal. In the Smoothing strategy, we

constructed brain networks using the functional signals

after smoothing (FWHW = 6 mm) the functional images.

Finally, in the Positive-Only strategy, we constructed the

network by using the positive-only inter-nodal FCs, i.e., we

assumed that no inter-nodal FC existed if the inter-nodal

FC was non-positive.

Parcellation templates: The choice of a nodal definition

can affect the calculated network parameters of a brain

network (de Reus and van den Heuvel 2013a; Wang et al.

2009). To test the robustness of our findings derived from

the main strategy (nodes defined from Dos-160), we also

repeated the network analysis by defining the nodes

according to three additional templates, the automated

anatomical labeling (AAL-90) template (Tzourio-Mazoyer

et al. 2002), Power-264 template containing 264 ROIs

obtained from an fMRI meta-analysis (Power et al. 2011),

and a high-resolution AAL-1024 template (1024 ROIs of

equal size) (Dosenbach et al. 2010).

A binary network: Following previous studies (Wang

et al. 2014; Jiang et al. 2013), we also obtained a binary

functional network to assess the robustness of our findings.

Cross-validation

The cross-validation method was performed by repeating

the same analysis by adopting leave-one-dataset-out

approach from these fMRI datasets at a time to establish

whether the results remain significant. The rationale of this

test is that if a previous significant result remains in all or

most of the combinations of subjects, we may conclude

that the finding is highly replicable (Nakao et al. 2011;

Aoki et al. 2015). In this study, we excluded a gymnast

from the WCG group at a time and thus had 13 combina-

tions of subjects. The repeated analysis was performed and

the result was presented.

Network classification

For those network parameters that showed significant

between-group differences, we plotted the receiver oper-

ating characteristic (ROC) curve to determine which of

these parameters could clearly distinguish the WCGs from

the controls. The ROC curve, which is widely used in

medical science, is a fundamental plot in signal detection

theory (Pencina et al. 2008; Desco et al. 2001). A ROC, a

scatter plot showing the relationship between false alarm

rates and hit rates, describes the relationship between the

underlying distribution of the places where signals were

absent and places where signals were present. This analysis

was performed using public MATLAB codes (http://www.

mathworks.com/matlabcentral/fileexchange/199500-roc-

curve; by Giuseppe Cardillo).

Results

For the thresholded FC matrix of each subject, we calcu-

lated the total number of links and the mean FC weights for

all the existing connections (p\ 0.05, Bonferroni correc-

tion). The statistical analysis revealed that the WCG group

had a significantly smaller number of connections

(p = 0.01) and lower overall connectivity weights

(p = 0.03) compared to the controls.

Global parameters

Figure 1 shows the values of the global parameters (Cw, Lw,

Eloc, Eglob, c, k, and d) for the brain functional networks for

the WCG and control groups, as well as their between-

group differences. The calculations indicated that the

functional networks for the WCG and control groups sat-

isfy the small-world criteria, c[ 1 and k & 1, or d[ 1.

Additionally, we detected that the WCG group showed a

significantly lower Cw (p = 0.032), Eloc (p = 0.013), and

Eglob (p = 0.0088) but a significantly higher Lw
(p = 0.0076) compared to the control group.

Inter- and intra-modular connectivity

For the six modules determined by Dosenbach et al.

(2010), we calculated the intra- and inter-modular FCs for

each subject and compared their between-group differences

(p\ 0.05). Figure 2 shows that of the 15 inter-modular

FCs (six modules give C6
2 = 15inter-modular FCs), 11

were uniformly significantly lower in the WCG group

Fig. 1 Bar plots showing statistical comparisons of the global

parameters between the world class gymnasts (WCGs) and the

controls (p\ 0.05) in the whole brain functional networks. Signif-

icant between-group differences were found in the weighted cluster-

ing coefficient (Cw), characteristic path length (Lw), local efficiency

(Eloc), global efficiency (Eglob), normalized clustering coefficient (c),
normalized shortest path length (k), and small-worldness (d)
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compared to the control group. In addition, the WCG group

showed uniformly significantly lower intra-modular FCs

compared to the controls in three modules, FPN

(p = 0.019), CON (p = 0.036), and CN (p = 0.011). The

detailed results of the between-group comparisons of the

intra- and inter-modular FCs are listed in Table S4 (Sup-

plementary Materials).

