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Abstract

In this paper, we consider the Cauchy problem to the heat conductive compress-
ible Navier–Stokes equations in the presence a of vacuum and with a vacuum far
field.Globalwell-posedness of strong solutions is established under the assumption,
among some other regularity and compatibility conditions: that the scaling invari-
ant quantity ‖ρ0‖∞(‖ρ0‖3 + ‖ρ0‖2∞‖√ρ0u0‖22)(‖∇u0‖22 + ‖ρ0‖∞‖√ρ0E0‖22) is
sufficiently small, with the smallness depending only on the parameters R, γ, μ, λ,

and κ in the system. Notably, the smallness assumption is imposed on the above
scaling invariant quantity exclusively, and it is independent of any norms of the
initial data, which is different from the existing papers. The total mass can be either
finite or infinite. An equation for the density-more precisely for its cubic, derived
from combining the continuity and momentum equations-is employed to get the
L∞

t (L3) type estimate of the density.

1. Introduction

In this paper, we consider the following heat conductive compressible Navier–
Stokes equations for the ideal gas:

∂tρ + div (ρu) = 0, (1.1)

ρ(∂t u + (u · ∇)u) − μ�u − (μ + λ)∇div u + ∇ p = 0, (1.2)

cvρ(∂tθ + u · ∇θ) + pdiv u − κ�θ = Q(∇u), (1.3)

in R
3 × (0,∞), where the unknowns ρ � 0, u ∈ R

3, and θ � 0, respectively,
represent the density, velocity, and absolute temperature. Here p = Rρθ , with
positive constant R, is the pressure, cv > 0 is a constant, constants μ and λ are
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the bulk and shear viscous coefficients, respectively, positive constant κ is the heat
conductive coefficient, and

Q(∇u) = μ

2
|∇u + (∇u)t |2 + λ(div u)2,

(∇u)t is the transpose of ∇u. The viscous coefficients μ and λ satisfy the physical
constraints

μ > 0, 2μ + 3λ � 0.

The additional assumption 2μ > λ will also be used in this paper.
Due to their fundamental importance in fluid dynamics, extensive studies have

been carried out and many developments have been achieved on the compress-
ible Navier–Stokes equations over the last seventy years. Mathematical studies on
the compressible Navier–Stokes equations started with the uniqueness results by
Graffi [15] in 1953 for barotropic fluids and by Serrin [43] in 1959 for gen-
eral fluids, and include the local existence result by Nash [41] in 1962 for the
Cauchy problem. Since that time, comprehensive mathematical theories have been
established for the compressible Navier–Stokes equations.

Themathematical theory for the compressible Navier–Stokes equations in 1D is
satisfactory and, in particular, the corresponding globalwell-posedness for arbitrary
large initial data and the initial density can either be uniformly positive or only
nonnegative (that is, it can vanish on some subset of the domain). For the case in
which the initial density is uniformly positive, the global well-posedness of strong
solutions with large initial data was first proved in [23] for the isentropic case,
and later in [25] for the general case, and the asymptotic behavior of the solutions
was recently proved in [29], (see also [2,22,24,49,50]) for some related results.
For the case in which the initial density contains a vacuum, the corresponding
global well-posedness of strong solutions was recently proved by the author and
his collaborator; see [27,28,31,32].

Comparedwith the one dimensional case, themathematical theory for themulti-
dimensional case is far from satisfactory and, in particular, some basic problems
such as the global existence of strong solutions and the uniqueness of the weak
solution are still unknown. In the case that the initial density is uniformly positive,
the local well-posednesswas proved a long time ago, (see [20,36,41,44,45,47] and,
in particular, that the inflow and outflowwere allowed in [36]), however, the general
global well-posedness is still unknown. Global well-posedness of strong solutions
with small initial data was first proved in [37–40], and later further developed in
many papers; see, e.g., [3,4,8–11,16,26,42,46]. In the case that the initial density
allows a vacuum, the global existence of weak solutions was first proved in [34,35]
(see [1,12–14,21] for further developments), but the uniqueness is still an open
problem. The local well-posedness of strong solutions was proved in [5–7], and the
global well-posedness with small initial data but allowing large oscillations, was
proved in [19] (see [18,30,48] for further developments).

