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The excellent motor skills of world class gymnasts amaze everyone. People marvel at the way they precisely
control their movements and wonder how the brain structure and function of these elite athletes differ from
those of non-athletes. In this study, we acquired diffusion images from thirteen world class gymnasts and
fourteen matched controls, constructed their anatomical networks, and calculated the topological properties
of each network based on graph theory. From a connectivity-based analysis, we found that most of the edges
with increased connection density in the champions were linked to brain regions that are located in the sen-
sorimotor, attentional, and default-mode systems. From graph-based metrics, we detected significantly
greater global and local efficiency but shorter characteristic path length in the anatomical networks of the
champions compared with the controls. Moreover, in the champions we found a significantly higher nodal
degree and greater regional efficiency in several brain regions that correspond to motor and attention func-
tions. These included the left precentral gyrus, left postcentral gyrus, right anterior cingulate gyrus and tem-
poral lobes. In addition, we revealed an increase in the mean fractional anisotropy of the corticospinal tract in
the champions, possibly in response to long-term gymnastic training. Our study indicates that neuroanatom-
ical adaptations and plastic changes occur in gymnasts' brain anatomical networks either in response to
long-term intensive gymnastic training or as an innate predisposition or both. Our findings may help to ex-
plain gymnastic skills at the highest levels of performance and aid in understanding the neural mechanisms
that distinguish expert gymnasts from novices.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Amajor challenge for modern neuroscience is to uncover the plas-
tic changes that occur in human brain structure when people partici-
pate in intensive motor training (Draganski et al., 2004), learn a new
skill (Mechelli et al., 2004; Schmithorst and Wilke, 2002), or adapt to
a neuropathology (Keller and Just, 2009; Oh et al., 2009). Structural
plasticity is an intrinsic property of the human brain and enables peo-
ple to achieve their best behavioral performance under a variety of
conditions (Pascual-Leone et al., 2005).

Previous studies, applying cross-sectional or longitudinal study de-
signs, have showed that motor skill acquisition and training can induce
changes in the structural properties of specific brain areas that are in-
volved in a practiced task. Recent longitudinal neuroimaging studies
have focused on the effects of motor training lasting several days or
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weeks in previously untrained subjects andhave showed plastic changes
in specific whitematter (WM) regions (Scholz et al., 2009; Taubert et al.,
2010). However, longitudinal studies investigating training-induced
changes in anatomical properties of the brain are time consuming and
often nearly impossible if the training occurs over long time periods.
Therefore, to examine practice-induced changes, such as brain structural
differences in the relevant white matter, as induced by professional mu-
sical training (Bengtsson et al., 2005; Imfeld et al., 2009; Schmithorst and
Wilke, 2002) and golf training (Jancke et al., 2009),most studies adopted
a cross-sectional paradigm in which highly skilled subjects were com-
pared with less-skilled subjects. However, the development of motor
skills depends not only on the differential involvement of sets of relevant
WM tracts but also on changes in the topologically structural connectiv-
ity patterns of the WM, as reflected by brain anatomical networks.

The development of neuroimaging techniques and graph theory has
provided a new avenue of research for elucidating the large-scale topo-
logical organization of the human brain. Diffusion-weighted magnetic
resonance imaging (DW-MRI) is the only available noninvasive tech-
nique for detecting WM fiber bundles in the human brain in vivo.
Since Hagmann et al. (2007) first used DW-MRI and tractography
to study human brain anatomical networks, whole-brain anatomical
network investigations have been increasingly applied to explore the

http://dx.doi.org/10.1016/j.neuroimage.2012.10.007
mailto:jun_wang@bnu.edu.cn
mailto:ruiwang.huang@gmail.com
http://dx.doi.org/10.1016/j.neuroimage.2012.10.007
http://www.sciencedirect.com/science/journal/10538119


477B. Wang et al. / NeuroImage 65 (2013) 476–487
changes in the brain anatomical networks that result from normal de-
velopment and aging (Gong et al., 2009b; Yap et al., 2011) as well as
those occurring in various diseases, such as Alzheimer's disease (Lo et
al., 2010), multiple sclerosis (Shu et al., 2011) and schizophrenia
(Zalesky et al., 2011). Descriptions of human brain anatomical networks
have become especially attractive as they offer the possibility for more
complete detection of specific neural systems. However, no study to
date has compared the brain anatomical networks of elite athletes
with those of non-athletes, specifically in world class gymnasts.

Gymnastics is a competitive sport that requires precise motor con-
trol, balance, power and focused attention during the execution of the
motions. World class gymnasts are typical elite athletes in that a child
will never grow into a world class gymnast without extensive training
from a very young age and without practicing several hours a day so
that they can achieve the excellent balance, strength and flexibility
that will enable them to excel in competition. Therefore, changes in
brain structure and anatomical networks may be expected to occur
after long-term intensive gymnastic training. Thus, we expected to
find differences between the topological properties of the anatomical
network of gymnastic champions and those of controls in the motor-,
visuospatial-, and attention-related brain regions.

Our goal was to investigate the characteristics of the world class
gymnasts' brain anatomical networks using a cross-sectional approach.
Therefore, we acquired diffusion tensor imaging (DTI) data from thir-
teen World-Cup or Olympic gymnastics champions and fourteen nor-
mal controls, constructed the anatomical networks for both subject
groups using deterministic tractography, calculated the topological
properties of the networks using graph theory, and performed statisti-
cal comparisons to pinpoint the differences in the anatomical networks
between these two subject groups.

Materials and methods

Subjects

Thirteen world class gymnasts (M/F 6/7, aged 17–26 year,
mean±std=20.5±3.2 years) were recruited for this study. Each of
them had trained for more than 10 years and attended gymnastic train-
ing at least 6 h per day. Table 1 shows the discipline,main demographics,
number of years of training and the age of commencement for each gym-
nast. Each hadwon at least one goldmedal in the GymnasticWorld-Cup
or Olympic Games (Table 1). We also recruited fourteen healthy age-
and gender-matched undergraduates/graduate students (M/F 7/7, aged
19–28 years, mean±std=22.3±2.7 years) as the controls. The age
analysis was performed using a two-tailed two-sample t-test (p=0.10).
The gender data were analyzed using a χ2 test (χ2(1)=0.04, p=0.84).
All subjects were right-handed and had no history of neurological or
Table 1
Characteristics of the world class gymnasts who participated in this study.

