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Abstract Long-term intensive gymnastic training can

induce brain structural and functional reorganization. Pre-

vious studies have identified structural and functional net-

work differences between world class gymnasts (WCGs)

and non-athletes at the whole-brain level. However, it is

still unclear how interactions within and between func-

tional networks are affected by long-term intensive gym-

nastic training. We examined both intra- and inter-network

functional connectivity of gymnasts relative to non-athletes

using resting-state fMRI (R-fMRI). R-fMRI data were

acquired from 13 WCGs and 14 non-athlete controls.

Group-independent component analysis (ICA) was adopted

to decompose the R-fMRI data into spatial independent

components and associated time courses. An automatic

component identification method was used to identify

components of interest associated with resting-state

networks (RSNs). We identified nine RSNs, the basal

ganglia network (BG), sensorimotor network (SMN),

cerebellum (CB), anterior and posterior default mode net-

works (aDMN/pDMN), left and right fronto-parietal net-

works (lFPN/rFPN), primary visual network (PVN), and

extrastriate visual network (EVN). Statistical analyses

revealed that the intra-network functional connectivity was

significantly decreased within the BG, aDMN, lFPN, and

rFPN, but increased within the EVN in the WCGs com-

pared to the controls. In addition, the WCGs showed uni-

formly decreased inter-network functional connectivity

between SMN and BG, CB, and PVN, BG and PVN, and

pDMN and rFPN compared to the controls. We interpret

this generally weaker intra- and inter-network functional

connectivity in WCGs during the resting state as a result of

greater efficiency in the WCGs’ brain associated with long-

term motor skill training.

Keywords Neuroplasticity � World class gymnasts �
Independent component analysis (ICA) � Resting-state
networks (RSNs) � Intra-network functional connectivity �
Inter-network functional connectivity

Introduction

Motor skill learning refers to the acquisition of a motor

ability as a result of repetition or long-term training

(Nakata et al. 2010). Long-term intensive motor skill

learning can induce structural and functional neuroadap-

tations (Dayan and Cohen 2011; Doyon et al. 2009).

Usually, elite athletes begin training from a very early age

in childhood, practice several hours a day, and maintain the

training throughout the entire careers. As a result of this

long-term intensive motor skill training, they possess
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greater strength, speed, endurance, coordination, accuracy,

consistency, automaticity, and efficiency than less profi-

cient athletes (Nakata et al. 2010), making elite athletes an

ideal model for studying training-induced brain plasticity.

Our understanding of the neural substrates underpinning

the acquisition and retention of motor skills has improved

in recent years, owing in a large part to technological and

methodological advances in neuroimaging, especially

magnetic resonance imaging (MRI). Previous studies have

identified structural and/or functional differences related to

intensive motor skill training in elite athletes in a variety of

sports, including distance running (Raichlen et al. 2016),

basketball (Park et al. 2009, 2015), badminton (Di et al.

2012), golf (Jäncke et al. 2009), mountain climbing (Paola

et al. 2013), archery (Chang et al. 2011; Kim et al.

2008, 2014), dance (Calvo-Merino et al. 2005; Giacosa

et al. 2016; Hanggi et al. 2010), and formula racing (Ber-

nardi et al. 2013). These studies found that long-term motor

skill training was associated with neuroplastic adaptations

in brain structure and function, which may, together with

muscular and cardiovascular fitness, contribute to the

exceptional abilities of elite athletes (Callan and Naito

2014). However, since the abilities or skills required for

athletic performance (e.g., strength, accuracy, and artistry)

depend on the particular sport, plastic reorganization may

vary across different types of athletes.

World class gymnasts, who excel in gymnastics com-

petition, have extraordinary abilities in physical strength,

balance, coordination, grace, agility, and flexibility. They

must precisely control their direction of movement, their

speed of execution, and monitor their spatial location rel-

ative to objects in the surrounding environment (Huang

et al. 2015; Wang et al. 2013a, 2016). Gymnastics relies on

the ability of the nervous system to activate the correct

muscles to the proper extent at the right time and in the

right sequence (Nielsen and Cohen 2008). Gymnastics also

requires integration of inputs from multiple sensory

modalities (Calvert and Thesen 2004; Stein and Stanford

2008). Our previous studies identified neuroanatomical

differences between gymnasts and nonathletic controls

using diffusion-weighted and structural MRI data (Huang

et al. 2015; Wang et al. 2013a). We found that the gym-

nasts showed morphological plasticity in white matter

microstructure and gray matter density, especially for brain

regions and networks related to motor, attention, and

cognitive control functions. Furthermore, using resting-

state fMRI (R-fMRI), we examined the topological prop-

erties of whole-brain functional networks and found sig-

nificant differences between the gymnasts and controls in

functional topological parameters, especially in the cere-

bellum, fronto-parietal, and cingulo-opercular networks

(Wang et al. 2016).

However, this and other graph theoretical analyses of

human brain functional networks show a strong reliance

on the templates chosen (i.e., brain parcellation schemes)

(Fornito et al. 2010; Liang et al. 2012; Wang et al. 2009;

Zuo and Xing 2014; Zuo et al. 2014) and are sensitive to

noise or artifacts (e.g., head motion and physiological

noise related to respiratory and cardiac signals) (Wang

et al. 2011). To overcome these limitations, in the pre-

sent study, we analyzed the R-fMRI data using inde-

pendent component analysis (ICA), a fully data-driven

multivariate blind source separation method that does not

require any prior assumption (Calhoun et al. 2001;

McKeown et al. 1998), and has higher test–retest relia-

bility than other commonly-used functional connectivity

approaches (Zuo et al. 2010; Zuo and Xing 2014). It also

offers the advantage of better isolating physiological

artifacts from neuronal components. ICA applied to

spontaneous brain activity measured during R-fMRI can

be used to identify and characterize connectivity in dif-

ferent functional networks, referred to as intra-network

functional connectivity. This method decomposes

R-fMRI data into several sources or independent com-

ponents which are spatially independent of each other.

