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Abstract
Neuroimaging studies have demonstrated that the topological properties of resting-state

brain functional networks are modulated through task performances. However, the reconfig-

uration of functional networks associated with distinct degrees of task demands is not well

understood. In the present study, we acquired fMRI data from 18 healthy adult volunteers

during resting-state (RS) and two visual tasks (i.e., visual stimulus watching, VSW; and

visual stimulus decision, VSD). Subsequently, we constructed the functional brain networks

associated with these three conditions and analyzed the changes in the topological proper-

ties (e.g., network efficiency, wiring-cost, modularity, and robustness) among them.

Although the small-world attributes were preserved qualitatively across the functional net-

works of the three conditions, changes in the topological properties were also observed.

Compared with the resting-state, the functional networks associated with the visual tasks

exhibited significantly increased network efficiency and wiring-cost, but decreased modular-

ity and network robustness. The changes in the task-related topological properties were

modulated according to the task complexity (i.e., from RS to VSW and VSD). Moreover, at

the regional level, we observed that the increased nodal efficiencies in the visual and work-

ing memory regions were positively associated with the increase in task complexity.

Together, these results suggest that the increased efficiency of the functional brain network

and higher wiring-cost were observed to afford the demands of visual tasks. These observa-

tions provide further insights into the mechanisms underlying the reconfiguration of the

brain network during task performance.
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Introduction
The human brain is a highly complex network [1–3], in which anatomically distributed brain
regions functionally interact for information communication [4]. The complex intrinsic brain
network underpins brain function and dynamically reconfigures to sustain various mental
states [1]. Although the diversity of the intrinsic brain network topological organization has
been widely explored [5, 6], the dynamic reconfiguration of the brain functional network asso-
ciated with task demand remains elusive.

The graph theory can be used to characterize the organization of intrinsic brain network
[7]. Previous studies have demonstrated the small-world properties in the human brain func-
tional network [8, 9], i.e., the highly efficient topological organization of the brain network is
characterized by high clustering and low path length [10]. In addition, the brain functional net-
works are also modularly organized [11, 12] and contain a subset of highly connected hubs
[13]. These topological attributes of the intrinsic brain network have been shown to be crucial
for efficient brain communication. In particular, the brain functional network during task per-
formance is strongly shaped by the intrinsic network architecture during rest [14]. Meanwhile,
many studies have also shown that the brain functional network can be modulated through
various factors, such as brain disorders [15, 16], drug addiction [10, 17], age [10, 18], sex [19],
and intelligence [20]. The fact that the intrinsic network is modulated by these factors reflects
the nature of the dynamically adaptive reconfiguration of brain networks. Indeed, the dynami-
cally adaptive reconfiguration of brain functional networks during active task performance has
been demonstrated in several studies. For example, the reconfiguration of the brain functional
network has been investigated using different task performances, such as finger movements
[21], music perception [22], visual stimulation [23], auditory stimulation [24], and working
memory [25, 26]. Compared with the intrinsic brain network, these studies collectively sug-
gested that the topological organization of brain network could be dynamically modified by the
task performances. Despite this, it is still largely unclear how the complex topology of human
brain network changes with increased cognitive demands.

To fill this gap, the present study aimed to explore the dynamic reconfiguration of the topo-
logical organization of the brain functional network associated with different levels of cognitive
demands in visual tasks. Toward this end, we acquired fMRI data from 18 healthy subjects
under three conditions: resting-state (RS), visual stimulus watching (VSW), and visual stimulus
decision (VSD). The brain functional network for each condition was constructed, and the net-
work properties were measured using graph theory analysis [7]. In addition, we compared the
network properties among these three conditions and investigated the reconfiguration of the
brain functional network associated with visual tasks. Moreover, we validated the results of the
present study using additional analyses [27, 28].