Champions Discipline Best medal records
since 2007

Gender

1 Pommel horse OC M
2 Still rings WC M
3 Parallel bars WC M
4 Horizontal bar, AA WC M
5 Vault OC F
6 Uneven bars, AA WC F
7 Uneven bars, AA OC F
8 Floor exercises OC F
9 Uneven bars, AA OC F
10 Parallel bars, AA WC M
11 Uneven bars, AA WC F
12 Pommel horse WC M
13 Balance beam, AA OC F
Mean±std

Note: all of them have won individual or team gold medals in the Gymnastic World Cham
Champions or World-Cup Champions). The second column represents the dominant discip
psychiatric disease or head injury. The protocol was approved by the
Research Ethics Committee of the Institute of Cognitive Neuroscience
and Learning at Beijing Normal University. Written consent was ob-
tained from each participant prior to the magnetic resonance (MR)
scanning.
Image acquisition

MR imageswere obtained using a Siemens Trio Tim 3 TMR scanner.
Both DTI and 3D high resolution brain structural images were acquired
using a 12-channel phased-array head coil with the implementation of
the parallel imaging scheme GRAPPA (GeneRalized Autocalibrating
Partially Parallel Acquisitions) and an acceleration factor of 2.

DTI data were acquired using a single-shot twice-refocused
spin-echo diffusion echo planar imaging (EPI) sequence. The sequence
parameters were repetition time (TR)=10,000 ms, echo time (TE)=
92 ms, 64 non-linear diffusion directions with b=1000 s/mm2 and
an additional volume with b=0 s/mm2, data matrix=128×124, field
of view (FOV)=256 mm×248 mm, 2 mm slice thickness, isotropic
voxel size (2 mm)3, bandwidth (BW)=1502 Hz/pixel, and 75 trans-
verse slices without gap covering the whole brain. The acquisition
time was approximately 12 min for each DTI scan. Three DTI scans
were acquired and were subsequently averaged in order to increase
the signal-to-noise ratio (SNR).

We also acquired 3D high resolution brain structural images
(voxel size=1 mm3, isotropic) using a T1-weighted MP-RAGE se-
quence for each subject. The sequence parameters were TR/TE=
1900 ms/ 3.44 ms, inversion time (TI)=900 ms, flip angle=9°, FOV=
256 mm×256 mm, slice thickness=1 mm, and 176 sagittal slices cov-
ering the whole brain. All subjects were scanned using the same MR
scanner. For each subject, both the DTI data and the brain structural im-
ages were acquired in the same session.
DTI data preprocessing

For each subject, the three DTI datasets were concatenated into a
65×3 volumes dataset. The effects of head motion and image distor-
tions caused by eddy currents were corrected by applying the affine
alignment of all other diffusion-weighted images (65×3 volumes) to
the first b=0 volume in the original DTI measurement using the
FSL-FDT Toolbox (Version 4.1; http://www.fmrib.ox.ac.uk/fsl). The
corrected DTI dataset was split into three DTI datasets which cor-
responded to the three original DTI scans, respectively, but contained
the modified values. The three corrected DTI datasets were then aver-
aged to generate the averaged DTI data of 65 volumes.
Age (years) Age of commencement
(years)

Years of training
(years)

24 4.5 19.5
24 4.5 19.5
23 4.5 18.5
26 4.5 21.5
21 4.5 16.5
17 4.5 12.5
18 3.5 14.5
17 4.5 12.5
17 4.5 12.5
21 4.5 16.5
19 4.5 14.5
23 4.5 18.5
17 4.5 12.5
20.5±3.3 4.4±0.3 16.1±3.3

pionships or the Olympic Games since 2007 (OC=Olympic Champions, WC=World
line for each of the champion subjects. AA: all around.
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Network construction

We used the automated anatomical labeling (AAL) template
(Tzourio-Mazoyer et al., 2002) containing 90 brain regions (see Inline
Supplementary Table S1) to construct the human brain anatomical
networks for each subject. Each brain region was defined as a node
with each detectable anatomical connection between each pair of
nodes as an edge. We estimated the topological properties of the
human brain anatomical networks using graph theory. The procedure
for constructing the brain anatomical networks can be found in previ-
ous publications (Gong et al., 2009a; Yan et al., 2011) (see Supplemen-
tary Materials Fig. S1).

Inline Supplementary Table S1 can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2012.10.007.

In brief, for each subject, we first coregistered the 3D brain struc-
tural images into the b=0 images using a linear transformation
(Collignon et al., 1995). The resultant structural images in the diffu-
sion space were then mapped to the T1 template of ICBM152 in the
Montreal Neurological Institute (MNI) space using a nonlinear trans-
formation. An inverse transformation was used to warp the AAL tem-
plate from the MNI space to the diffusion space by a nearest-neighbor
interpolation method. The linear and nonlinear transformations were
all performed using the SPM8 package (http://www.fil.ion.ucl.ac.uk/
spm/software/spm8). Next, we reconstructed the fibers linking each
pair of brain regions in the diffusion space. The fibers for the whole
brain were constructed using DTIstudio software (Version 3.0.3) based
on the Fiber Assignment by Continuous Tracking (FACT) algorithm
(Jiang et al., 2006). Fiber tracking was stopped at voxels where FAb0.2
and the angle between two eigenvectors of two consecutive voxels to
be connected by the trackingwas larger than 45°. The inter-regional con-
nection density, which was obtained using fiber tractography, can be
defined as the sum of the inverse of the fiber length between two
nodes normalized by their mean volume (Hagmann et al., 2008)

wij ¼
2

si þ sj
∑
f∈Fe

1
l fð Þ;

where si and sj stand for the cortical surfaces area of brain regions i and j
that were connected via an edge e(i,j), Fe stands for the all fibers
connecting regions i and j, and l(f) stands for the length of the fiber f.
In order to retain more information and to reflect the heterogeneity
in the capacity and intensity of the connections, we used the un-
thresholded inter-regional connection density to define the edge. In
this way, we obtained a symmetrical anatomical 90×90 matrix and a
weighted anatomical network for each subject.
Table 2
Mathematical definitions of the global and regional parameters used in the current study.