Many components identified across studies show sub-

stantial overlap with brain regions associated with par-

ticular cognitive functions (Smith et al. 2009). They are

commonly referred to as resting-state networks (RSNs)

or intrinsic connectivity networks(Beckmann et al. 2005;

Damoiseaux et al. 2006; De Luca et al. 2006; Seeley

et al. 2009). Other components, especially those located

beyond the canonical locations of the functional net-

works, are often treated as noise and discarded from

further analyses (Greicius et al. 2007). Thus, ICA can be

used as an effective method to separate functionally

interpretable components from noise and artifacts. Fur-

thermore, ICA can be used to study inter-network

functional connectivity, defined as the temporal depen-

dency between the independent components or the tem-

poral correlation between pairs of functional networks

estimated from ICA (Jafri et al. 2008).

In the current study, R-fMRI data were acquired

from 13 world class gymnasts (WCGs) and 14 demo-

graphically-matched non-athlete controls. Group ICA

was adopted to decompose the R-fMRI data into dis-

tinct spatial independent components and associated

time courses. An automatic component identification

method was used to identify components of interest

(COI) related to RSNs. Then, both intra- and inter-

network functional connectivities were evaluated in the

WCGs in comparison with those of the non-athlete

controls.
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Materials and methods

Subjects

Thirteen world class gymnasts (7 F/6 M, aged 17–26 years,

mean ± SD 20.5 ± 3.2 years) participated in this study in

2010. Each gymnast had won at least one gold medal at the

Gymnastics World Cup or the Olympic Games between

2007 and the time of the study. They started gymnastic

training at an average age of 4.5 years and had been

training on average for more than 12.5 years by the time of

this experiment, with a mean training time of 6 h per day.

In addition, we also recruited 14 healthy non-athletes (7

F/7 M, aged 19–28 years, mean ± SD 20.3 ± 2.5 years)

as the controls. They were age and gender-matched to the

gymnasts, with no significant between-group difference in

age (two-sample t test, t = -1.33, and p = 0.20) and in

gender (v2 test, v2ð1Þ = 0.04, and p = 0.84). None of the

subjects had a history of neurological or psychiatric dis-

orders or brain injuries or movement disorders, and the

control subjects did not have any previous formal gym-

nastics training. Written informed consent was obtained

from each subject prior to the study. The experiment pro-

tocol was approved by the Institutional Review Board of

the State Key Laboratory of Cognitive Neuroscience and

Learning at Beijing Normal University. Table 1 lists the

detailed information about each of the world class

gymnasts. Additional informed consent was obtained from

the WCGs for whom potentially identifying information is

included in this article.

Resting-state fMRI acquisition

All MRI data were obtained on a 3T Siemens Trio Tim MR

scanner with the use of a 12-channel phased-array receiver-

only head coil. The R-fMRI data sets were acquired using a

gradient-echo EPI sequence with the following parameters:

repetition time (TR) = 2000 ms, echo time (TE) = 30 ms,

flip angle = 90�, field of view

(FOV) = 224 mm 9 224 mm, data matrix = 64 9 64,

slice thickness/gap = 3.6 mm/0.7 mm, 33 transverse inter-

leaved slices covering the whole brain, and in total 240

volumes acquired in 8 min. During the scanning, each sub-

ject was instructed to relax with eyes closed, without falling

asleep and without thinking about anything in particular. In

addition, we also acquired high-resolution brain structural

images (1 mm3 isotropic) for each subject using a T1-

weighted 3D magnetization-prepared rapid gradient-echo

(MP-RAGE) sequence. The sequence parameters were as

follows: TR/TE = 1900 ms/3.44 ms, inversion time

(TI) = 900 ms, slice thickness = 1 mm, flip angle = 9,

FOV = 256 mm 9 256 mm, data matrix = 256 9 256,

BW = 190 Hz/pixel, and 176 sagittal slices covering the

whole brain acquired in 10 min. For each subject, the

Table 1 Characteristics of the world class gymnasts (WCGs) participating in this study

Champions Discipline Best medal records since 2007 Gender Age (years) Age of commencement

(years)

Years of training (years)

1 Pommel horse OC M 24 4.5 19.5

2 Still rings WC M 24 4.5 19.5

3 Parallel bars WC M 23 4.5 18.5

4 Horizontal bar, AA WC M 26 4.5 21.5

5 Vault OC F 21 4.5 16.5

6 Uneven bars, AA WC F 17 4.5 12.5

7 Uneven bars, AA OC F 18 3.5 14.5

8 Floor exercises OC F 17 4.5 12.5

9 Uneven bars, AA OC F 17 4.5 12.5

10 Parallel bars, AA WC M 21 4.5 16.5

11 Uneven bars, AA WC F 19 4.5 14.5

12 Pommel horse WC M 23 4.5 18.5

13 Balance beam, AA OC F 17 4.5 12.5

Mean ± std 20.5 ± 3.2 4.4 ± 0.3 16.1 ± 3.3

All of them have won individual or team gold medals in the Gymnastic World Championships or the Olympic Games since 2007. The second

column represents the dominant discipline for each of the champion subjects

OC Olympic Champions, WC World Champions or World-Cup Champions, AA all around
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R-fMRI data and 3D high-resolution brain structural images

were acquired in the same session. Foam pads and noise-

protection ear plugs were used to reduce head motion and

suppress ambient scanner noise.

Data preprocessing

The R-fMRI data were preprocessed using SPM8 (http://

www.fil.ion.ucl.ac.uk/spm) and DPARSFAv2.3 (http://

rfmri.org/DPARSF) (Chao-Gan and Yu-Feng 2010) in

MATLAB 2013a (the MathWorks Inc., Natick, MA, USA).

The following preprocessing steps were applied: (1) the

first 10 volumes (i.e., 20 s of data) were discarded for fMRI

signal to reach T1 equilibrium and to allow subjects to

adapt to the scan, leaving 230 volumes for further analysis.