Inter-nodal functional connectivity

Figure 3a displays the NBS-derived subnetwork

(p = 0.0033), which contained twenty nodes and twenty

inter-nodal FCs. The distribution of FC values in this

subnetwork is shown in Fig. 3b. All the FCs in this sub-

network were significantly lower in the WCG group

compared to the controls. Of these twenty FCs, twelve

were related to the CON module and nine to the CN

(Fig. 3c), and eighteen belonged to ‘local’ connections

(Table S5 in Supplementary Materials).

Rich club analysis

Figure 4a shows the normalized rich club coefficient

/w
norm kð Þ for both groups over the range of degrees from

1 B k B 16. Figure 4b indicates the rich club nodes at

k = 11 by following several previous studies: (van den

Heuvel and Sporns 2011; van den Heuvel et al. 2013; Ray

et al. 2014). Of these 16 rich club nodes, 11 were located in

the DMN module, 4 in the SMN, and 1 in the ON. A

statistical analysis revealed a significantly smaller number

of ‘local’ connections (p = 0.032) in the WCG group

compared to the control group but no significant between-

group differences in either the ‘rich club’ connections

(p = 0.20) or the ‘feeder’ connections (p = 0.12)

(Fig. 4c). The rich club nodes and the values for the ‘rich

club’, ‘feeder’ and ‘local’ connections at each value of

k from 1 to 16 are listed in Table S6 (Supplementary

Materials).

Nodal parameters

Figure 5 shows the brain regions with significant between-

group differences in their nodal parameters. We found that

in the WCG group, nodal strength (Si
w) was uniformly

significantly lower in seven regions and nodal efficiency

(Ei
w) was also uniformly significantly lower in 16 regions,

compared to the control group [p = 0.0063 using a false

positive correction for multiple testing (Meng et al. 2014;

Lynall et al. 2010)]. These regions are also listed in

Table S7 (Supplementary Materials). We noticed that, of

these 23 involved regions, only one region was a rich club

node but the other 22 were non-rich club nodes, and most

of them were located in the CN, FPN, and CON modules

(Fig. 5).

Relationship between network parameters and years

of training

Of all the network parameters that showed significant

between-group differences, we found that the inter-modu-

lar FC between the FPN and the SMN was significantly

negatively correlated with their number of years of training

(r = -0.645, p = 0.044) but not with their age

(r = -0.231, p = 0.470) in the WCG group (Fig. 6).

Robustness analysis

Table 2 shows the network results derived from different

preprocessing strategies, different brain templates and a

binary network. The calculation indicated that most of our

Fig. 2 Statistical comparisons of the intra- and inter-modular func-

tional connectivity (FC) between the world class gymnasts (WCGs)

and the controls. a The correlation matrix displaying the p values of

the between-group differences in the intra- and inter-modular FCs.

The colorbar indicates the corresponding p value. Compared to the

control group, the WCG group showed not only uniformly signifi-

cantly lower intra-modular FCs within each of three modules (the

cerebellum, fronto-parietal, and cingulo-opercular networks) but also

uniformly significantly lower inter-modular FCs between these

modules. b Illustration of the FCs that showed a significant

between-group difference. The bent (straight) line corresponds to

the intra-modular (inter-modular) FC. The thickness of the line is

inversely proportional to the p value of the between-group difference.