Materials and Methods

Participants
Eighteen healthy volunteers (age = 23.6 ± 1.65 years, 10 males) participated in the present
study. All participants were enrolled in South China Normal University, Guangzhou, China.
The exclusion criteria included psychiatric or neurological illness, head trauma, and any
implant, device, or object in the body. All the participants provided written informed consent,
and the protocol was approved through the Research Ethics Review Board of South China Nor-
mal University.
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Task manipulation
Three cognitive conditions (i.e., RS, VSW, and VSD) were used in the present study, and the
participants with normal or corrected-to-normal vision, were fitted with earplugs and provided
a hand-fitted keyboard for each condition. The functional images for these three conditions
were acquired in a single session. Briefly, each participant was instructed to lie still with eyes
closed and not fall asleep during the RS scan, and we acquired 240 volume images in 8 min.
Under the VSW condition, each participant was instructed to watch the block stimuli, pre-
sented as a series of pictures displayed on the center of a screen in random order. In each
block, the visual stimulus lasted 26.4 s, with alternating 12-s intervals of cross cursor epoch.
The scan time was 10.2 min for the VSW. For VSD, a one-back task was applied, in which the
participant was asked to press the button on the hand-fitted keyboard to indicate whether the
presented picture was the same as the one before it. The scan time was 16.8 min. The flow
charts of VSW and VSD are presented in Fig A in S1 Appendix (Supplementary Materials).
For each participant, the scans were counterbalanced across participants to minimize the effect
of condition order.

Data acquisition
All MRI data were obtained on a 3 T Siemens Trio Tim MR scanner with a 12-channel phased
array head coil in South China Normal University. The fMRI data were acquired using a gradi-
ent-echo echo-planar imaging (EPI) sequence with the following parameters: TR = 2000 ms,
TE = 30 ms, Flip angle = 90°, matrix = 64 × 64, FOV = 220 × 220 mm2, thickness/gap = 3.5/0.8
mm, and 32 axial slices covering the whole brain. In addition, 3D high-resolution brain struc-
tural images were obtained using a 3D T1-weighted MP-RAGE sequence with the following
parameters: TR = 1900 ms, TE = 2.52 ms, Flip angle = 9°, matrix = 256 × 256, FOV = 230 × 230
mm2, thickness = 1.0 mm, and 176 sagittal slices.

Data preprocessing
All MRI data were processed using DPARSF_V2.0 [29] based on the SPM8 toolkit (http://
www.fil.ion.ucl.ac.uk/spm/). Consistent data processing procedures were applied for the three
cognitive conditions. The fMRI data of the three conditions for each subject were processed
separately. To minimize the effects of the length of the time series on network analysis [30], we
used the first 8 min fMRI data of VSW and VSD to yield 240 time points that are comparable
to the RS condition. As described previously [17], the following procedures were adopted.
First, the first 10 volume images were removed from the fMRI data for scanner stabilization
and participant adaptation to the environment. Subsequently, slice timing and realignment
were performed to correct for the acquisition time delay and head motions, respectively. We
assessed the head motion of each participant, and no participant was excluded according to
these criteria (i.e., the head motion in any direction was not more than 1.5 mm or 1.5°). We
adopted the maximum head motion of the time series to represent the head motion profile in
any direction for each condition of each subject, and used repeated measures ANOVA to ana-
lyze the differences of head motion in any direction among the three conditions. Notably, the
head motion profiles were matched among the three conditions (i.e., RS, VSW and VSD)
(p> 0.118 in any direction). The acquired functional images were further spatially normalized
to a standard MNI template and resampled to a voxel size of 3×3×3 mm3. Here, we did not per-
form spatial smoothing, consistent with several previous studies [10, 31]. To reduce low fre-
quency drift and the physiological noise of fMRI data, the linear detrend was removed, and
0.01Hz high-pass filtering was used. Moreover, we regressed out the nuisance covariates,
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including the 6 head motion parameters and the white matter and cerebrospinal fluid (CSF)
signals. The global signal was not regressed out due to recent debates [32–34].