(2) Slice-timing correction was applied to correct for

within-scan acquisition time difference between slices

using temporal sinc interpolation. (3) Head motion was

corrected using a six-parameter rigid-body transformation.

Our protocol called for exclusion of any subjects with

excessive head motion (translation[2 mm in any plane or

rotation [2� in any direction); however, no subjects

exceeded these criteria and none were excluded. (4) The

realigned R-fMRI images were spatially normalized to the

high-resolution T1-weighted brain structural images in the

standard MNI-152 space and were resampled to a voxel

size of 3 9 3 9 3 mm3. (5) The normalized images were

spatially smoothed using an isotropic Gaussian kernel of

6 mm full-width at half-maximum (FWHM).

Extraction of ICA-based intrinsic connectivity

networks

Group ICA was conducted to extract spatially independent

components using the GIFT software package (http://icatb.

sourceforge.net/, version 3.0a) (Egolf et al. 2004). First,

data reduction was conducted to decrease computational

complexity using a two-stage principal component analy-

sis. The preprocessed data for each subject were first

dimension-reduced temporally, and then, the reduced data

from all subjects were concatenated into a single data set,

referred to as the grouped data, along the temporal

dimension and passed through another dimension reduc-

tion. Second, ICA was performed to decompose the

grouped data into 30 independent components using an

Infomax algorithm (Bell and Sejnowski 1995). This step

was repeated 100 times using the ICASSO algorithm for

assessing the repeatability or stability of independent

components (Himberg et al. 2004). Finally, the indepen-

dent components for each subject were derived from a

GICA back reconstruction step and were converted into

z scores (Calhoun et al. 2001). This provided subject-

specific spatial maps and time courses which were further

used to make group-level random-effects inferences (one

sample t test). Thus, for each independent component, a

group-level t map was generated and was used to identify

the brain regions involved. To identify COIs, we adopted

‘‘Discriminability Index-based Component Identification

(DICI)’’, an automatic component identification method.

The DICI uses the ‘‘discriminability index (DI)’’ (DeCarlo

1998) to quantitatively evaluate the similarity of the spatial

distribution of each independent component to a predefined

spatial template for RSN identification (Huang et al. 2016;

Zhang et al. 2013). In the current study, we selected the

large-scale RSNs template provided by Shirer et al. (2012)

as the reference template. Specifically, the t maps for all

the group-level independent components were first con-

verted to binary maps (p\ 0.01, FDR corrected), and then,

the DICI value for each IC was calculated by comparison

with the RSNs template according to the following

equation:

DICI ¼ z ðhit rateÞ � z ðfalse alarm rateÞ; ð1Þ

where the hit rate or sensitivity is the number of correctly

identified voxels within a given independent component

versus the total number of voxels in the RSN template, and

false alarm rate (1 - specificity) is the number of mis-

takenly identified voxels within a given independent

component versus the number of voxels outside the RSN

template. DICI is calculated as the z transformed hit rate

minus the z transformed false alarm rate. The independent

component with the biggest DICI value was selected as the

COI corresponding to the RSN template.

Intra-network functional connectivity

For each of the selected RSNs, we estimated the difference

in intra-network functional connectivity between the

WCGs and the controls. Specifically, a voxelwise one

sample t test was conducted on the individual spatial

z maps derived from ICA across subjects for each group,

corrected for multiple comparisons (FDR corrected,

q value = 0.01). Then, a two-tailed two-sample t test was

performed to compare the group differences in the spatial

z maps between the WCGs and the controls. Of note, we

did not include voxels outside of the RSNs. To exclude

outside voxels, we generated an RSN mask by combining

the significant one sample t tests results from both groups

for each RSN (i.e., the union of the maps). To avoid any

spurious effects from white matter and ventricles on sub-

sequent statistical analysis, we only included voxels falling

in both the RSN masks and the gray matter mask (i.e., the

intersection of the RSN masks and the gray matter mask).

We entered age and gender as nuisance covariates

throughout the entire analysis to regress out any potential

covariate-related effects (Wang et al. 2013b). Group
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difference maps derived from two-sample t tests were

corrected for multiple comparisons using cluster-level

thresholding at an uncorrected voxelwise p\ 0.01 and a

minimum cluster size threshold (see Tables S2–S6 of

Supplementary materials) to maintain a corrected alpha

threshold at the cluster level of p\ 0.05. Cluster extents

were computed via 1000 Monte Carlo simulations imple-

mented in the 3dClustSim program (AFNI, https://afni.

nimh.nih.gov/). The same procedures were applied to each

of the selected RSNs.

Inter-network functional connectivity

A modified functional network connectivity method (Jafri

et al. 2008) was used to study group differences in inter-

network functional connectivity between the selected

RSNs. The analyses procedure is briefly described as fol-

lows. First, the time courses for each of the nine RSNs

were temporally band-pass filtered (0.01–0.1 Hz), followed

by linear detrending for each subject, to remove any

residual effect of low-frequency drift and high-frequency

physiological noise. Second, the interaction of each pair of

the selected RSNs was evaluated using Pearson’s correla-

tion coefficient (r) on the temporally filtered time courses.

The r value indicates the spontaneous coherence level

between RSNs. Third, the r value was transformed to

z value using Fisher’s r-to-z transformation to improve

normality for further random-effects between-group anal-

yses. Fourth, significance testing for the inter-network

functional connectivity within each group and differences

between the two groups was carried out using one sample

t tests (p\ 0.05, FDR corrected) and two-sample t tests

(p\ 0.05, FDR corrected), respectively.

Results

Components of interest

Figure 1 shows the nine COIs which were selected as the

RSNs from the 30 independent components (one sample

t test, p\ 0.01, FDR corrected). These RSNs included the

sensorimotor network (SMN), cerebellum (CB), basal

ganglia network (BG), primary and extrastriate visual

networks (PVN and EVN), anterior and posterior default

mode networks (aDMN and pDMN), and left and right

fronto-parietal networks (lFPN and rFPN). The location of

each RSN was consistent with several previous studies

(Beckmann et al. 2005; Calhoun et al. 2001; Damoiseaux

et al. 2006; Smith et al. 2009). Detailed information about

the regions in each RSN, such as cluster size, maximum

t values, and coordinates, is listed in Table S1 (Supple-

mentary Materials).