The thicker the line, the lower the FC in the WCG compared to the

controls
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Fig. 3 The NBS-derived subnetwork showing significantly decreased

functional connections (FCs) in the WCGs compared to the controls.

a Plots of these FCs rendered using BrainNet Viewer (http://www.

nitrc.org/projects/bnv/). b Histograms showing the distribution of the

FC values in this subnetwork for the WCGs and the controls. c A

circular plot of the twenty lower inter-nodal FCs. Each number

indicates the index for a single node. See Table S1 in the

Supplementary Materials for more information about each region.

d ROC curve based on the functional connectivity within the NBS-

derived subnetwork. It shows that the mean FC strength of the NBS-

derived subnetwork had a strong ability to discriminate the WCGs

from the controls (AUC[ 0.9). TPR true positive rate, FPR false

positive rate, Sen sensitivity, Spe specificity, AUC area under curve

Fig. 4 Rich club organization of the world class gymnasts (WCGs)

and the controls. a Group-averaged rich club curve for the gymnasts

(red) and controls (blue). Both groups had a rich club organization

/w
norm kð Þ[ 1 in the range of 1 B degree k B 16. b Rich club regions

occurring in both the WCG and control groups. These were rendered

on the brain using BrainNet Viewer (http://nitrc.org/projects/bnv/).

The group-averaged functional network for a given subject group was

used to identify the rich club regions (k C 11). We found that the

shared rich club regions were located primarily in two modules, the

DMN and SMN. c Barplot showing between-group differences in the

strength of the ‘rich club’, ‘feeder’, and ‘local’ functional connec-

tions. We found significantly lower connectivity strength in the ‘local’

connections (p = 0.032) in the WCG group compared to the controls,

but no significant between-group difference in either the ‘rich club’ or

the ‘feeder’ connections
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findings were relatively stable across the various strategies.

Specifically, small-worldness and rich club organization

were always found in both the WCGs and the controls. For

the global parameters, the WCGs consistently showed

significantly lower Cw, Eloc and Eglob, but higher Lw,

compared to the controls. In addition, a NBS-derived

Fig. 5 Rending plots of the

brain regions that showed

significantly lower nodal

parameters for the brain

functional networks in the WCG

group compared to the control

group (p\ 0.0063 based on

false positive correction for

multiple testing). a Nodal

strength. b Nodal efficiency.

The regions with significantly

lower nodal parameters were

primarily located within three

modules, the cerebellum (CN),

fronto-parietal network (FPN),

and cingulo-opercular network

(CON). The size of the nodes is

inversely proportional to the

p value of the between-group

difference in the given nodal

parameter

Table 2 Robustness of the

alterations in brain functional

network parameters of the world

class gymnasts (WCGs)

compared to the normal controls

Different processing strategies Cw Lw Eloc Eglob d /norm
w NBS

Main processing strategy in this study ; : ; ; [1 [1 ;

Other preprocessing strategies

Sparsity ; : ; ; [1 [1 ;

Global regressing – – – – [1 [1 ;

Smoothing ; : ; ; [1 [1 ;

Positive only ; : ; ; [1 [1 ;

Other brain templates

AAL-90 ; : ; ; [1 [1 ;

Power-264 ; : ; ; [1 [1 ;

H-1024 ; : ; ; [1 [1 ;

Network type

Binary ; : ; ; [1 [1 ;

The ‘;’ (:) symbol indicates a significantly lower (higher) value for a global parameter in the WCG group

compared to the controls; ‘–’ indicates no significant between-group difference. ‘Sparsity’ stands for

estimating a threshold range (0.10–0.35) by using a measure of sparsity (the ratio between the total number

of edges and the maximum possible number of edges in a network). We applied these thresholds to each of

the FC matrices. ‘Global Regressing’ refers to a network analysis based on a connectivity matrix which was

constructed from the R-fMRI data after regressing out the global signal. ‘Smoothing’ refers to a network

analysis based on a connectivity matrix which was obtained from the smoothed R-fMRI data

(FWHW = 6 mm). ‘Positive Only’ refers to a network analysis based on a connectivity matrix which was

derived from the positive-only inter-nodal correlations. And ‘Binary’ refers to connectivity matrices that

were converted into binary matrices at a selected threshold when constructing the networks. AAL-90 is the

Automatic Anatomical Labeling atlas that parcellates the brain into 90 regions. Power-264 is an atlas

obtained from a meta-analysis of fMRI data and R-fMRI connectivity data. H-1024 is a high-resolution

atlas which was generated from the AAL atlas and randomly parcellates the whole brain into 1024 equal

volume cortical and sub-cortical regions. NBS, network-based statistic
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subnetwork that had a significantly low FC in the WCGs

compared to the controls was always detected.