Construction of brain functional networks
To define the node of the functional network, we applied a functional template as proposed in
a previous study [35]. This functional template (referred to as “Fun160” in the present study)
comprised 160 regions of interest (ROIs) (i.e., putative functional nodes), spanning across the
cerebral cortex, subcortical structures, and the cerebellum. The set of ROIs were generated
around the peak coordinates previously identified from meta-analysis data of multiple brain
functions using 10mm diameter spheres [35]. Although the functional template couldn’t
completely deal with individual difference, it was appropriated for defining the nodes of func-
tional networks given that it has been broadly applied in previous brain network studies [6, 35–
37]. The ROIs of the template are listed in Table A in S1 Appendix. As previously described
[17], the time series for each ROI was extracted by averaging the signals of all voxels within
that region. For each cognitive condition of each subject, a 160 × 160 correlation matrix was
obtained after calculating Pearson’s correlation coefficient for the time courses between any
pair of ROIs. In the present study, we adopted a binary network for further analysis, as this
method is simple and easy to interpret. To obtain the binary matrix, we applied a statistical-
specific threshold to the correlation matrix. Briefly, when calculating the Pearson’s correlation
coefficient, the corresponding p-value of each element in the matrix was also calculated, the p-
value was used to compare with a statistical threshold. Then, the matrix elements, whose corre-
sponding p-values passed through the statistical threshold, were retained for each correlation
matrix, whereas the elements were set to zero when the p-values did not pass through the
threshold [38, 39]. We used a rigorous Bonferroni method (p< 0.05) to correct for multiple
comparisons, that the p-threshold equal 0.05 divided by the total number of non-repeated ele-
ments (i.e. total number = 160×159/2). Finally, a binary functional network was obtained for
each subject in each cognitive condition.

Network analysis
Global parameters. We characterized the whole-brain topological organization of the

brain functional networks using the following eight global parameters [7]: the average degree
(K), clustering coefficient (Cp), local efficiency (Eloc), characteristic path length (Lp), global effi-
ciency (Eglob), small-worldness (σ), average physical distance of functional connections (Dp),
and modularity (Q). The expression and interpretation are presented in S1 Appendix (Supple-
mentary Materials). The K and Dp can be used to describe the connection density and wiring-
cost of forming a network, respectively [25, 40].

Nodal parameters. Although the global parameters well describe the topological organiza-
tion of the brain functional network, nodal analysis provides more useful information for the
individual brain regions. In the present study, we used nodal efficiency (Enod) to describe the
nodal topology of the brain network. The expression is listed in S1 Appendix (Supplementary
Materials).

Network robustness analysis. In addition, we evaluated the stability of functional net-
works using the network robustness (R), characterized by the degree of tolerance against tar-
geted attack [41, 42]. Briefly, we removed the nodes in decreasing order of the Enod value and
recalculated the size of the largest connected component after removing one node each time.
The robustness is represented as the area under the curve plotted according to the component
size and node number (He, Chen et al. 2008). More robust networks retain a larger connected
component, even when several nodes have been removed.
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Statistical analysis
We used one-way repeated measures ANOVA models across the three cognitive conditions
(RS, VSW and VSD) to detect the main effects of task demands on each of the global parame-
ters, K, Cp, Eloc, Lp, Eglob, σ, Dp, and Q. When a significant main effect was observed for a given
parameter, we further performed post-hoc paired t-tests (Bonferroni correction for post-hoc
comparisons) to determine the simple effect of the task demands. Significance was measured at
p< 0.05.

For the nodal parameter, we performed the same ANOVA and post-hoc comparison meth-
ods to detect the main and simple effects of task demands on the Enod in each region. Because
of the large number of regions, the false discovery rate (FDR) was adopted to correct the multi-
ple comparisons of ANOVA models across regions, and the Bonferroni correction was applied
to post-hoc comparisons in regions exhibiting significant main effects. Moreover, we also com-
pared the network robustness across the three cognitive conditions using the same procedures.

Validation analysis
The reproducibility of our results was validated using the following procedures. We employed
two additional brain templates, i.e., the AAL90 and Fun268 (Tables B and C in S1 Appendix),
to define the network nodes for estimating the influence of the different parcellation schemes
on our findings. In addition to the binary network analysis, we also implemented the weighted
network and repeated the network analysis. The details are presented in S1 Appendix.