Network properties measures Definitions

Global parameters Cluster coefficient Ci ¼
2

Ki Ki−1ð Þ∑j;k
w̃ij
�

Characteristic path length Lp ¼ 1

1
N N−1ð Þ ∑

j∉i∈G

1
Li

 

Global efficiency Eglob Gð Þ ¼ 1
N N−1ð Þ ∑

i≠j

Local efficiency Eloc Gð Þ ¼ 1
Ν
∑
i∈G

Eglob Gið

Regional parameters Degree K i ¼ ∑
j≠i∈G

Eij

Regional efficiency regEff ¼ 1
N−1

∑
j≠i∈G

1
Lij

Betweenness centrality Bi ¼ ∑
j≠i≠k∈G

δjk ið Þ
δjk
Network analysis

Global parameters of the human brain anatomical networks
The topological properties of human brain anatomical networks

can be analyzed quantitatively using graph theory (Bullmore and
Sporns, 2009; Hagmann et al., 2010). The global properties of a
graph G(N, M) with N nodes and M edges can be characterized by
the following parameters: weighted clustering coefficient (Cw),
characteristic path length (Lw), global efficiency (Eglob), and local effi-
ciency (Eloc). Cw measures the cliquishness of a typical neighborhood
and mirrors the local efficiency of information transfer of the network
(Latora and Marchiori, 2001; Watts and Strogatz, 1998). Lw quantifies
the ability to propagate parallel information or the global efficiency of
a network (Latora and Marchiori, 2001). It reflects the optimal path of
information transfer from node i to node j and then economizes the
cost of information transfer through the shortest path (Table 2). The
global efficiency Eglob is similar in purpose to the inverse of the char-
acteristic path length Lw. Nevertheless, Eglob is the efficiency of a par-
allel system, in which all the nodes in the weight network exchange
information simultaneously, whereas 1/Lw measures the efficiency
of a sequential system which exchanges the information node by
node (Latora and Marchiori, 2001). Similarly the local efficiency Eloc
is an average of the local efficiencies and plays a role similar to the
clustering coefficient Cw, but only when most of its local subgraphs
G are not sparse in a graph, in which Cw is a good approximation of
Eloc (Table 2).

The small-world properties of a network can be characterized by the
normalized clustering coefficient, γ, and the normalized characteristic
path length, λ. A real network is considered to be a small-world
network if it satisfies the following criteria: γ=Cw

real/Cwrand>>1 and
λ=Lw

real/Lwrand≈1 (Humphries and Gurney, 2008; Watts and Strogatz,
1998). Here Cwrand and Lw

rand represent the means of corresponding indi-
ces derived from the matched random network created using a modi-
fied Maslov's wiring program (Maslov and Sneppen, 2002), which
preserves the same number of nodes, edges, and degree distribution
as the real brain networks obtained from actual subjects.
Regional parameters of the human brain anatomical networks
We used the degree, regional efficiency and betweenness central-

ity to describe the regional properties of the anatomical networks.
The degree (Ki) of a node is the number of connections linking the
node. The regional efficiency (regEff) is the inverse value of the mean
harmonic shortest path length between node i and all other nodes in
the network (Achard and Bullmore, 2007). The betweenness centrality
(Bi) indicates the number of shortest paths between pairs of other
Notes

w̃jk w̃ki
�1=3 Ki is the degree of node i, and w̃ij is the weight which is scaled

by the largest weight in the network, w̃ij ¼ wij=max wij
� �

j

! Lij is the shortest path length between node-pair (i,j)

∈G

1
Lij

Þ Eglob(Gi) is the global efficiency of Gi, the sub-graph composed
of the neighbors of node i
Eij is the (i,j)th element of the adjacency matrix

δjk(i) is the number of the shortest paths between node j and k
that pass through the node i within the graph G

http://dx.doi.org/10.1016/j.neuroimage.2012.10.007
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nodes that pass through the node (Linton, 1977). The definitions of all
these parameters are listed in Table 2.

Following the methods used in previous studies (Gong et al., 2009a;
Yan et al., 2011), we defined the hub regions of the anatomical networks
according to the betweenness centrality. To identify the hub regions, we
calculated the normalized nodal betweenness, bi=Bi/〈B〉, where 〈B〉
represents the average betweenness of the network. A node was identi-
fied as a hub if it satisfied the criterion bi>mean+std, that is that the
values of the normalized nodal betweenness had to be one standard de-
viation greater than the average normalized betweenness of the network.

Reconstruction of the corticospinal tract
The corticospinal tract (CST) contains primarily motor axons that

conduct impulses from the brain to the spinal cord. It plays an impor-
tant role in movement, because half of its fibers arise from the prima-
ry motor cortex and the rest from the supplementary motor area,
premotor cortex, somatosensory cortex, parietal lobe, and cingulate
gyrus. However, the CST did not appear in our constructed anatomical
networks because although the primary motor cortex that it connects
with is included in the AAL template, the spinal cord or brainstem
that it connects with is not. In order to determine the possible effect
of intensive gymnastic training on the properties of the CST, we de-
fined the CST between the primary motor cortex and the midbrain
using DTIstudio software, which follows the drawing strategy de-
scribed byWakana et al. (2007). We defined the first ROI as the entire
cerebral peduncle at the level of the decussation of the superior cere-
bellar peduncle and then selected a bundle of trajectories that reach
the primary motor cortex (Fig. 6a). As long as the trajectories to the
primary motor cortex are defined, the size of the second ROI can be
arbitrary (Wakana et al., 2007). For a given subject, we then calculated
the mean fractional anisotropy (FA) for the CST by averaging the FA
values of all the voxels that form the three-dimensional tracts derived
from tractography. To determine which microstructural properties
had changed during training, we also examined the values of the axial
diffusivity (AD, λ∥=λ1) and radial diffusivity (RD, λ⊥=(λ2+λ3)/2) of
the CST. These values respectively represent the diffusivity of water
molecules in directions that are perpendicular or parallel to the princi-
pal axis of diffusion in anisotropic regions of the white matter. Finally,
we compared the mean FA, RD and AD of the bilateral CST between
the champions and the controls.