Cross-validation

The cross-validation analysis showed that the reported

between-group differences in this study were highly

replicable, as these findings were almost preserved in the

13 combinations of subjects (Table S9 in Supplementary

Materials).

Classification

For the network parameters showing significant between-

group differences, most can discriminate the WCGs from

controls significantly (p\ 0.05) (Table S9 in Supplemen-

taryMaterials). Further, the mean FC of the subnetworkwith

significantly decreased FC has the highest ability to distin-

guish the WCGs from the controls (AUC = 0.997; Sensi-

tivity = 0.923; Specificity = 1.000; Efficiency = 0.963;

p = 1.0e-9) (Fig. 3d).

Discussion

In this study, we constructed brain functional networks for

both the WCGs and control groups and compared between-

group differences in the network parameters. At the whole

brain level, we found that the FC, local efficiency, and

global efficiency were uniformly significantly lower in the

WCG group compared to the controls, though both groups

showed small-worldness and rich club properties. At the

modular level, the WCG group showed not only signifi-

cantly lower intra-modular FC within each of three func-

tional modules (the cerebellum, fronto-parietal, and

cingulo-opercular networks) but also significantly lower

inter-modular FCs in these three modules in the WCGs

compared with the controls. At the nodal level, we detected

significantly lower nodal strength and nodal efficiency in

several non-rich club nodes within these three modules in

the WCG group compared to the controls. Among all of the

reorganized network parameters, we also found that the

inter-modular FC between the fronto-parietal network and

the sensorimotor network was significantly negatively

correlated with number of years of training in the WCG

group, and the NBS-derived subnetwork was well able to

distinguish the WCGs from the controls.

Plasticity in the whole brain functional networks

of the WCGs

At the whole brain level, the WCG group showed uni-

formly significantly lower FC, clustering coefficient, local

efficiency, and global efficiency, but greater characteristic

path length, compared to the controls (Fig. 1; Table 2; S3).

This may reflect a decrease in the amount of local and

global transfer of information in the WCGs after long-term

intensive training. This apparent plasticity in the whole

brain network level was in line with previous studies

(Hikosaka et al. 2002; Doyon and Benali 2005; Dayan and

Cohen 2011; Schendan et al. 2003; Floyer-Lea and Mat-

thews 2005) which suggested that widespread cortical-

subcortical regions are crucial for mediating long-term

motor skill training. In addition, these results are parallels

to our previous findings of structural plasticity in the

WCGs (Wang et al. 2013a), which showed changes in the

network parameters of the whole brain anatomical net-

works, including the local and global efficiency as well as

the shortest path length.

The lower local and global information transfer in the

WCGs may be related to an increase in their neural effi-

ciency after long-term, intensive gymnastic training. Motor

skill learning can allow people to achieve very skilled

behaviors, and repetitive skill practice can allow people to

possess a degree of automaticity. With long-term motor

skill training, the performance becomes more precise and

automatic. In this study, we may logically assume that the

gymnastic skills of the WCG group have a high degree of

automaticity as they have been in intensive professional

gymnastic training for more than 10 years and have gained

an outstanding performance. Previous studies (Wu et al.

2004; Haslinger et al. 2004) suggested that automatic

behaviors are associated with increased neural efficiency

and correspond to a lessening of the neuronal resources

involved.

However, our results were inconsistent with several

studies reporting increased brain functional connectivity

after long-term motor skill training. This inconsistency

may be due to the intensity, period, or discipline of motor

skill training. Table 3 summarizes the findings of previous

studies on detecting brain functional connectivity changes

after motor skill learning from 2010 to 2015, and shows

both decreased and increased functional connectivity.