Intra-network functional connectivity

Figure 2 illustrates the significant between-group differ-

ences in intra-network functional connectivity. Compared

to controls, the WCGs had significantly decreased intra-

network functional connectivity in the left caudate (MNI:

-6, 7, 7) within the BG (Fig. 2a), the bilateral medial

superior frontal gyri (MNI: -6, 36, 57; BA 8) within the

aDMN (Fig. 2c), the left superior frontal gyrus (MNI: -18,

18, 57; BA 8) within the lFPN (Fig. 2d), and the right

middle frontal gyrus (MNI: 33, 60, 21; BA 10) within the

rFPN (Fig. 2e). In contrast, the WCGs showed significantly

increased intra-network functional connectivity in the right

middle occipital gyrus (MNI: 30, -84, 36; BA 19) within

the EVN (Fig. 2b) compared to the controls. No between-

group difference in intra-network functional connectivity

was found in other RSNs (i.e., SMN, CB, PVN, and

pDMN). Table 2 gives detailed information for the brain

areas with between-group difference in intra-network

functional connectivity.

Inter-network functional connectivity

Figure 3 and Table 3 illustrate the significant between-

group differences in inter-network functional connectivity

(two-sample t test, p\ 0.05, FDR corrected). We found

that compared to the controls, the WCGs had significantly

decreased correlation between SMN and BG (t = 3.967,

p = 0.0005), CB and PVN (t = 3.461, p = 0.0019), BG

and PVN (t = 3.397, p = 0.0023), and pDMN and rFPN

(t = 3.651, p = 0.0012).

Discussion

In this study, we examined gymnastic training-related

changes in functional connectivity: both intra-network

functional connectivity within the RSNs and inter-network

functional connectivity between the RSNs. For the intra-

network functional connectivity, we found that intrinsic

spontaneous activity was significantly reduced in four

RSNs (BG, aDMN, lFPN, and rFPN), and significantly

increased in one RSN (EVN) in the WCGs compared to the

non-athletes. For the inter-network functional connectivity,

the WCGs exhibited uniformly weaker interactions

between SMN and BG, CB, and PVN, BG and PVN, and

pDMN and rFPN compared to the non-athletes. The current

study revealed that long-term intensive gymnastic training

can cause reorganization in both the intrinsic brain activity

of the RSNs and the interaction between the RSNs.
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Intra-network functional connectivity

In the current study, the WCGs showed significantly

decreased intra-network functional connectivity within

parts of the BG, aDMN, lFPN, and rFPN compared to the

non-athletes (Fig. 2; Table 2). These results are in line with

several previous studies (Dayan and Cohen 2011; Hard-

wick et al. 2013; Hikosaka et al. 2002), finding training-

induced plasticity in the basal ganglia, cerebellum, and

fronto-parietal networks. The basal ganglia are involved in

movement executing, programming, and control (Alexan-

der and Crutcher 1990; Wu et al. 2004). The basal ganglia

interact with motor cortical areas including primary motor

cortex, premotor area, supplementary motor area (SMA),

pre-SMA, and cingulate motor area (Wu et al. 2004). These

connections are also thought to be involved in acquiring

and coordinating motor sequences (Nakano 2000).

Fig. 1 Spatial distribution of the selected nine resting-state networks

(RSNs) identified by Group ICA (p\ 0.01, FDR corrected). a Sen-

sorimotor network (SMN), b cerebellum (CB), c basal ganglia

network (BG), d primary visual network (PVN), e extrastriate visual

network (EVN), f anterior default mode network (aDMN), g posterior

default mode network (pDMN), h left fronto-parietal network (lFPN),

and i right fronto-parietal network (rFPN). Images are shown on the

three most informative orthogonal slices of the MNI standard space in

neurological convention. The color bar indicates z value in each RSN

cFig. 2 Brain regions with significant between-group difference in

intra-network functional connectivity. a–e Spatial maps and the

boxplots of the RSNs with significant intra-network functional

connectivity. The color bar indicates t value. BG basal ganglia

network, EVN extrastriate visual network, rMOG right middle

occipital gyrus, aDMN anterior default mode network, mSFG medial

superior frontal gyrus, lFPN left fronto-parietal network, lSFG left

superior frontal gyrus, rFPN right fronto-parietal network, rMFG

right middle frontal gyrus
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Furthermore, the basal ganglia support learning by inte-

grating motor selection with dopaminergic reinforcement.

Decreased activity in the basal ganglia associated with

extensive training and automaticity has been reported in

previous studies (Braunlich and Seger 2013; Walz et al.

2015; Wu et al. 2004), suggesting that the BG may par-

ticipate the function of shifting a learned performance to

the automatic stage. The aDMN is associated with inter-

nally oriented thoughts and protecting the execution of

long-term mental plans from distraction from immediate

environmental demands (Ashby et al. 2010; Burgess et al.

2007; Gusnard and Raichle 2001; Koechlin and Hyafil

2007). Accomplishing a series of precise actions is usually

the main goal of gymnasts, especially for WCGs. To

achieve it, gymnasts need to maintain as internally oriented

thoughts their goal and motor plans appropriate for the

routine being performed and avoid distraction. The brain

areas encompassed in the FPN have repeatedly been found

to be active during external attention tasks and during tasks

requiring cognitive control, especially for the coordination

and planning of complex motor functions (Cole et al. 2013;

Corbetta and Shulman 2002; Rizzolatti and Luppino 2001;

Zanto and Gazzaley 2013). Intensive motor skill-training-

induced reorganization of the FPN has been reported in

several previous studies (Di et al. 2012; Jäncke et al. 2009;

Taubert et al. 2011). Decreased activity within the FPN in

this study was consistent with our previous works detecting

training-induced structural plasticity (Wang et al. 2013a;

Huang et al. 2015) and functional plasticity (Wang et al.