Statistical analysis

Again following themethod in a previous study (Bai et al., 2012), we
used the network-based statistic (NBS) approach to localize specific
connected components in which the anatomical connectivity was
significantly different between the two subject groups. In brief, we
first determined the most consistent connections, that is the backbone
network, within each subject group by performing a nonparametric
one-tailed sign test (pb0.001, uncorrected) (Gong et al., 2009a). Next,
the most consistent connections for each subject in the two groups
were detected. Then the NBS approach, in which the t-statistic comput-
ed for each pairwise association is thresholded to construct a set of
suprathreshold links, was conductedwithin the consistent connections.
Any connected components that were present in the set of supra-
threshold links and the number of links they were comprised of were
thus identified. To estimate the significance of each component, the
null distribution of the connected component size was empirically de-
rived using a nonparametric permutation approach (10,000 permuta-
tions). Finally, a corrected p value for a connected component of size
M found in the non-randomized data was then determined by finding
the proportion of the 10,000 permutations for which the maximal
connected component was larger than M. For a detailed description of
the NBS approach, see the study by Zalesky et al. (2010a).

Between-group differences in the graph-based metrics (global pa-
rameters, Cw, Lw, Eglob, and Eloc; regional parameters, Ki, regEff and Bi)
of the anatomical networks were tested by nonparametric permutation
tests (Wang et al., 2012; Zhang et al., 2011). Briefly, each subject was
randomly assigned to one of two random groups consisting of the
same number of subjects as the champion group and control group.
This procedure was repeated for 10,000 permutations, resulting in a
sampled between-group difference null distribution for each of graph-
based metric. Finally, we assigned a p-value to the between-group dif-
ferences by computing the proportion of the differences that exceeded
the null distribution values. A significance threshold of pb0.05 was
used for testing each of the graph-based metrics. The Bonferroni meth-
od was used to correct for multiple comparisons when we tested the
statistically significant difference of the regional parameters. Notably,
to investigate any potential covariate-related effects, we included age,
gender and the age–gender interaction as nuisance covariates through-
out the entire analysis (Gong et al., 2009b; Tian et al., 2011;Wang et al.,
2012; Yan et al., 2011).

In addition, we performed a Pearson's correlation analysis to de-
tect the relationship between years of training and the global param-
eters (Cw, Lw, Eglob, and Eloc) of the world class gymnasts.

Results

Changes in the connectivity characteristics in the champions

The NBS was used to identify any connected components in which
the anatomical connectivity appears to have been altered by long-
term intensive gymnastic training. We localized the connected sub-
network (53 nodes and 48 edges) that was significantly different
between the two subject groups (Fig. 1). The neural nodes are often cat-
egorized intofive functional systems— the sensorimotor, default-mode,
attentional, visual, and limbic/subcortical systems (He et al., 2009). Out
of the altered edges, 30 showed significantly greater connection density
(magenta lines in Fig. 1c), whereas 18 edges showed significantly lower
connection density (blue lines in Fig. 1c) in the champions than in the
controls. Significantly, most of the edges (24/30) with greater connec-
tion density that were identified in the champions were linked to re-
gions that were located in the sensorimotor, attentional, and default-
mode systems. These 24 edges can be classified into 15 intra-system
connections and 9 inter-system connections. Almost all of the increased
inter-system connections (8/9) were between the sensorimotor system
and the attentional systemor between the sensorimotor systemand the
default-mode system. However, most of the anatomical connections
that showed decreased densities in the champions (10/18) were pri-
marily between the limbic/subcortical system and the sensorimotor,
attentional or default-mode systems.

Global parameters of the human brain anatomical networks

Statistical comparisonswere performed to detect significant differ-
ences in the global parameters (Cw, Lw, Eglob, and Eloc) of the whole
brain anatomical networks between the two subject groups. We
detected significantly higher values of Eloc and Eglob but a significantly
lower value of Lw in the anatomical networks of the champions com-
paredwith the controls. However, we found no statistically significant
difference in the value of Cw in the anatomical networks between the
two subject groups (Fig. 2 and Inline Supplementary Table S2). We
analyzed the correlation between the years of training and the global
parameters (Cw, Lw, Eglob, and Eloc) of the world class gymnasts. Fig. 3
reveals a tendency for the global parameters to change with years of
training, but no significant correlation (pb0.05) was detected be-
tween years of training and any of these global parameters.

Inline Supplementary Table S2 can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2012.10.007.

We tested the small-world properties of the anatomical networks
for the champions and the controls and found γ=3.43±0.32 for the
champions and γ=3.88±0.24 for the controls, which means that the

http://dx.doi.org/10.1016/j.neuroimage.2012.10.007
http://dx.doi.org/10.1016/j.neuroimage.2012.10.007