These studies provided cues that different practice sched-

ules and different amount of practice periods for specific

motor skills may influence the directions of brain plasticity

(decrease or increase). High intensity and amount of

training may lead to negative correlation, but low-to-

moderate intensity and amount of training may lead to

positive correlation between the brain plasticity and the

training period. The possible reason for this divergence is

that different practice would elicit different cellular

mechanisms (Sampaio-Baptista et al. 2014, 2015) or make

subjects at different stages of learning (Sampaio-Baptista

et al. 2015; Dayan and Cohen 2011). In our study, all

gymnasts have received long-time intensive professional
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gymnastic training, over 10 years, and have gained an

outstanding performance, world-level. By now, very few

studies reported brain plasticity in professional subjects

experienced over 10 years intensive motor skill training

(exception of the motor plasticity in musicians). Thus, our

result seems consistent with these previous studies. But we

must point out that this is only a possible explanation. No

doubt, a better way to validate this explanation is that we

need to conduct a longitudinal study to detect the dynamic

effects of plasticity.

Plasticity in the functional modules of WCG

In this study, we also found that the WCGs showed sig-

nificantly larger numbers of lower intra- and inter-modular

FCs (Figs. 2, 3; Tables S4, S5 in Supplementary Materi-

als), and lower nodal degree and efficiency (Fig. 5,

Table S6 in Supplementary Materials) in three modules

(the cerebellum, frontal-parietal network, and cingulo-op-

ercular network), compared to the controls. These results

are in line with several previous studies (Hikosaka et al.

2002; Doyon and Benali 2005; Dayan and Cohen 2011;

Doyon et al. 2002; Miller and Cohen 2001; Hardwick et al.

2013), which all concluded that the fronto-parietal net-

work, cerebellum, thalamus, and basal ganglia are critical

for long-term motor skill training.

The cerebellum is thought to be related to motor func-

tions. It receives inputs from the sensory system of the

spinal cord or from cortical and subcortical regions and

then integrates these inputs to fine tune motor activity (Fine

et al. 2002). It has been validated that the cerebellum plays

important roles in motor timing and motor execution

(Mauk et al. 2000) and that activity in the cerebellum can

be used to predict the sensory consequences of movements

and to detect errors in these predictions (Hardwick et al.

2013; Krakauer and Mazzoni 2011; Penhune and Steele

2012). In addition, a review by Manto et al. (2012) con-

cluded that the cerebellum is involved in the control of

motor speech, oculomotor functions, grip forces, voluntary

limb movement, and classical conditioning.

Furthermore, previous studies (Di et al. 2012; Di Paola

et al. 2013; Bernardi et al. 2013; Walz et al. 2015) revealed

an effect of long-term motor skill training on the cerebel-

lum. Di et al. (2012) detected significantly increased gray

Table 3 Overview of previous studies on revealing the plasticity of brain functional connectivity (FC) after motor skill learning

References Training task Training time fMRI

scan

Main findings in trainers

Hamzei et al. (2012) Left hand

practice

30 min/day for 5 days R-fMRI : FC between striatum and cortical regions

Ma et al. (2011) Finger

movement

15 min/day for 4 weeks R-fMRI : FC between PoCG.R and SupraMarginal_R

in 0–2nd week

: FC between PoCG.R and SupraMarginal_R

in 3rd–4th week

Ma et al. (2010) Finger

movement

15 min/day for 4 weeks T-fMRI : FC between BG and cortical regions

; FC between CB and cortical regions

Coynel et al. (2010) Finger

movement

10–20 min/day for 4 weeks T-fMRI ; FC in associative/premotor networks

: FC between associate/premotor and SMN

Taubet et al. (2011) Dynamic

balance

42.5 min once a week for

6 weeks

R-fMRI : FC between frontal and parietal regions

Sampaio-Baptista et al.

(2015)

Juggling practice 30 min/day (high intensity

group) 15 min/day

(low intensity group) for

6 weeks

R-fMRI : FC in motor network in low intensity group

; FC in motor network in high intensity

group

Di et al. (2012) Badminton C3 years R-fMRI ; FC between medial CB and ACC.R

; FC between left parietal and IFG.L

; FC between left parietal and MFG.L/R

: FC between left parietal and ACC.R

Bernardi et al. (2013) Racing-car C4 years T-fMRI : FC related to brain areas responsible for