The aim of this paper is to establish the global existence of strong solutions
to the Cauchy problem of (1.1)–(1.3), under some smallness assumptions on the
initial data, in the presence of initial vacuum, and with a vacuum far field. The
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main novelty of this paper is that the smallness assumption is imposed exclusively
on some quantities that are scaling invariant with respect to the following scaling
transform:

(ρ0λ(x), u0λ(x), θ0λ(x)) = (ρ0(λx), λu0(λx), λ2θ0(λx)), ∀λ �= 0. (1.4)

This scaling transform on the initial data inheres in the following natural scaling
invariant property of system (1.1)–(1.3):

ρλ(x, t) = ρ(λx, λ2t), uλ(x, t) = λu(λx, λ2t), θλ(x, t) = λ2θ(λx, λ2t);
that is, if (ρ, u, θ) is a solution with initial data (ρ0, u0, θ0), then (ρλ, uλ, θλ) is
also a solution for any nonzero λ, but with initial data (ρ0λ, u0λ, θ0λ).

The reason for us to impose the smallness assumptions on scaling invariant
quantities, rather than on those that have not, is the following fact: if assuming that
M is a functional such that

M (ρ0λ, u0λ, θ0λ) = λ	(ρ0, u0, θ0), ∀λ �= 0, for some constant 	 �= 0,

and that the global well-posedness holds, for any initial data (ρ0, u0, θ0) satisfying
M (ρ0, u0, θ0) � ε0, and for some ε0 > 0 depending only on the parameters of the
system, then, by suitably choosing the scaling parameter λ, one can show that the
system is actually globally well-posed for arbitrary large initial data. This global
well-posedness for arbitrary large initial data is, however, far from what we have
already known.

Before stating the main results, we first clarify some necessary notations used
throughout this paper. For 1 � q � ∞ and positive integer m, we use Lq =
Lq(R3) and W m,q = W m,q(R3) to denote the standard Lebesgue and Sobolev
spaces, respectively, and in the case that q = 2, we use Hm to replace W m,2. For
simplicity, we also use notations Lq and Hm to denote the N product spaces (Lq)N

and (Hm)N , respectively. We always use ‖u‖q to denote the Lq norm of u. For
shortening the expressions, we sometimes use ‖( f1, f2, . . . , fn)‖X to denote the

norm
∑N

i=1 ‖ fi‖X or its equivalent,
(∑N

i=1 ‖ fi‖2X
) 1

2
. We denote

Dk,r =
{

u ∈ L1
loc(R

3)

∣
∣
∣ ‖∇ku‖r < ∞

}
, Dk = Dk,2,

D1
0 =

{
u ∈ L6(R3)

∣
∣
∣ ‖∇u‖2 < ∞

}
.

For simplicity of notations, we adopt

∫

f dx =
∫

R3
f dx .

Definition 1.1. Let T be a positive time and assume that

ρ0, θ0 � 0, ρ0 ∈ H1 ∩ W 1,q , (u0, θ0) ∈ D1
0 ∩ D2.
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A triple (ρ, u, θ) is called a strong solution to system (1.1)–(1.3), on R3 × (0, T ),
with initial data (ρ0, u0, θ0), if it enjoys the regularities

ρ ∈ C([0, T ]; H1 ∩ W 1,q), (u, θ) ∈ C([0, T ]; D1
0 ∩ D2) ∩ L2(0, T ; D2,q),

ρt ∈C([0, T ]; L2∩Lq), (ut , θt )∈ L2(0, T ; D1
0), (

√
ρut ,

√
ρθt )∈ L∞

loc(0, T ; L2),

satisfies (1.1)–(1.3) a.e. in R3 × (0, T ), and fulfills the initial condition

(ρ, u, θ)|t=0 = (ρ0, u0, θ0).

Remark 1.1. Note that the solutions considered in this paper have the regularities
(u, θ) ∈ C([0, T ]; D1

0 ∩ D2), and the initial values of ρ, u, and θ are well-defined.
Therefore, one can impose the initial conditions on u and θ , even if the initial
vacuum is involved.

Definition 1.2. Assume that (ρ0, u0, θ0) satisfies the conditions in Definition 1.1.
A triple (ρ, u, θ) is called a global strong solution to system (1.1)–(1.3), with initial
data (ρ0, u0, θ0), if it is a solution to the same system with the same initial data on
R
3 × (0, T ) for any positive time T .

We are now ready to state the main result of this paper.

Theorem 1.1. Assume 2μ > λ and let q ∈ (3, 6] be a fixed constant. Assume that
ρ0, u0, and θ0 satisfy

ρ0, θ0 � 0, ρ � ρ̄, ρ0 ∈ H1 ∩ W 1,q ,
√

ρ0θ0 ∈ L2, (u0, θ0) ∈ D1
0 ∩ D2,

−μ�u0 − (μ + λ)∇div u0 + ∇ p0 = √
ρ0g1, κ�θ0 + Q(∇u0) = √

ρ0g2

for a positive constant ρ̄ and some (g1, g2) ∈ L2, where p0 = Rρ0θ0.
Then, there is a positive number ε0 depending only on R, γ, μ, λ, and κ , such

that system (1.1)–(1.3), with initial data (ρ0, u0, θ0), has a unique global strong
solution provided that

N0 := ρ̄(‖ρ0‖3 + ρ̄2‖√ρ0u0‖22)(‖∇u0‖22 + ρ̄‖√ρ0E0‖22) � ε0.