Fig. 1. Altered anatomical connections in theworld class gymnast group identified using the network-based statistic (NBS) approach. (a) The binarized backbone connectionswithin each
groupwere determined by performing a nonparametric one-tailed sign test. (b) The NBS identified altered connectionswithin the consistent connections as shown by the adjacencyma-
trix. (c) The pairs of brain regions inwhich the anatomical connections were altered belong to 5 functional systems (sensorimotor, default-mode, attention, visual and limbic/subcortical)
which are color-coded as cyan, pink, yellow, red and purple, respectively. Links color-coded inmagenta (blue) represent significantly greater (lesser) connection density. The thick (thin)
lines represent edges with significant differences in the inter-system (intra-system) connections.
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clustering coefficients were approximately 3 times higher than those
of a comparable random network for both subject groups. However,
we found λ=1.28±0.03 for the champions and λ=1.28±0.04 for
the controls. These values near 1 indicated that the path lengths in
the two subject groups were approximately equivalent to those of
random networks. Our results showed that the anatomical networks
corresponding to the two subject groups exhibited small-world proper-
ties, a finding which is consistent with previous diffusion tractography
studies of human brain anatomical networks (Hagmann et al., 2007,
2008; Iturria-Medina et al., 2008).
Fig. 2. Bar plot of statistical comparisons of four global topological parameters of the
anatomical networks between the world class gymnasts and the controls. The analysis
was repeated with age, gender and age–gender interaction included as nuisance covar-
iates. The symbol (**) denotes that the level of significant difference satisfies pb0.01.
(Cw — weighted clustering coefficient, Lw — weighted characteristic shortest path
length, Eloc — local efficiency, Eglob — global efficiency,).
Regional parameters of the human brain anatomical networks

Table 3 lists the results of statistical comparisons of the regional
parameters (degree Ki, regional efficiency regEff, and betweenness
centrality Bi) of the anatomical networks between the two subject
groups (pb0.01, Bonferroni corrected). We found eight brain regions
with significantly higher degrees and ten brain regions with signifi-
cantly higher regional efficiency in the anatomical networks of the
Fig. 3. Tendency of the global parameters (Cw, Lw, Eglob and Eloc) of the anatomical net-
works to change with years of training for the world class gymnasts. No significant corre-
lation was detected between the number of years of training and any of these global
parameters of the anatomical networks for the champions.

image of Fig.�3
image of Fig.�1


Table 3
Statistical comparison of the regional parameters of the brain anatomical networks be-
tween the world class gymnasts and the controls.

Regions Location Mean p-Value

Ki regEff Ki regEff

PreCG.L Primary 21 (12) 0.99 (0.72) 2.00e−4 < 1.0e−4

MFG.L Association 26 (13) 1.07 (0.73) 1.00e−4

IFGtriang.L Association 25 (16) 1.03 (0.75) 3.00e−4

ORBinf.L Paralimbic 22 (12) 0.91 (0.63) < 1.0e−4

ACG.R Paralimbic 16 (5) 0.86 (0.49) < 1.0e−4 < 1.0e−4

CAL.R Primary 11 (21) 0.65 (0.80) < 1.0e−4

PoCG.L Primary 24 (16) 0.99 (0.78) < 1.0e−4 1.00e−4

HES.R Primary 7 (1) 0.64 (0.27) 1.00e−4 2.00e−4

STG.R Association 24 (9) 0.93 (0.59) < 1.0e−4 <1.0e−4

TPOsup.L Paralimbic 14 (4) 0.74 (0.40) < 1.0e−4 1.00e−4

MTG.R Association 28 (17) 0.96 (0.74) < 1.0e−4 3.00e−4

−
−

−

Note: the text shaded in gray stands for the regions showing statistically significant
differences in degree (K

i
) as well as in regional efficiency (regEff) of the anatomical net-

works, and the symbol “–” stands for no statistically significant difference between the
two subject groups. The group-averaged degree and regional efficiency corresponding
to the champions (controls) are presented. The statistical analysis was repeated by in-
cluding age, gender, and the age–gender interaction as nuisance covariates.
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champions compared with the controls. No region exhibited a signif-
icant between-group difference in betweenness centrality. Seven of
the regions showed significant differences in both degree and region-
al efficiency, as shown in Fig. 4. The involved brain regions primarily
included the left precentral gyrus (PreCG.L), left postcentral gyrus
(PoCG.L), right anterior cingulate gyrus (ACG.R), and the temporal
lobes [right Heschl gyrus (HES.R), right superior temporal gyrus
(STG.R), left temporal pole: superior temporal gyrus (TPOsup.L),
right middle temporal gyrus (MTG.R)]. We found no statistically sig-
nificant difference in betweenness centrality between the anatomical
networks of the two subject groups (pb0.01, Bonferroni corrected).
Hub regions in the human brain anatomical networks

Fig. 5a shows a plot of the mean normalized betweenness central-
ity bi for the 90 brain regions in descending order for the champions
and controls. In each of the two subject groups we identified twelve
hub regions, which are listed in Table 4. Although the number of the
hubs was identical for the two subject groups, the location of the
hubs was not completely the same (Fig. 5b). Several hubs, such as
the bilateral insula, the right middle frontal gyrus, and the right hip-
pocampus, were specific to the champions. In order to show the sim-
ilarities in the spatial patterns of the node betweenness of the two
groups, we plotted the coincidence of the normalized betweenness
centrality of these hubs in the anatomical networks of the champions
and controls (r=0.722) in Fig. 5c. For comparison purposes, we also
listed the hubs of the human brain networks identified in previous
studies in Table 4.
Fig. 4. Rendering plot of the detected brain regions with statistically significant high values o
nasts compared with those of the controls. The analysis was repeated with age, gender, and
sagittal orientation of the bilateral hemispheres. See Table 3 for more details.
White matter changes in the world class gymnasts

Figs. 6c and d show the reconstructed bilateral CST for a champion
and a control, respectively. We found statistically significantly higher
FAs in both the left CST (p=0.012) and the right CST (p=0.011) of
the champions compared to the controls (Fig. 6b). Because increases
in the FA in white matter can occur due to either a relative decrease
in RD or a relative increase in AD or both, we performed a further
analysis to examine the group differences in each of these compo-
nents separately in the CST. Fig. 7 shows decreased RD values in the
bilateral CST of the champions as compared to the controls (left:
p=0.014, right: p=0.030) but no difference in the AD of the bilateral
CST. In addition, we found no significant hemispheric difference in
the mean FA, AD or RD for the CST.