Result

Global topology
The brain functional network for each participant across all the three cognitive conditions (RS,
VSW and VSD) showed higher Cp but almost identical Lp compared with the comparable ran-
dom networks (Fig 1A). The random networks were generated using Maslov’s wiring program
[43], which have the same number of nodes, edges and degree distribution as the real brain
functional networks. Moreover, we also observed that the brain network for each subject
showed an economic small-world topology of approximately equivalent parallel information
processing of Eglob but a higher fault tolerance of Eloc compared with matched random net-
works (Fig 1B). In addition, the small-worldness indices, σ, for each participant under the three
cognitive conditions were larger than 1 (Table 1). These results indicated that brain functional
networks preserved small-world organization under different cognitive conditions, consistent
with previous studies [10, 44].

Despite the small-world architecture in these brain functional networks, significant differ-
ences in the network topological properties were observed. ANOVA revealed significant main
effects of task demands on all eight network global parameters across the three cognitive condi-
tions (Table 1). In addition, post-hoc comparisons showed that Cp, Eloc and Eglob monoto-
nously increased and Lp decreased in response to the task demands ranging from RS to VSW,
and then to VSD (Fig 2). This result suggested that the greater the visual task complexity, the
more efficient the network, but with less small-worldness. Fig 2 also shows the individual
within-subject effect of task demands on these parameters. In addition, the wiring-costs
described by K and Dp, both monotonously increased from RS to VSW, and then to VSD
(Fig 3A), suggesting that the brain functional network simultaneously sacrifices a certain cost
to meet the demands of complex tasks. Moreover, we observed that the greater the visual task
complexity, the less modularity (i.e., decrease of Q) in the functional networks (Fig 3B).
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Fig 1. The small-world parameters and efficiency of brain functional networks. (A) The functional networks of all cognitive conditions showed a higher
clustering coefficient (Cp) and approximately equal characteristic path length (Lp) compared with the matched random networks (top panel), resulting in
normalizedCp > 1 and normalized Lp� 1 (bottom panel). (B) Functional networks exhibited higher local efficiency (Eloc) but approximately identical global
efficiency (Eglob) of parallel information transmission compared with matched random networks (top panel), resulting in normalized Eloc > 1 and normalized
Eglob� 1 (bottom panel). RS: resting-state, VSW: visual stimulus watching task, VSD: visual stimulus decision task.

doi:10.1371/journal.pone.0132518.g001
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Nodal topology
At the nodal level, the significant effects of task demands on nodal efficiencies, Enod, were
observed in some brain regions. A total of 29 regions were survived using the ANOVA to indi-
cate differences across the three cognitive conditions (p< 0.05, FDR corrected). Post-hoc com-
parisons revealed that 9 brain regions showed significantly increased Enod in VSW compared
with RS, and most of these regions (6 out of 9) were located in the occipital cortex (Fig 4). In
addition, 24 regions showed significantly increased Enod in VSD compared with RS, including
8 occipital regions and 10 cerebellum areas (Fig 4). Moreover, the consistently enhanced Enod
in VSD was primarily observed in 5 default network regions, 5 cerebellum areas, and 3 frontal-
parietal regions compared with VSW (Fig 4). Notably, no region showed significantly
decreased Enod in the three pair comparisons (i.e., VSW-RS, VSD-RS, and VSD-VSW), likely
reflecting the enhanced local and global efficiencies from RS to VSW, and then to VSD, as
described above.

Network robustness
The main effect of task demands on network robustness is significant (Table 1). We observed
that the robustness increased with increasing task demands (progression from RS to VSW and
then to VSD) (Fig 3C). This result suggested that the brain functional networks were more
resilient to targeted attack (removal of nodes) under conditions of higher task demands.