Remark 1.2. (i) One can easily check that the quantityN0 in Theorem 1.1 is scal-
ing invariant with respect to the scaling transform (1.4). Therefore, Theorem 1.1
provides the global well-posedness of system (1.1)–(1.3) under some smallness
assumption on a scaling invariant quantity, in the case that the vacuum is al-
lowed. We were not aware of this kind of result before for the compressible
Navier–Stokes equations, even for the isentropic case.

(ii) Global well-posedness of strong solutions to the Cauchy problem of system
(1.1)–(1.3) in the presence of vacuum has been proved in [18,48], with a
non-vacuum far field and a vacuum far field, respectively. The assumptions
concerning the smallness in [18,48] are imposed as

C0 =
∫ (

ρ0

2
|u0|2 + R(ρ0 log ρ0 − ρ0 + 1) + R

γ − 1
ρ0(θ0 − log θ0 + 1)

)

dx

� ε0 = ε0(‖ρ0‖∞, ‖θ0‖∞, ‖∇u0‖2, R, γ, μ, λ, κ)
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and
∫

ρ0 dx � ε0 = ε0(‖ρ0‖∞, ‖√ρ0θ0‖2, ‖∇u0‖2, R, γ, μ, λ, κ),

respectively. Since the explicit dependence of ε0 on ‖ρ0‖∞, ‖θ0‖∞, ‖√ρ0θ0‖2
and ‖∇u0‖2 are not derived in [18,48], the scaling invariant quantities, on
which the smallness guarantees the global well-posedness, cannot be identified
there.

(iii) Compared with the global well-posedness result in [48], our result, Theo-
rem 1.1, allows the initial mass to be infinite. This will be crucial for obtaining
the global entropy-bounded solutions in our forthcoming paper [33].

Compared with the isentropic case considered in [19], the additional difficulty
for studying the globalwell-posedness of the full compressibleNavier–Stokes equa-
tions is that the following basic energy inequality does not provide any dissipation
estimates:

∫

ρ

( |u|2
2

+ cvθ

)

dx =
∫

ρ0

( |u0|2
2

+ cvθ0

)

dx .

Note that the dissipation estimates of the form
∫ T
0 ‖∇u‖22 � C , which can be

guaranteed by the basic energy estimates for the isentropic case, is crucial in the
arguments of [19]. To overcome this difficulty, some types of dissipation estimates
were recovered in [18,48], in the cases with a non-vacuum and a vacuum far field,
respectively, by using the entropy inequality and the conservation of mass. Noticing
that the entropy inequality (a crucial tool in [18]) holds only in the case of having a
non-vacuum far field and the finiteness of mass is crucial in [48], and recalling that
we consider the case with a vacuum far field and allowing possible infinite mass,
the arguments in [18,48] do not apply to the current paper.

A crucial ingredient for obtaining the dissipation estimates in this paper is the
following equation for ρ3 (see the proof in Proposition 2.4):

2μ + λ

2
(∂tρ

3 + div (uρ3)) + ρ3 p + ρ3�−1div (ρu)t + ρ3�−1div div (ρu ⊗ u)

= 0,

which is derived in the same spirit of (5.42) in Chapter 5 of [35]. Note that the
temperature equation plays no role in deriving the above equation. This equation
is employed to get the L∞(0, T ; L3) estimate of ρ. Compared with the continuity
equation, the main advantage of the above is that it enables us to get the time
independent L∞(0, T ; L3) estimate of ρ without appealing to the L1

t (L∞) of div u.
In fact, the above equation leads to the inequality

sup
0�t�T

‖ρ‖33 +
∫ T

0

∫

ρ3 p dx dt � C sup
0�t�T

(‖ρ‖
2
3∞‖√ρu‖

1
3
2 ‖√ρ|u|2‖

1
3
2 ‖ρ‖33)

+C
∫ T

0
‖ρ‖2∞‖ρ‖23‖∇u‖22 dt + C‖ρ0‖33;

(1.5)
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see Proposition 2.4. A key point of the above estimate is that the time integral
∫ T
0 ‖ρ‖2∞‖ρ‖23‖∇u‖22 dt is quadratic with respect to ∇u and, thus, can be expected
to be time independent, due to the presence of viscosity in the system. Moreover,
the above inequality also provides a time independent estimate for

∫ T
0

∫
ρ3 p dx dt ,

which, though not used in this paper, is expected to be will useful for studying the
large time behavior of global solutions. Note that if using the density equation, i.e.,
(1.1), to perform the same type of estimate, then the corresponding inequality reads
as

sup
0�t�T

‖ρ‖33 � ‖ρ0‖33 + 2
∫ T

0

∫

|divu|ρ3 dx dt,

which requires some decay property of div u for getting the desired estimate for
‖ρ‖3.