Discussion

In this study, we identified altered connected components, as indi-
cated by between-group differences, that appear to have been induced
by long-term intensive motor training, and we compared the topologi-
cal properties of the human brain anatomical networks of world class
gymnasts with those of a control group. Consistent with previous stud-
ies, we found that the anatomical networks of both the champions and
the controls showed small-worldness. Furthermore, we detected signif-
icant differences between the world class gymnasts and the controls in
the global and regional properties of the anatomical networks and
found changes in the properties of the CST that are likely to have been
induced by the champions' long-term intensive gymnastic training or
be the result of their innate predisposition or a combination of the two.

Changes in connectivity characteristics in the champions

We found that most of the additional edges (24/30) that were iden-
tified in the champions were linked to regions that were located in the
sensorimotor, attentional and default-mode systems. The sensorimotor
system has been demonstrated to be the central module in the human
brain network (He et al., 2009) and plays an important role in behavior-
al performance (Todorov, 2004). The default-mode system is implicated
in the processing of episodic memory (Greicius et al., 2003), and the
attention system is predominantly involved in attention processing
(Corbetta and Shulman, 2002). These neuroanatomical adaptations
that appear to have been formed in response to training suggest that
movement, attention andmemory all played essential roles in the gym-
nastic training of the champions. In addition, most of the increased
inter-systemconnections of the sensorimotor system (8/11)were relat-
ed to the attentional and default-mode systems. This may indicate that
the sensorimotor system plays a critical role in coordinating informa-
tion transfer from the attentional and default-mode systems. Conclud-
ing that the world class gymnasts acquired the extraordinary motor
f the degree and regional efficiency of the anatomical networks of the world class gym-
the age–gender interaction included as nuisance covariates. The results are viewed in a

Unlabelled image


Fig. 5. Hub regions detected in the human brain anatomical networks of the world class gymnasts and the controls. (a) Bar plot of the values of mean normalized betweenness
centrality bi for the 90 brain regions in descending order for the champions. (b) Rendering plot of the hub regions of the anatomical networks for the two subject groups. The
size of the node represents the magnitude of the normalized betweenness centrality bi. Nodes color-coded in red represent hub regions detected in the anatomical networks of
both the subject groups. Nodes color-coded in green (blue) represent hub regions specific to the champions (controls). The location of the regions was visualized with the Brainnet
View software (http://www.nitrc.org/projects/bnv). (c) Correspondence of the normalized betweenness centrality between the anatomical networks of the champions and the
controls. Circles are color-coded the same as in (b).
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ability needed to control each part of their bodies by coordinating the
functions of attention and memory seems reasonable.

Global parameters of the human brain anatomical networks

We found that the anatomical networks of both the subject groups
exhibited small-world properties, afindingwhich is consistentwith pre-
vious studies (Gong et al., 2009a; Hagmann et al., 2008; Iturria-Medina
et al., 2008; Yan et al., 2011). Small-worldness supports both integrated
and distributed information processing and maximizes the efficiency of
propagating information at a relatively low cost (Bassett and Bullmore,
2006). Although topological parameters are quantitatively unequal
across various human brain network studies due to individual differ-
ences such as age and gender (Gong et al., 2009b; Yan et al., 2011), iden-
tifying small-worldness as a property of the brain network has been
common to a number of studies (Bai et al., 2012; Hagmann et al.,
2008; Iturria-Medina et al., 2008; Zalesky et al., 2011). Our results also
support the concept that small-world topology is a widespread funda-
mental principle of our efficient brain networks.

Furthermore, we detected significantly greater values of Eloc and
Eglob, but a significantly lower value of Lw in the anatomical networks
corresponding to the champions compared with the controls (Fig. 2).
Elite athletes are known to be equipped with many advantageous
strategies and processes, including perceptual discrimination, visual
search skills (Farrington-Darby and Wilson, 2006), decision making,
situation awareness (Starkes and Ericsson, 2003), and explicit knowl-
edge about their particular domain (Renshaw and Fairweather, 2000;
Ste-Marie, 1999). The increase in the global parameters Eloc and Eglob
may indicate that the champions can convert more efficiently and
quickly between these strategies and processes, thus allowing them
to accomplish highly difficult and complex movements.
Regional parameters of the human brain anatomical networks

Our study indicated a significant difference in the regional proper-
ties of the anatomical networks between the world class gymnasts
and the controls (Table 3 and Fig. 4). We detected a greater degree
and higher regional efficiency in the precentral gyrus (PreCG),
postcentral gyrus (PoCG), anterior cingulate gyrus (ACG), and the tem-
poral lobes (HES, STG, TPOsup,MTG) in the champions. The functions of
these regions are known to be related to motor, sensory control, visual
and attention functions. However, none of the regions exhibited a sig-
nificant between-group difference in betweenness centrality. This
may indicate that betweenness centrality is relatively insensitive to dif-
ferences between the champions and the controls.

image of Fig.�5
http://www.nitrc.org/projects/bnv


Table 4
Hub regions determined in the human brain anatomical networks of the world class
gymnasts and the controls.

Hub regions Location Champions 

(bi) (bi)
Controls 

Identified as a hub in 

previous studies

Anatomical 

networks 

Functional 

networks

PCUN.L Association Y (7.08) Y (4.47) 1, 2, 4, 5, 6, 8 9, 12, 13

MFG.R Association Y (4.46) N 3, 4 9, 10, 11

PCUN.R Association Y (4.38) Y (3.23) 1, 2, 4, 5, 6, 8 9, 12, 13

SFGdor.R Association Y (3.73) Y (3.18) 1, 2, 3, 5, 8 9, 11

THA.R Subcortical Y (3.32) N 4 12

ITG.L Association Y (2.76) Y (2.02) 1 9, 10, 13

INS.L Paralimbic Y (2.56) N 4, 5, 7, 8 13

MTG.R Association Y (2.51) Y (2.00) 1, 3, 7 9, 10, 13

THA.L Subcortical Y (2.35) Y (1.97) 4, 5 12

STG.R Association Y (2.34) N 6 10, 13

INS.R Paralimbic Y (2.28) N 7, 8 11

CAL.L Primary Y (2.27) Y (2.03) 1 9

MOG.L Association N Y (3.82) 1, 2, 3, 4, 5 9,10 , 13

LING.R Association N Y (3.07) 1 9, 13

MTG.L Association N Y (2.24) 3, 4, 5, 7 9, 10, 13

PUT.R Subcortical N Y (2.17) 4, 5, 8 11

ORBsup.L Paralimbic N Y (2.01) 7 9

1. Yan et al. (2011).
2. Gong et al. (2009a).
3. He et al. (2007).
4. Shu et al. (2009).
5. Li et al. (2009).
6. Hagmann et al. (2008).
7. Bassett et al. (2008).
8. Iturria-Medina et al. (2008).
9. Achard et al. (2006).