Reproducibility
Table 2 shows the reproducibility of the global parameters and robustness in the validation
analysis. To quantitatively evaluate the reproducibility between the main analysis and each val-
idation analysis, we estimated the reproducibility index as the ratio between the number of
consistent comparisons and the total comparisons (the number is 36, including 9 ANOVA
results and 27 post-hoc comparison results). The values for the reproducibility index were
33%, 81%, and 83% for AAL90, Fun268, and the weighted network, respectively.

Table 1. Mean global parameters of brain functional networks for the three cognitive conditions (RS: resting-state; VSW: visual stimulus watching
task; VSD: visual stimulus decision task).

Metric RS VSW VSD F(2,34) p-value

Cp 0.51 ± 0.11 0.54 ± 0.07 0.60 ± 0.08 16.49 9.8e-06

Lp 2.02 ± 0.43 1.86 ± 0.25 1.66 ± 0.21 17.44 6.1e-06

Eloc 0.69 ± 0.10 0.74 ± 0.06 0.78 ± 0.06 18.09 4.4e-06

Eglob 0.52 ± 0.12 0.55 ± 0.08 0.61 ± 0.08 17.32 6.5e-06

σ 2.98 ± 0.86 2.79 ± 0.64 2.22 ± 0.50 17.53 5.9e-06

K 29.8 ± 22.9 31.6 ± 15.8 45.1 ± 19.2 13.40 5.1e-05

Dp 69.3 ± 2.18 68.8 ± 2.34 72.0 ± 1.63 16.43 1.0e-05

Q 0.34 ± 0.10 0.34 ± 0.09 0.26 ± 0.06 10.95 2.1e-04

R 73.89 ± 6.24 76.86 ± 2.98 77.71 ± 1.93 8.17 1.3 e-03

Note: Global parameters across all three conditions were calculated for each subject and averaged as group means. Cp, clustering coefficient; Lp,
characteristic path length; Eloc, local efficiency; Eglob, global efficiency; σ, small-worldness; K, average degree; Dp, physical distance; Q, modularity; R,

robustness. The range of σ indicated that the functional network for each subject exhibits small-world attributes in each of the three cognitive conditions (σ

> 1).

doi:10.1371/journal.pone.0132518.t001
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Discussion
In the present study, we investigated the topological organization of brain functional networks
associated with two visual task conditions and a resting state using graph theoretical analysis.
The main findings can be summarized as: 1) the small-world attributes were qualitatively pre-
served in the brain functional networks across the three conditions; 2) the local efficiency,
global efficiency and wiring-cost monotonously increased, but modularity and robustness
monotonously decreased in the brain networks from RS to VSW, and then to VSD; and 3) the
increased nodal efficiency was highly associated with visual and working memory-related
regions when performing visual tasks.

Fig 2. Global parameters of brain functional networks across all subjects in the three cognitive conditions. (Top row) Within-subject effects of task
complexity on the clustering coefficient Cp, characteristic path length Lp, local efficiency Eloc, global efficiency Eglob. (Bottom row) Box-plots show the median,
interquartile range, and range for each parameter in each condition. Each horizontal line and the associated number indicate the p-value of a post-hoc paired
t-test (two-tailed). RS: resting-state, VSW: visual stimulus watching task, VSD: visual stimulus decision task.

doi:10.1371/journal.pone.0132518.g002
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Changes in global topologies
In the present study, we characterized the small-world properties and modularity of the brain
functional networks in three different cognitive conditions, RS, VSW, and VSD. Small-world-
ness facilitates the maintenance of highly effective and specialized modular information pro-
cessing and rapid global information transfer [8, 45], and modularity facilitates the rapid
reorganization of a network through alterations in the functionality of one module without los-
ing functionality in other modules [11]. The observations in the present study suggest that the
human brain possesses adequate flexibility to support efficient information transfer in both
modulated and distributed processing, regardless of various conditions.