motor reaction and visuo-spatial tasks

Current study Gymnastics C10 years R-fMRI ; FC related to the CB, FPN and CON

FC functional connectivity, PoCG.R right postcentral gyrus, BG basal ganglia, ACC.R right anterior cingulated cortex, IFG.L left inferior frontal

cortex, MFG.L/R bilateral middle frontal cortex, CB Cerebellum, SMN sensorimotor network, FPN fronto-parietal network, CON cingulo-

opercular network

Brain Struct Funct

123



matter density in the cerebellum in professional badminton

players compared to controls. Di Paola et al. (2013)

revealed that world class mountain climbers showed sig-

nificantly greater volumes of the vermian lobules I–V of

the cerebellum compared to controls. Bernardi et al. (2013)

demonstrated that professional car drivers had less activa-

tion in the cerebellum compared to naı̈ve drivers when

performing a motor reaction and a visuo-spatial task. In

addition, Walz et al. (2015) used an arm ability training

paradigm to train the left hand of right-handed healthy

participants over 2 weeks and found that activation in the

lateral cerebellar regions decreased over the training time.

Our detected changes in the cerebellum of the WCGs

appears to validate the effects of long-term motor skill

training on the cerebellum and can help us understand the

high level of motor performance in gymnasts.

The fronto-parietal network (FPN) may be divided into

dorsal and ventral sections, both of which are thought to be

involved in the control of attention (Corbetta and Shulman

2002). The dorsal part of the FPN, including the intra-

parietal cortex and superior frontal cortex, has been sug-

gested to be involved in preparing and applying goal-

directed (top–down) selection for stimuli and responses;

whereas the ventral part, including the temporoparietal

cortex and inferior frontal cortex, has been proposed to

specialize in the detection of behaviorally relevant stimuli,

such as salient or unexpected stimuli (Corbetta and Shul-

man 2002). Some studies (Cole et al. 2013; Zanto and

Gazzaley 2013) also suggested that the FPN takes a central

role in cognitive control and adaptive implementation of

task demands. Sridharan et al. (2008) revealed a critical

role for the FPN in switching between the central-executive

and the default-mode networks. Rizzolatti and Luppino

(2001) proposed that the FPN is responsible for controlling

the coordination and planning of complex motor functions.

A clinical study (Leiguarda and Marsden 2000) also sug-

gested that lesions in the FPN may result in severe deficits

in coordinating complex visuomotor movements.

Also, the FPN has been shown to reorganize after long-

term motor skill training (Jancke et al. 2009; Di et al. 2012;

Taubert et al. 2011; Albert et al. 2009). Jancke et al. (2009)

found that the gray matter volumes in the FPN were larger

in skilled golfers than in less-skilled golfers. Di et al.

(2012) showed an alteration of the FPN in professional

badminton players compared to controls. Taubert et al.

(2011) revealed that connectivity in the FPN gradually

increased during 6 weeks of learning a dynamic balancing

task. Albert et al. (2009) revealed that motor training, but

not motor performance, can modulate resting state activity

in the FPN. The differences in the FPN between the WCGs

and the controls may help us understand gymnasts’

excellent motor attention and motor control in gymnastics.

This result was also consistent with our previous work on

structural plasticity in WCGs (Wang et al. 2013a; Huang

et al. 2013), which detected that the nodal degree and

efficiency, as well as the fractional anisotropy and gray

matter density in brain regions responsible for motor

attention were also changed in the WCGs.

The cingulo-opercular network (CON), which includes

the dACC, anterior insula, operculum, anterior prefrontal

cortex, inferior parietal cortex, basal ganglia, and thalamus

(all bilaterally), is believed to be involved in attention and

executive control (Dosenbach et al. 2007; Seeley et al.