10. Tian et al. (2011).
11. He et al. (2009).
12. Tomasi et al. (2011)
13. Liao et al. (2010)
Note: the seven brain regions shaded in gray were shared hubs that were found in the
anatomical networks of both groups. “Y” stands for regions identified as hubs, and “N”
for regions that were not identified as hubs. For comparison purposes, we also listed
the related references in which the regions were identified as hubs in the human
brain structural or functional networks.
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A striking characteristic of gymnastic champions is their superb
motor performance under a variety of environmental conditions.
The PreCG has been described as being the primary motor area in
humans (Naito et al., 2002; Weinrich and Wise, 1982), making it
especially important for gymnastic champions throughout their
long-term sports experiences. Several fMRI studies have shown con-
sistent activation of the primary motor cortex during motor imagery
(Kim et al., 2008; Porro et al., 2000). In a study of the effect of golf
training on gray matter density, Bezzola et al. (2011) showed that
the process of golf training increased GM density in the premotor
area (PMA) that is involved with movement observation. A previous
neuroimaging study also demonstrated that motor tasks such as fin-
ger tapping or hand grasping consistently activated the contralateral
postcentral gyrus, as well as the PreCG and the PMA (Yousry et al.,
1997). Thus, our results in these motor related cortices are consistent
with these previous findings.

The ACG is themain neural substrate for focused attention (Osaka et
al., 2007) and plays a prominent role in action selection (Rushworth,
2008). Neuropsychological and neuroimaging studies have revealed
stronger activations in the ACG during motor imagery of gymnastic
movements (Munzert et al., 2008). Kim et al. (2008) compared the ac-
tivations between world-class archers and controls when they were
aiming and found significantly higher activations in the right ACG of
world-class archers compared with novices. A morphometrical study
also suggested a significant increase in GM density in the ACG induced
by a juggle training exercise (Boyke et al., 2008). Gymnasts require
highly developed attention to their movements and to the game envi-
ronment when competing or training. Taking into consideration the
important function of focused attention in the ACG, we suggest that
plastic changes in the ACG adapted to experience-related motor learn-
ing are vital to gymnasts, especially to world class gymnasts.

The middle and superior temporal gyrus is associated with the
representation of complex object features and with advanced cognitive
functions, such as verbal memory, information processing, and visual
perception (Ojemann et al., 2002; Price, 2000). (Kim et al., 2008)
showed that the superior and middle temporal gyri were significantly
activated when world-class archers concentrated on the target. In a
longitudinal analysis, Draganski et al. (2004) demonstrated a significant
bilateral expansion of the gray matter in the middle temporal area of a
juggler group. These studies suggest that changes in the superior and
middle temporal gyri may contribute to learning and to performing
complex visuomotor skills by facilitating the reciprocal transfer of visual
and movement perception. In our study, the champions showed a high
degree and regional efficiency in the temporal gyrus (Fig. 4). This may
indicate that they have a great ability to control their professional
movements precisely. Our study provides further evidence for changes
in the topological properties of the temporal lobes in the anatomical
network of champion athletes.

Hub regions in the human brain anatomical networks

Twelve hub regions were identified in the anatomical networks of
the two subject groups (Table 4 and Fig. 5). Seven of the champions'
hubs and eight of the controls' hubs were located in the association
cortices, which receive convergent inputs from other cortical regions
(Mesulam, 1998). We found that most of the hubs of the anatomical
networks were the same for the two subject groups, a finding which
was confirmed by the similarity of the node betweenness derived
from the two subject groups (Fig. 5c). Interestingly, the bilateral insula
were found as hubs in the champions but not in the controls. In fact, the
insula has been identified as a center that ensures heart rate and blood
pressure increases at the onset of exercise (Nowak et al., 2005). It is also
involved in motor learning (Mutschler et al., 2007) and has been iden-
tified as playing an important role in motor recovery from stroke
(Weiller et al., 1993). A recent study also showed that the insula plays
an important role in sensorimotor integration by strongly coupling
with the premotor, sensorimotor, supplementary motor and cingulate
cortices (Deen et al., 2011). Although we have no direct evidence that
demonstrates that the difference in the insula of the champions is relat-
ed to a long-term gymnastic training, we find it reasonable to infer that
the insula is crucial for gymnasts to coordinate each part of their body
through the integration of their somatesthesia with the environment.

White matter changes in the world class gymnasts

The CST is a collection of motor axons that travel between the cere-
bral cortex of the brain and the spinal cord and is specifically concerned
with discrete voluntary skilled movements. We reconstructed the CST
that connects the primary motor cortex and the midbrain and detected
that the FA value of the bilateral CST of the champions was significantly
higher than that of the controls. We further found a decreased RD value
in the bilateral CSTs of the champions as compared to the controls. This
decrease in RD value indicated that the greater FAs for the bilateral CST
of the champions are due to initially lower radial diffusivity in the bilat-
eral CST. Increases in the FA of the bilateral CST results from a change
in some microstructural feature (e.g., myelination, packing density, or
axon diameter) of white matter that affects radial diffusivity (Song et
al., 2005). An increase inmyelinationwill reducemembrane permeabil-
ity, a change which, in turn, might lead to decreased water molecular
diffusive ability in the direction perpendicular to the fiber tracts. Our
assumption is that this effect caused the decreased RD and therefore
the increased FA in the bilateral CSTs in the champions. Thomas and
Gorassini (2005) showed that the intensive treadmill training of mus-
cles affected by spinal cord injury increased the functioning of the