Although the small-world properties were qualitatively obtained in these functional net-
works, we observed the alteration of network topology properties, i.e., both the local and global
efficiency and the wiring-cost were increased, but the modularity was decreased, in brain net-
works from RS to VSW, and then to VSD. In the present study, the complexity of visual tasks
was rationally assumed to increase from RS to VSW, and then to VSD. Thus, the changes in
network properties across the three conditions might reflect the reconfiguration of brain
responses to the complexity of the visual task. More importantly, we observed that the changes
in the network metrics were inherently consistent. For example, both the cluster coefficient
and local efficiency describe how information is efficiently transferred locally [7], and the
results of the present study suggested that both of these parameters were increased with the
increasing task complexity (Fig 2). Similarly, both the characteristic path length and global effi-
ciency describe how information is efficiently transferred globally [7]. Accordingly, the results
shown in Fig 2 confirmed that the global efficiency and average shortest path length exhibited
opposite alterations.

Fig 3. Costs, modularity, and robustness of brain functional networks across all subjects in the three cognitive conditions. Box-plots show the
median, interquartile range, and range for the wiring-cost. (A) Average degree K and physical distanceDp; (B) the modularityQ; and (C) the robustness R.
Each horizontal line and the associated number indicate the p-value of a post-hoc paired t-test (two-tailed). ‘ns’ presents the p-value > 0.05. RS: resting-
state, VSW: visual stimulus watching task, VSD: visual stimulus decision task.

doi:10.1371/journal.pone.0132518.g003
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These results indicated that the greater of the task complexity, the larger the values of local
and global efficiency in brain networks (Fig 2), suggesting that the values of local and global effi-
ciency reflect the complexity of visual tasks. Correspondingly, previous studies [25] have shown
that the brain exhibits higher global efficiency with increasing task difficulty in subjects perform-
ing working memory tasks. In addition, in the present study, the modularity of brain functional
network was reduced with increasing of task complexity (Fig 3), accompanying increased net-
work efficiency. This observation might suggest that the segregation of the functional brain is
reduced in subjects performing a complex task. Thus, these results suggested that the intra-mod-
ule connections might be decreased and the inter-module connections might be increased during
complex cognitive states [25]. This result is consistent with the notion that the dynamic connec-
tivity between distinct brain systems occurs only upon task demands [1].

Fig 4. Surface visualization of the brain regions exhibiting significant between-state differences in nodal efficiency for the three comparisons,
VSW-RS, VSD-VSW, and VSD-RS. The node size is proportional to the relative significance of each between-state comparison (two-tailed paired t-test,
p < 0.05, FDR correction). The node colors indicate the node belonging to the six different modules according to the brain template [35]. Uniformly, we
detected significantly increased nodal efficiency between each of the three comparisons, VSW-RS, VSD-VSW, and VSD-RS. RS: resting-state, VSW: visual
stimulus watching task, VSD: visual stimulus decision task. LH (RH), left (right) hemisphere.

doi:10.1371/journal.pone.0132518.g004
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The brain network has been characterized as an economical trade-off between minimizing
wiring-cost and maximizing topological efficiency [1]. According to this notion, brain wiring-
costs are low but not minimal [46]; if the costs were minimal, then the brain would be topologi-
cally arranged as a lattice [47], and the brain efficiency would be too low to sustain any cogni-
tive state. Thus, if the efficiency of the brain network increases, then the wiring-costs must also
be increased. Our findings that wiring-costs increase (i.e., increased average degree and physi-
cal distance) with increasing visual task complexity (Fig 3) and the increased values of local
and global efficiency are consistent with this notion. Altogether, we suggest that the brain func-
tional network reorganizes through the adoption of a more efficient, but more costly, network
configuration when there is greater demand for cognitive processing [1].