2007). Dosenbach et al. (2007, 2008) proposed that the

FPN may serve to initiate and adjust cognitive control

whereas the CON may provide ‘set initiation’, stable ‘set-

maintenance’, and ‘error monitoring’ over the duration of a

group of task blocks. In this study, we detected signifi-

cantly lower intra-modular FC and nodal parameters within

the CON (Figs. 1, 2, 5; Tables S3, S4, S6 in Supplementary

Materials), as well as lower inter-modular FCs between the

CON and other brain regions (Fig. 3 and Table S5 in

Supplementary Materials). In addition, we found the reor-

ganization of the CON were primarily in the basal ganglia

and thalamus. Previous studies (Picard and Strick 1996;

Tanji 1996) suggested that two distinct cortical-subcortical

circuits, a cortico-basal ganglia-thalamo-cortical loop and a

cortico-cerebello-thalamo-cortical loop, are responsible for

motor skill training. As a relay station, the thalamus pro-

vides the specific channels for transferring signals from the

basal ganglia and cerebellum to the cortical motor regions

(Kurata 2005; Sakai et al. 2002). The basal ganglia are

responsible for monitoring the consequences of behavioral

variations produced by other brain regions (Charlesworth

et al. 2012) and for allowing training and automaticity

(Ashby et al. 2010). Thus, functional reorganization in the

thalamus and basal ganglia in WCGs may contribute to

their outstanding performance in gymnastic competitions.

In fact, several studies (Walz et al. 2015; Floyer-Lea and

Matthews 2005) reported that long-term motor skill train-

ing can influence the brain functional activity in the basal

ganglia. Walz et al. (2015) used the arm ability training

paradigm to train the left hand of right-handed healthy

participants over 2 weeks and found that activation in the

basal ganglia decreased over the training time. Floyer-Lea

and Matthews (2005) asked their subjects to learn how to

track the development of a demanding variable isometric

force between the fingers and thumbs of the right hand and

compared the brain activation networks between short- and

long-term training. They found that the long-term motor

skill training increased the activation of the motor cortical-

basal ganglia loop.

In this study, we also found that most of the brain

regions in the NBS-derived subnetwork as well as the brain

regions showing significantly different nodal parameters

were non-rich club nodes (Tables S5, S7 in the
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Supplementary Materials). We also detected that the ‘local’

connections were significantly lower in the WCG group

than in the controls (Fig. 5c). However, no significant

training effect on the rich club nodes was found in the

WCG group. This may indicate the stability of rich club

organization even after long-term extensive gymnastic

training.

Relationship between network parameters

and the number of years of training

A statistical analysis showed a significantly negative cor-

relation between the inter-modular FC of the FPN-SMN

and the number of years of training in the WCG group

(Fig. 6). This may indicate that intensive gymnastic train-

ing indeed induced plastic functional changes in the brain

in that the WCGs with more years of training tended to

have a weaker FC between the FPN and the SMN. Previous

studies suggested that both the FPN and SMN play

important roles in long-term motor skill learning (Floyer-

Lea and Matthews 2005; Dayan and Cohen 2011).

Specifically, the FPN seems to be involved in attention

control and the SMN appears to be related to motor exe-

cution and control. As the number of years of training

increased, the number of links between the attention con-

trol region and the motor execution region decreased in the

WCG group. This may help us to understand their great

physical agility, coordination, and control in gymnastic

performance.

Potential indicators of WCG

There are gifted athletes, but there may not be totally

natural athletes. Without professional skill training before

adolescence, people seem to find it nearly impossible to

participate in competitions. For athletes who have had

long-term, extensive gymnastic training, coaches would

like to be able to use their gymnastic performance during

routine competitions to identify the ones that have the

potential to participate in world-level sports competitions.

Actually, the selection criteria by which coaches make

subjective evaluations of the gymnasts’ behavioral perfor-

mance is not easy to ascertain and ignores their inner

abilities. Thus, we tested to see whether we could detect an

objective evaluation index that could serve as a neu-

roimaging indicator of WCGs based on their network

parameters. Such an index could provide extra information

for the selection of WCGs. For this portion of the study, we

plotted ROC curves based on different network parameters

and found that the mean FC of the NBS-derived subnet-

work easily discriminated the WCGs from the controls

(Fig. 3d). These results suggest that FC in the NBS-derived

subnetwork can potentially be regarded as a neuroimaging

indicator of WCGs.