Unlabelled image


Fig. 6. Diffusion properties of the corticospinal tract (CST) for the world class gymnasts and the controls. (a) Locations of the ROIs selected for building the CST in the sagittal view.
(b) Statistical comparison of the value of fractional anisotropy (FA) of the CST between the champions and the controls. The symbol (*) denotes that the level of statistically sig-
nificant difference satisfies pb0.05. (c) The CST for the first champion who participated in this study in two hemispheres. (d) The CST for the first control subject who participated
in this study. RH (LH) — the right (left) hemisphere.
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CST. FA has been found to increase in the CST of musicians in response
to long-term sensorimotor practice (Bengtsson et al., 2005). Our results
may indicate that long-term gymnastic training induces plastic changes
in the axonal membrane. This, in turn, might have led to a decrease
in the membrane permeability to water, decreasing radial diffusivity
and therefore increasing FA in the bilateral CST. Imfeld et al. (2009)
also reported decreased FA values in the CST of professional musicians.
These mixed findings may have resulted from differences between
some of the other studies and this present one in the training subjects
and in the motor training regimen.

Further considerations

The present study is limited by several factors. First, the spatial
resolution of DTI data (2 mm isotropic) is much larger than the size
of axons, so the uncertainty of determining fiber orientation is high



Fig. 7. Diffusivity in the corticospinal tract (CST) of the world class gymnasts and the
control group. The champions exhibited significantly high mean axial diffusivity (AD)
values in the left CST (p=0.017) and low mean radial diffusivity (RD) values in the
right CST (p=0.013) compared with the controls. *pb0.05.
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in regions with crossing, twisting or kissing fibers. In addition, the
tracking method could influence the accuracy of measures of inter-
regional connectivity. We adopted the deterministic tractographic
method which is incapable of resolving crossed or twisted fibers
(Mori and van Zijl, 2002). This limitation has prompted the develop-
ment of several different measurement streams including diffusion
spectrum imaging (DSI) (Wedeen et al., 2008) and a variety of high
angular resolution diffusion imaging (HARDI) methods such as Q-ball
imaging and the spherical deconvolutionmethod (Tuch et al., 2002). Al-
though several types of algorithms have been proposed to resolve fibers
crossing or kissing or twisting in a voxel, none of these methods are ca-
pable of determining the exact origins and terminations of fibers within
a cortical area, or of distinguishing efferent/afferent fibers ormixed pro-
jections. Second, no definitive answer exists about how to select the
network nodes used in constructing human brain anatomical networks.
A study has verified that selecting different brain templates to define
network nodes influences the topological properties of the brain net-
works (Zalesky et al., 2010b). Although the AAL template is widely
used to define the nodes of brain networks (Iturria-Medina et al.,
2008; Yan et al., 2011), many other templates have also been used, in-
cluding the Brodmann atlas (Vaessen et al., 2010), the ANIMAL (auto-
mated nonlinear image matching and anatomical labeling) atlas (He
et al., 2008), the LPBA40-atlas (LONI Probabilistic Brain Atlas) (Bassett
et al., 2011), the Harvard–Oxford Atlas (Bassett et al., 2011), and the
parcellation obtained using Freesurfer (Hagmann et al., 2008). More-
over, more and more researchers have focused on the reproducibility
of network analyses derived using high-resolution parcellation (Bassett
et al., 2011; Zalesky et al., 2010b). Similarly, no unique definition of
what constitutes an edge in the construction of a human brain anatom-
ical network has been agreed upon. Various studies have defined edges
as the number of fibers (Shu et al., 2011), the mean FA values of the
connected fibers (Wen et al., 2011), and the weighted fiber density
(Hagmann et al., 2007; Hagmann et al., 2008; Yan et al., 2011). Thus,
testing the influence of different definitions of node and edge on the
topological properties of human brain anatomical networks should be
interesting. Third, anatomical networks primarily focus on information
processing in the cortical regions of the cerebrum. But the cerebellum
is generally accepted as the main region for movement control and is
widely associatedwith the cortex and spinal cord. Networks that contain
the cerebellum could be developed in the future in order to explore
the plastic effect of long-term gymnastic training on the function and
structure of the cerebellum. Fourth, the diffusion gradients (bvecs or
B-matrix) introduced by headmotion were not rotated when correcting
for subject motion in the DTI data from this study (Leemans and Jones,
2009). We think that this effect should be small in comparison with
other effects (such as the signal dropout effects or the interaction be-
tween motion and field inhomogeneity) that we cannot correct for,
and the subjects in this study did not exhibit significant head motion
during the DTI acquisition. Another limiting factor is the small sample
size, which was necessitated by the small pool of world champion gym-
nasts available for study. Finally, because we were unable to perform a
longitudinal study and because we were limited in our ability to recruit
world champions, we cannot completely rule out the possibility that
maturation and/or innate predisposition could have caused or contribut-
ed to the differences between the champions and the controls.
Conclusion

In summary, we constructed brain anatomical networks for world
class gymnasts and controls using DTI and deterministic tractography.
Using a network-based statistical analysis approach, we found that the
increased connection density primarily occurred in or between the
sensorimotor, attentional and default-mode systems in the champion
group. Statistical comparisons showed significantly higher values of
Eloc and Eglob, but a significantly lower value of Lw. In addition, several re-
gions that are known to be related to movement showed significantly
higher nodal degrees and greater regional efficiency in the anatomical
networks corresponding to the champions comparedwith the controls.
We also found that themean value of the FA of the CST in the champion
groupwas higher than that of the controls. This study provided insights
that will allow a better understanding of the differences in brain struc-
ture between theworld champion gymnasts and non-gymnasts, poten-
tially including brain plasticity in response to long-term intensive
gymnastic training. Our results may help to explain gymnastic skill at
the highest levels of performance and to understand the neural mecha-
nisms that distinguish expert gymnasts from novices.
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