2016) in brain regions responsible for motor attention in

the WCGs, which may suggest that long-term training may

allow gymnasts to perform target behaviors in a more

automatic fashion, reducing the need for attentional

resources, and leading to the decreased intrinsic brain

activity within the FPN.

Based on the results above, we speculate that the

decreased intra-network functional connectivity in the

WCGs may be due to an increase in their neural efficiency

after long-term intensive gymnastic training. Previous

studies have suggested that improvement in neural effi-

ciency is related to a reduction in neural activity in specific

brain regions as particular skills become more automated

and less controlled (Callan and Naito 2014; Debarnot et al.

2014). Specifically, long-term repetitive skill practice can

allow athletes to achieve very skilled and precise behaviors

with a degree of automation (Doyon and Benali 2005;

Wang et al. 2016; Wu et al. 2004). Such automatic

behaviors are associated with increased neural efficiency

and correspond to a lessening of neuronal resources

expenditure (Haslinger et al. 2004; Naito and Hirose 2014;

Nakata et al. 2010; Wu et al. 2004).

While a decreased brain response can be interpreted as a

sign of enhanced neural efficiency in regional resource

utilization, a number of studies have also reported reallo-

cation of neuronal resources based on enhanced activity in

some brain regions (Chein and Schneider 2005; Patel et al.

2013). In this study, we found that the intra-network

functional connectivity in the EVN was increased in the

WCGs compared to the non-athletes. Prior studies have

suggested that the EVN is engaged in executing hand

movements (Astafiev et al. 2004; Orlov et al. 2010), own-

body perception (Heydrich and Blanke 2013), haptically

exploring objects (Amedi et al. 2001), and responding to

tactile stimulation (Beauchamp et al. 2009). It may be a

Table 2 Brain clusters with significant between-group difference in intra-network functional connectivity between the WCGs and the controls

RSN contrast Cluster location L/R Location Cluster size (# voxels) t value MNI coordinate

x y z

IC #5: Basal ganglia network (BG)

WCGs\ controls Caudate L N/A 11 -3.04 -6 7 7

IC #12: Extrastriate visual network (EVN)

WCGs[ controls Middle occipital gyrus R BA 19 24 4.37 30 -84 36

IC #21: anterior default mode network (aDMN)

WCGs\ controls Medial superior frontal gyri L/R BA 8 63 -4.66 -6 36 57

IC #7: left fronto-parietal network (lFPN)

WCGs\ controls Superior frontal gyrus L BA 8 24 -4.54 -18 18 57

IC #9: right fronto-parietal network (rFPN)

WCGs\ controls Middle frontal gyrus R BA 10,46 19 -3.31 33 60 21

The results were corrected for multiple comparisons using cluster-level thresholding at an uncorrected voxelwise p\ 0.01 and a minimum

cluster size threshold to maintain a corrected cluster level p\ 0.05. The MNI (Montreal Neurological Institute) coordinates correspond to the

peak voxels of each cluster

IC # component number derived from the group ICA, BA Brodmann’s area, L (R) left (right) hemisphere, WCGs world class gymnasts
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convergence zone of action representation embodying

information across visual, haptic, proprioceptive, and

motor domains (Weiner and Grill-Spector 2013). Indeed,

gymnastics is a special sport requiring the individual to

accomplish a series of complex and elegant movements

with the aid of required equipment (e.g., horizontal/parallel

Fig. 3 Significant between-

group difference in inter-

network functional connectivity

between the RSNs.

a Significantly correlated RSNs

are connected by a solid black

line. b–e Boxplots for the

significant pairs as indicated by

a two-sample t test (p\ 0.05,

FDR corrected). SMN

sensorimotor network, CB

cerebellum, BG basal ganglia

network, PVN primary visual

network, EVN extrastriate visual

network, pDMN posterior

default mode network, aDMN

anterior default mode network,

lFPN left fronto-parietal

network, rFPN right fronto-

parietal network
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bars, pommel horse, balance beam, and still rings), which

involve complicated visuo–tactile–proprioceptive–motor

interactions. Moreover, previous studies also suggested that

attending to a particular location or to a particular object is

often accompanied by response enhancement in extrastriate

visual cortex as demonstrated in functional imaging and

event-related potential studies in human (Baldauf and

Desimone 2014; Kastner et al. 1998, 1999; Woldorff et al.

1997). Thus, we speculate that the stronger intrinsic func-

tional connectivity in the EVN may suggest a reallocation

of neuronal resources to actively promoting the integration

of information across visual, haptic, proprioceptive, and

motor domains, allowing gymnasts to make accurate

motion response in time during gymnastic performance.

However, future studies are needed that employ specific

tasks for further verification of our findings.

Inter-network functional connectivity

We found that inter-network functional connectivity

between SMN and BG, CB, and PVN, BG and PVN, and

pDMN and rFPN was decreased in the WCGs compared to

the non-athletes (Fig. 3; Table 3). Specifically, the func-

tional connectivity between SMN and BG, CB and PVN as

well as between BG and PVN was independent of the non-

athletes, but was negatively correlated with the WCGs.

While the neural mechanisms underpinning negative

functional connectivity are not fully known, negative cor-

relation in spontaneous neural activity may be related to

active decoupling of different functional systems, which

may prevent them from interacting with each other under

task conditions (Lewis et al. 2009). It may reflect an effi-

cient computational state that prevents two functional

systems from interfering with each other and facilitates

independent recruitment of each system. Deco et al. (2009)

and Chen et al. (2011) argued that negative functional

connectivity may result from phase accumulation along the

shortest path in brain functional networks.

These results corroborate and extend our previous study

indicating the complementary nature of the ICA approach

taken in the present paper with the topological analyses in

Wang et al. (2016). Our previous study examined func-

tional connectivity during R-fMRI using graph theoretical

techniques and found decreased functional connectivity

and global and local efficiency overall in the WCGs

compared with the controls. Both studies show decreased

functional connectivity between cerebellar networks and

visual cortex (CB and PVN in the present study, and

cerebellum and occipital lobe nodes broadly in Wang et al.