In particular, in the RS condition, subjects were required to close their eyes and just to keep
relax, which reflected the baseline state of brain function. In the VSW condition, subjects were
required to watch the stimuli only, which induced the brain to perform the visual function.
Whereas in the VSD condition, subjects were required not only to watch the stimuli but also to
make judgment to one-back working memory, which may induce both visual and memorial
functions. Thus, the task complexity related to the involved brain functions (e.g., the visual pro-
cessing and the working memory) is distinct across these three conditions. Consistent with the
increase of task complexity, we found that the functional network topological properties were
altered relative to the addition of the task demands in the three conditions. Moreover, we
detected brain regions with significantly increased nodal efficiency following with the task
demands, and these regions are highly located in the visual and memory related modules. This

Table 2. Validation analyses of the effects of task complexity on the global parameters derived from the binary networks in different brain tem-
plates (the AAL90 and Fun268 templates) and the weighted network in the Fun160 template.

Cp Lp Eloc Eglob σ K Dp Q R

AAL90

F(2,34) 3.68 a 3.55 a 3.40 a 3.97 a 3.04 ns 3.96 a 2.48 ns 2.08 ns 0.60 ns

0052 # ns " ns # ns ↓ ns
— ↓ ns

— — —

VSW vs. VSD ↑ a ↓ a ↑ a ↑ a
— ↑ a

— — —

RS vs. VSD " ns # ns " ns " ns
— " ns

— — —

Fun268

F(2,34) 14.8 b 13.3 b 12.6 b 13.4 b 19.9 b 13.0 b 21.8 b 11.0 b 2.16 ns

RS vs. VSW " ns # ns " ns ↑ ns ↓ ns ↑ ns ↓ ns ↑ ns
—

VSW vs. VSD ↑ b ↓ b ↑ b ↑ b ↓ b ↑ b ↑ b ↓ b
—

RS vs. VSD ↑ b ↓ b ↑ b ↑ b ↓ b ↑ b ↑ b ↓ b
—

Weighted

F(2,34) 16.1 b 19.9 b 23.3 b 18.2 b 13.7 b 13.1 b 1.27 ns 11.5 b 6.74 b

RS vs. VSW " ns ↓ b ↑ b " a ↓ ns ↑ ns
— ↓ ns ↑ a

VSW vs. VSD ↑ b ↓ b ↑ b ↑ b ↓ b ↑ b
— ↓ b ↑ ns

RS vs. VSD ↑ b ↓ b ↑ b ↑ b ↓ b ↑ b
— ↓ b ↑ a

Note: The validation of the nodal analysis was not performed due to the incompatibility across different brain templates. The bold text represents the

consistent results compared with the main findings.—represents non-applicability because the corresponding result of ANOVA is not significant (p > 0.05).

" represents RS < VSW, VSW < VSD, and RS < VSD, respectively; # represents the contrary. Cp, clustering coefficient; Lp, characteristic path length; Eloc,

local efficiency; Eglob, global efficiency; σ, small-worldness; K, average degree; Dp, physical distance; Q, modularity; R, robustness. RS: resting-state,
VSW: visual stimulus watching task, VSD: visual stimulus decision task.
a 0.01 � p<0.05
b p<0.01
ns, Nonsignificant (p>0.05)

doi:10.1371/journal.pone.0132518.t002
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observation provided experimental evidence for the inherent relationship between the changed
functional network properties (global and nodal parameters) and the task demands. Thereby,
the change of brain functional network topological properties in the present study might be
one of the potential underpinnings for the change of brain functions.

Changes in the regional topologies
In addition to the global topologies, the current study also revealed significant between-condi-
tion differences in nodal efficiency. In several regions, the nodal efficiency increased with
increasing visual task complexity (Fig 4). The increased nodal efficiency might reflect increased
global topologies. The mental processes underlying VSW and VSD might be different, as VSW
is a simple visual task and VSD involves both working memory and visual tasks. Based on
these visual tasks, we showed that the changes in the nodal topologies in the brain functional
network depend on the specific task type [48]. Many neuroimaging studies have shown that
visual tasks primarily involve the occipital regions [49, 50], and working memory tasks primar-
ily involve the default mode network, fronto-parietal control network, and occipital- and cere-
bellum-related regions [51, 52]. Consistent with these findings, we also observed a similar
distribution of brain regions responding to the VSW and VSD tasks compared with the rest-
ing-state (Fig 4). Thus, we proposed that the alterations in the global topologies in brain net-
works are closely modulated through the visual task, associated with the task demands,
whereas alterations in the regional topologies of specific brain areas are not simply affected by
task complexity, but also restricted with task types [53].