Limitations

Several limiting factors need to be addressed. First, the

sample size of the subjects in this study was small (only 13

world class gymnasts) which may bias the findings of this

study. Of course, we were limited in our ability to recruit

more world gymnastic champions. For the limited sample

size, we calculated the statistical power and effect size,

conducted the cross-validation analysis, and plotted theROC

curve for network parameters showing significant between-

group differences. Results revealed that their statistical

power and effect size were quite high (Tables S3, S4, S5, S7,

S8 in Supplementary Materials). The cross-validation anal-

ysis indicated that our findings were highly replicable as

these were almost preserved in the 13 combinations of sub-

ject (Table S9 in Supplementary Materials). The ROC curve

also showed that most of these parameters had significant

discrimination ability to distinguish theWCGs from controls

(Table S9 in Supplementary Materials). In addition, in order

to test the robustness of our findings,we repeated the network

analysis by applying various strategies, including different

preprocessing strategies and different brain templates, for

both the weighted and binary networks. The calculations

showed that our main findings were robust under these var-

ious strategies. Second, the results of the modularity analysis

in this study were based on the six modules reported in

Dosenbach et al. (2010) that were obtained by analyzing 238

subjects. This may bias our results due to individual differ-

ences. Thus, we conducted a modularity analysis using

Newman’s algorithm (2006) based on our own R-fMRI data.

The results revealed seven modules (Fig. S3 in Supplemen-

tary Materials) with the functional plasticity of the WCGs

primarily located in the modules of the FPN, CON, and

subcortical regions (the basal ganglia and thalamus)

Fig. 6 Scatter plots of the inter-modular connectivity between the

fronto-parietal network (FPN) and the sensorimotor network (SMN)

against the number of years of training or against the age. The

functional connectivity between the FPN and the SMN was signif-

icantly negatively correlated with the number of years of training in

the WCG group (r = -0.645, p = 0.044). The red square stands for

a gymnast and the blue diamond for a control subject
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(Table S8 in SupplementaryMaterials), findings which were

similar to the main results reported in this study. Third,

because we were unable to perform a longitudinal study, we

cannot completely rule out the possibility that maturation

and/or innate traits from birth (such as genes) could have

caused or contributed to the differences between the WCGs

and the controls. In subsequent studies, we will collect lon-

gitudinal data to exclude these confounding effects and to try

to reveal the dynamic features of brain functional plasticity

throughout the years of gymnastics training. Fourth, as the

gymnasts may be more fit than the controls during the fMRI

scan, the artifacts related to respiration, heart rate and fitness

may affect network analysis. In the calculations, we per-

formed a band-pass filtering (0.01–0.08 Hz) to remove

artifacts related to respiration and heart rate in data pro-

cessing. In subsequent studies, we need to collect and record

physiological data (peripheral pulse, respiration, and elec-

trocardiography data) during the fMRI scan and to use them

as nuisance regressors. Fifth, some studies (Zuo et al. 2014;

Zuo and Xing 2014; Liang et al. 2012; Deuker et al. 2009;

Telesford et al. 2013) have discussed that the replicability of

brain functional networks may be affected by many factors.

And these factors can be included in two aspects, the data

quality (such as head motion, artifacts, scanning time,

sequence parameters, etc.) and the processing strategies

(node definition, edge definition, temporal filtering size,

global signal, etc.). Although we have used several strate-

gies, such as selecting different preprocessing strategies,

different brain atlases, and different network types, to vali-

date our results in this study (Table 2), we are far from using

all the possible strategies. Finally, the champions were not

classified into discipline-specific subgroups. Although the

dominant disciplines differed between these champions,

their routine training regimes were quite similar, other than

during periods directly tied to preparation for competition.

Conclusion

This study analyzed brain functional plasticity that appears

to have been induced by long-term intensive gymnastic

training in gymnasts. Our results indicated that gymnastic

training induced significant changes in the brain network

parameters, especially in the cerebellum, fronto-parietal,

and cingulo-opercular networks. We also found that the FC

between the fronto-parietal network and the sensorimotor

network was significantly negatively correlated with the

number of years of training. These findings may help us to

understand the outstanding performance of gymnasts in

competitions and to reveal the neural mechanisms that

distinguish WCGs from non-athletes.
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