2016). Our previous study did not examine connectivity

with the basal ganglia, and therefore, the present results

extend our previous results by finding that reduction of

functional connectivity between basal ganglia and cortical

networks (SMN and PVN) is also characteristic of the

gymnasts. Basal ganglia, cerebellum, and motor cortex are

the primary neural regions critical for motor skill learning.

Previous studies (Doyon and Benali 2005; Hikosaka et al.

2002) have proposed that motor skill learning occurs

within two sets of loop circuits, cortex–basal ganglia, and

cortex–cerebellum. In this study, we found reductions in

functional connectivity not only between BG and motor

cortex (SMN), but also between both BG and CB and

visual processing regions (PVN). During gymnastic per-

formance, gymnasts need to attend either visual informa-

tion or self-generated motor actions within a specific motor

sequence. In this context, the negative correlations of

PVN–CB and PVN–BG may operate to prevent the visual

and motor systems from interfering with each other,

enabling the gymnasts to flexibly estimate the direction of

their movements, the speed of execution, and the identifi-

cation of their own and surrounding objects’ locations

during gymnastic performance.

The FPN and DMN are two of the most important

cognitive-related functional networks in human brain and

the functional interaction between the FPN and DMN has

been shown to control executive functions such as working

Table 3 Inter-network functional connectivity in the WCGs and the controls

RSN pair: correlation Controls WCGs Two-sample t test

r (mean ± SEM) t value p value r (mean ± SEM) t value p value t value p value

SMN-BG 0.159 ± 0.064 2.320 0.0373 -0.225 ± 0.073 -3.079 0.0096* 3.967 0.0005*

CB–PVN -0.003 ± 0.032 -0.677 0.510 -0.204 ± 0.048 -4.059 0.0016* 3.461 0.0019*

BG–PVN 0.060 ± 0.064 0.7948 0.441 -0.243 ± 0.063 -3.851 0.0023* 3.397 0.0023*

pDMN–rFPN 0.432 ± 0.032 8.551 1e-06* 0.239 ± 0.043 5.391 0.0002* 3.651 0.0012*

RSN resting-state network, r Pearson’s correlation coefficient, SEM standard error of the mean, SMN sensorimotor network, CB cerebellum, BG

basal ganglia network, PVN primary visual network, pDMN posterior default mode network, rFPN right fronto-parietal network, WCGs world

class gymnasts

* p value surviving the false discovery rate (FDR) correction (p\ 0.05)
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memory, attention, and cognitive flexibility (Bray et al.

2015; Chadick and Gazzaley 2011; Douw et al. 2016;

Fornito et al. 2012; Hearne et al. 2015). Previous studies

have found that FPN and DMN are typically anticorrelated

across a range of experimental paradigms, reflecting the

opposing cognitive functions of the two networks in

externally focused task-related activity versus internally

focused task-independent activity, respectively (Fox et al.

2005; Sridharan et al. 2008). We found that the WCGs

showed decreased functional interaction between the

pDMN and the rFPN. During the maintenance phase of

working memory process, subjects are focused on the

internal representation of the information and need to

actively avoid or minimize any external or internal dis-

traction (Piccoli et al. 2015). Therefore, one possible

explanation for such weaker interaction in WCGs might be

that for successful maintenance of information related to

gymnastics skills, it is necessary to keep the FPN func-

tionally separated from the DMN to keep maintenance

operations undisturbed by typical internal cognition pro-

cesses, such as self-awareness (Leech et al. 2011), mind

wandering (Mason et al. 2007), and autobiographic mem-

ory (Svoboda et al. 2006).

Limitations

Several limitations need to be acknowledged. First, due to

limitations in the number of world class gymnasts available

to participate in the study, a relatively small sample size

(total of 13 WCGs) was achieved, which may limit the

statistical power for detecting group differences. Due to the

small sample size, it was not possible to examine event-

specific subgroups of the WCGs, e.g., those specializing in

floor exercise versus those specializing in uneven parallel

bars. Although the gymnastic events that each gymnast

specialized in differed across the WCGs, their customary

training regimes were very similar, other than during

periods directly tied to preparation for competition. Sec-

ond, because this is a cross-sectional study and subjects

were not randomly assigned to conditions (e.g., gymnast or

control), we cannot rule out the possibility that maturation

and/or innate predispositions could have caused or con-

tributed to the differences between the WCGs and the non-

athletes. We also cannot rule out effects on brain plasticity

due to the possibility of lower level of academic training in

the WCGs, although all the subjects had at least high

school-level education at the time of this study. Third, there

are methodological limitations that are inherent to ICA.

The functional components identified by ICA depend on

the selection of model order, i.e., the number of meaningful

components predetermined to exist in the data set (Abou-

Elseoud et al. 2010; Kiviniemi et al. 2009). In this study,

we set model order to 30, consistent with many previous

studies (Jafri et al. 2008; Wang et al. 2015). As an

exploratory measure, we also tried other model order val-

ues, and tried using an automatic dimension estimation

algorithm using the minimum description length (MDL)

criteria (Li et al. 2007), but both these methods led to

suboptimal decomposition in which COI either merged

together commonly recognized RSNs or split RSNs into

multiple subcomponents. More accurate dimension esti-

mation methods are urgently needed to address this issue to

support reliable decomposition across studies. Fourth, we

used a correlational approach to measure the temporal

synchronization of R-fMRI time series, which does not

provide any information about causal relationships

between the RSNs. One could also use other dependency

measures, such as mutual information, Granger causality,

or structural equation modeling techniques in future work

to study multiple dependencies among networks in gym-

nasts versus non-athletes. Several studies have begun to

examine the directional connectivity patterns of the RSNs

(Jafri et al. 2008; Lewis et al. 2009). However, because of

low EPI sampling rate, low signal-to-noise ratio (SNR),

and non-neural contributions to temporal fluctuations in

connectivity, whether methods that estimate directionality

from R-fMRI data can meet criteria of reliability and sta-

tistical power is still under debate (Smith et al. 2011).