Although our results suggested the increased nodal efficiency was highly associated with
visual and working memory related regions, we cannot exclude the possible influence of other
nodes on the change of nodal efficiency for a specific node. Notably, this study tried to manipu-
late the mental process, including the visual and working memory with different tasks, to explore
the functional network topological reconfiguration following the increased task demand. Herein,
the focus of the present study lies on the inter-regional communication within the brain func-
tional network, although we determined brain regions with significantly changed nodal parame-
ters. We noted that the nodal properties determined from graph analysis have already included
the interactions among brain nodes [7]. Thereby, several potential possibilities should be consid-
ered to give an interpretation of this finding. A possible explanation is that the increased task
complexity might enhance the cooperation of all nodes within brain network, which further trig-
gered the increased nodal efficiency in the visual and working memory regions we observed.

Validation analysis
The validation analysis showed that the results of the network analysis based on the AAL90
template exhibited low reproducibility (Table 2), potentially indicating the incompatibility of
the anatomical template for functional data [54]. Previous studies [28, 54] have suggested that
the use of coarse anatomic parcellation schemes for functional data might be detrimental to the
quality of the constructed brain network, at least for studies focusing on global and regional
network properties. A recent study showed that the functional template had higher test-retest
reliabilities for network properties relative to the AAL atlas [6]. Thus, it was reasonable to use a
functional template in the present study. Furthermore, we repeated the network analysis using
a high-resolution functional template (i.e., the Fun268) and weighted network, which showed
high reproducibility of the network result (Table 2), suggesting that these findings are not
attributed to random noise, but indeed represent the inherent effects of task demands on the
topological organization of brain functional networks.
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Limitations
There were several limitations in the present study, which should be addressed in future work.
First, the levels of task complexity might bias the results. Notably, the three tasks in the present
study were easy, with a low-range of visual task complexity for healthy volunteers. Given that
the efficiency of the brain network cannot be infinitely enhanced [1] when task complexity is
further increased at a high range, the relationship between the demands of the visual task and
the brain network efficiency might not conform to a linear relationship. Thus, further studies
should use higher levels of task difficulty to provide a more precise description. Second, the
selected band frequency might influence the results of the network analysis. In the present
study, we used 0.01 Hz high-pass filtering to ensure a consistent frequency among the three
tasks. However, previous studies have demonstrated that brain functional organization is spe-
cific to the band frequency [55, 56], and changes in the network topology are also frequency-
dependent [39]. Therefore, the effect of different band frequencies on the findings presented
herein might be an interesting topic for future study. Third, the alternative methodologies
might affect the final results of the complex network analysis. Previous studies have indicated
that the network analysis is affected by strategies of removing the head motion artifact in fMRI
data [57–59], node definition approaches [31, 60], thresholding procedures [61, 62], and null
models [63, 64]. However, there remains no consistent agreement on standard data processing
procedures. Thus, future studies should address whether these factors affect the current find-
ings. Forth, although the findings of the present study provided new insights into the neural
substrate of the brain function reconfiguration relative to task complexity, we didn’t evaluate
the complexity of brain network. However, the methods to evaluate the complexity of a com-
plex network have not been well established so far. Thus, the network complexity metric should
be taken to directly explore the network topological organization in future works.

Conclusion
In conclusion, the efficient topological organization was highly preserved in brain network
underlying various cognitive conditions; however, information communication was also mod-
ulated to the demands of visual task. Specially, the brain functional network reorganizes
through the adoption of a more efficient, but more costly, less modular, and less economical,
configuration to sustain greater visual task complexity. The reconfiguration of brain network
regional topologies is also affected through task complexity. The present study may provide
further insight into the neural basis of the adaptively dynamic reorganization of the brain func-
tional network induced through distinct cognitive conditions.
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