Recent advances in data acquisition protocols, such as

ultrahigh speed and ultrahigh field fMRI (Feinberg and

Yacoub 2012), may support reliable and accurate direc-

tionality estimation in the future. Fifth, different signifi-

cance thresholds and multiple comparison correction

methods were used for intra- and inter-network functional

connectivities. Although the multiple comparison correc-

tion method used for intra-network functional connectivity

in this study, i.e., uncorrected voxelwise p\ 0.01 together

with a cluster size threshold to maintain a corrected

threshold at the cluster level of 0.05 has been used for

many previous studies (Cha et al. 2016; Cropley et al.

2015; Felger et al. 2016; Kong et al. 2015; Rice et al.

2016), it is not as conservative as that of FDR correction.

Thus, we did not claim that the type-I (false positive) error

was strongly controlled for these multiple exploratory

analyses. In the future, larger sample size is preferred to

improve the statistical power for detecting group differ-

ences. Sixth, we did not monitor hormonal status of the

female subjects. Previous studies have found sex-hormonal

effects on the intrinsic functional connectivity of specific

cortical networks in women across the menstrual cycle

(Filippi et al. 2013; Hjelmervik et al. 2014). However, De

Bondt et al. (2015) performed a longitudinal fMRI study

and suggested that different hormonal stages of the female

menstrual cycle affect brain response in task fMRI, but

leave resting-state networks relatively unaffected. Finally,

we did not include behavioral measures (e.g., motor skills,
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muscle strength, etc.), which may limit the explanatory

power of our results. Further studies quantitatively evalu-

ating gymnastic skills should be conducted to draw more

definitive general conclusions about how training and

expertise related to functional connectivity within and

between RSNs.

In conclusion, this study revealed that long-term inten-

sive gymnastic training is associated with reorganization of

intrinsic brain functional connectivity both within RSNs

and between RSNs. The generally weaker intra- and inter-

network functional connectivities of WCGs imply that

higher degrees of skill and training may be associated with

less, rather than more, functional connectivity within neu-

ral networks. Although there are a number of mechanisms

that could underlay these patterns of results, one possibility

is that gymnasts may have greater efficiency within neural

regions related to highly skilled and precise behaviors,

which may result in lower resting-state activity and func-

tional connectivity.

Acknowledgements This work was supported by funding from the

National Natural Science Foundation of China (Grant numbers:

81371535, 81428013, 81471654, and 81271548).

Compliance with ethical standards

Conflict of interest The authors declare that they have no competing

financial interests.

References

Abou-Elseoud A, Starck T, Remes J, Nikkinen J, Tervonen O,

Kiviniemi V (2010) The effect of model order selection in group

PICA. Hum Brain Mapp 31:1207–1216

Alexander GE, Crutcher MD (1990) Functional architecture of basal

ganglia circuits: neural substrates of parallel processing. Trends

Neurosci 13:266–271

Amedi A, Malach R, Hendler T, Peled S, Zohary E (2001) Visuo-

haptic object-related activation in the ventral visual pathway.

Nat Neurosci 4:324–330

Ashby FG, Turner BO, Horvitz JC (2010) Cortical and basal ganglia

contributions to habit learning and automaticity. Trends Cogn

Sci 14:208–215

Astafiev SV, Stanley CM, Shulman GL, Corbetta M (2004) Extras-

triate body area in human occipital cortex responds to the

performance of motor actions. Nat Neurosci 7:542–548

Baldauf D, Desimone R (2014) Neural mechanisms of object-based

attention. Science 344:424–427

Beauchamp MS, LaConte S, Yasar N (2009) Distributed representa-

tion of single touches in somatosensory and visual cortex. Hum

Brain Mapp 30:3163–3171

Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investiga-

tions into resting-state connectivity using independent compo-

nent analysis. Philos Trans R Soc Lond B Biol Sci

360:1001–1013

Bell AJ, Sejnowski TJ (1995) An information-maximization approach

to blind separation and blind deconvolution. Neural Comput

7:1129–1159

Bernardi G, Ricciardi E, Sani L, Gaglianese A, Papasogli A,

Ceccarelli R, Franzoni F, Galetta F, Santoro G, Goebel R,

Pietrini P (2013) How skill expertise shapes the brain functional

architecture: an fMRI study of visuo-spatial and motor process-

ing in professional racing-car and naive drivers. PLoS One

8(10):e77764

Braunlich K, Seger C (2013) The basal ganglia. Wiley Interdiscip Rev

Cogn Sci 4:135–148

Bray S, Arnold AEGF, Levy RM, Iaria G (2015) Spatial and temporal

functional connectivity changes between resting and attentive

states. Hum Brain Mapp 36:549–565

Burgess PW, Dumontheil I, Gilbert SJ (2007) The gateway hypothesis

of rostral prefrontal cortex (area 10) function. Trends Cogn Sci

11:290–298

Calhoun V, Adali T, Pearlson G, Pekar J (2001) A method for making

group inferences from functional MRI data using independent

component analysis. Hum Brain Mapp 14:140–151

Callan DE, Naito E (2014) Neural processes distinguishing elite from

expert and novice athletes. Cogn Behav Neurol 27:183–188

Calvert GA, Thesen T (2004) Multisensory integration: methodolog-

ical approaches and emerging principles in the human brain.

J Physiol Paris 98:191–205

Calvo-Merino B, Glaser DE, Grezes J, Passingham RE, Haggard P

(2005) Action observation and acquired motor skills: an FMRI

study with expert dancers. Cereb Cortex 15:1243–1249

Cha J, Ide JS, Bowman FD, Simpson HB, Posner J, Steinglass JE

(2016) Abnormal reward circuitry in anorexia nervosa: a

longitudinal, multimodal MRI study. Hum Brain Mapp

37:3835–3846

Chadick JZ, Gazzaley A (2011) Differential coupling of visual cortex

with default or frontal-parietal network based on goals. Nat

Neurosci 14:830–832

Chang Y et al (2011) Neural correlates of motor imagery for elite

archers. NMR Biomed 24:366–372

Chao-Gan Y, Yu-Feng Z (2010) DPARSF: a MATLAB toolbox for

‘‘pipeline’’ data analysis of resting-state fMRI. Front Syst

Neurosci 4:13

Chein JM, Schneider W (2005) Neuroimaging studies of practice-

related change: fMRI and meta-analytic evidence of a domain-

general control network for learning. Cogn Brain Res

25:607–623

Chen G, Chen G, Xie C, Li S-J (2011) Negative functional

connectivity and its dependence on the shortest path length of

positive network in the resting-state human brain. Brain Connect

1:195–206

Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver

TS (2013) Multi-task connectivity reveals flexible hubs for

adaptive task control. Nat Neurosci 16:1348–1355

Corbetta M, Shulman GL (2002) Control of goal-directed and

stimulus-driven attention in the brain. Nat Rev Neurosci

3:201–215

Cropley VL, Scarr E, Fornito A, Klauser P, Bousman CA, Scott R,

Cairns MJ, Tooney PA, Pantelis C, Dean B (2015) The effect of

a muscarinic receptor 1 gene variant on grey matter volume in

schizophrenia. Psychiatry Res Neuroimaging 234:182–187

Damoiseaux J, Rombouts S, Barkhof F, Scheltens P, Stam C, Smith

SM, Beckmann C (2006) Consistent resting-state networks across

healthy subjects. Proc Natl Acad Sci USA 103:13848–13853

Dayan E, Cohen LG (2011) Neuroplasticity subserving motor skill

learning. Neuron 72:443–454

De Bondt T, Smeets D, Pullens P, Van Hecke W, Jacquemyn Y,

Parizel PM (2015) Stability of resting state networks in the

female brain during hormonal changes and their relation to

premenstrual symptoms. Brain Res 1624:275–285

De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM

(2006) fMRI resting state networks define distinct modes of

Brain Struct Funct

123



long-distance interactions in the human brain. Neuroimage

29:1359–1367

Debarnot U, Sperduti M, Di Rienzo F, Guillot A (2014) Experts

bodies, experts minds: how physical and mental training shape

the brain. Front Hum Neurosci 8:280

DeCarlo LT (1998) Signal detection theory and generalized linear

models. Psychol Methods 3:186

Deco G, Jirsa V, McIntosh AR, Sporns O, Kötter R (2009) Key role of

coupling, delay, and noise in resting brain fluctuations. Proc Natl

Acad Sci USA 106:10302–10307

Di X, Zhu S, Jin H, Wang P, Ye Z, Zhou K, Zhuo Y, Rao H (2012)

Altered resting brain function and structure in professional

badminton players. Brain Connect 2:225–233

Douw L, Wakeman DG, Tanaka N, Liu HS, Stufflebeam SM (2016)

State-dependent variability of dynamic functional connectivity

between frontoparietal and default networks relates to cognitive

flexibility. Neuroscience 339:12–21

Doyon J, Benali H (2005) Reorganization and plasticity in the adult

brain during learning of motor skills. Curr Opin Neurobiol

15:161–167

Doyon J, Bellec P, Amsel R, Penhune V, Monchi O, Carrier J,

Lehéricy S, Benali H (2009) Contributions of the basal ganglia

and functionally related brain structures to motor learning.

Behav Brain Res 199:61–75

Egolf EA, Calhoun VD, Kiehl KA (2004) Group ICA of fMRI

Toolbox (GIFT). Biol Psychiatry 55:842–849

Feinberg DA, Yacoub E (2012) The rapid development of high speed,

resolution and precision in fMRI. Neuroimage 62:720–725

Felger JC, Li Z, Haroon E, Woolwine BJ, Jung MY, Hu X, Miller AH

(2016) Inflammation is associated with decreased functional

connectivity within corticostriatal reward circuitry in depression.

Mol Psychiatry 21:1358–1365

Filippi M, Valsasina P, Misci P, Falini A, Comi G, Rocca MA (2013)

The organization of intrinsic brain activity differs between

genders: a resting-state fMRI study in a large cohort of young

healthy subjects. Hum Brain Mapp 34:1330–1343

Fornito A, Zalesky A, Bullmore ET (2010) Network scaling effects in

graph analytic studies of human resting-state FMRI data. Front

Syst Neurosci 4:22

Fornito A, Harrison BJ, Zalesky A, Simons JS (2012) Competitive

and cooperative dynamics of large-scale brain functional

networks supporting recollection. Proc Natl Acad Sci USA

109:12788–12793

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC,

Raichle ME (2005) The human brain is intrinsically organized

into dynamic, anticorrelated functional networks. Proc Natl Acad

Sci USA 102:9673–9678

Giacosa C, Karpati FJ, Foster NEV, Penhune VB, Hyde KL (2016)

Dance and music training have different effects on white matter

diffusivity in sensorimotor pathways. Neuroimage 135:273–286

Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna

H, Reiss AL, Schatzberg AF (2007) Resting-state functional

connectivity in major depression: abnormally increased contri-

butions from subgenual cingulate cortex and thalamus. Biol

Psychiatry 62:429–437

Gusnard DA, Raichle ME (2001) Searching for a baseline: functional

imaging and the resting human brain. Nat Rev Neurosci

2:685–694

Hanggi J, Koeneke S, Bezzola L, Jancke L (2010) Structural

neuroplasticity in the sensorimotor network of professional

female ballet dancers. Hum Brain Mapp 31:1196–1206

Hardwick RM, Rottschy C, Miall RC, Eickhoff SB (2013) A

quantitative meta-analysis and review of motor learning in the

human brain. Neuroimage 67:283–297

Haslinger B, Erhard P, Altenmüller E, Hennenlotter A, Schwaiger M,
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