Inequality (1.5) motivates us to impose a smallness condition on the quantity
‖ρ0‖2∞‖√ρ0u0‖2‖√ρ0|u0|2‖2, which is one of the terms ofN0 in Theorem 1.1, to
get the bound of ‖ρ‖3. Inequality (1.5) also suggests that we should carry out the
estimates on ‖√ρu‖L∞(0,T ;L2), ‖√ρE‖L∞(0,T ;L2) and ‖ρ‖L∞(0,T ;L∞) which are
performed in Propositions 2.2, 2.3, and 2.6, respectively. Higher order estimates are
required in the estimate for ‖ρ‖L∞(0,T ;L∞), and they are carried out with the help
of ω = ∇ × u and G = (2μ+λ)div u − p; see Proposition 2.5. Combining Propo-
sitions 2.2–2.6 and by continuity arguments, we are able to get a time-independent
estimate on a scaling invariant quantity NT (its expression is given in Proposition
2.7) as long as it is small initially.With this a priori estimate forNT , one can further
get the time-independent a priori estimates of ‖∇u‖L∞(0,T ;L2) and ‖ρ‖L∞(0,T ;L∞),
based on which the blow-up criteria apply, and thus the global well-posedness
follows.

Throughout this paper, we use C to denote a general positive constant which
may vary from line to line. A � B means A � C B for some positive constant C .

2. A Priori Estimates

This section is devoted to deriving some a priori estimates for the solutions
to the Cauchy problem of system (1.1)–(1.3). The local well-posedness of strong
solutions is guaranteed by the following proposition, which is proved in [7]:

Proposition 2.1. Under the conditions in Theorem 1.1, system (1.1)–(1.3) has a
unique local strong solution with initial data (ρ0, u0, θ0).

In the rest of this section, we always assume that (ρ, u, θ) is a strong solution
to system (1.1)–(1.3) on R

3 × (0, T ) for some positive time T , with initial data
(ρ0, u0, θ0). By definition, (ρ, u, θ) has the regularities stated in Definition 1.1.

2.1. Energy Inequalities

Proposition 2.2. The following estimate holds:
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sup
0�t�T

‖√ρu‖22 +
∫ T

0
‖∇u‖22 dt � C‖√ρ0u0‖22 + C

∫ T

0
‖ρ‖23‖∇θ‖22 dt,

for a positive constant C depending only on R, γ, μ, λ, and κ .

Proof. Multiplying (1.2) by u and integrating the result over R3, and noticing that
μ + λ > 0, it follows from integration by parts and the Cauchy inequality that

d

dt
‖√ρu‖22 + μ‖∇u‖22 � R‖ρ‖3‖θ‖6‖divu‖2 � C‖ρ‖3‖∇θ‖2‖div u‖2

� (μ + λ)‖div u‖22 + C‖ρ‖23‖∇θ‖22,
from which the conclusion follows by integrating in t . ��
Proposition 2.3. Assume that 2μ > λ. Then, the following estimate holds:

sup
0�t�T

‖√ρE‖22 +
∫ T

0
(‖∇θ‖22 + ‖|u|∇u‖22) dt

� C‖√ρ0E0‖22 + C
∫ T

0
‖ρ‖∞‖ρ‖

1
2
3 ‖√ρθ‖2‖(∇θ, |u|∇u)‖22 dt,

for a positive constant C depending only on R, γ, μ, λ,andκ , where E = |u|2
2 +cvθ .

Proof. One can verify that

ρ(∂t E + u · ∇E) + div (up) − κ�θ = div (S · u), (2.1)

where S = μ(∇u + (∇u)t ) + λdiv uI . Multiplying (2.1) by E and integrating the
result over R3, it follows from integration by parts that

1

2

d

dt
‖√ρE‖22 + κcv‖∇θ‖22

=
∫ [

−κ

2
∇θ · ∇|u|2 + (up − S · u) ·

(

cv∇θ + ∇|u|2
2

)]

dx

� cvκ

2
‖∇θ‖22 + C‖|u|∇u‖22 + C

∫

ρ2θ2|u|2 dx,

which yields

d

dt
‖√ρE‖22 + κcv‖∇θ‖22 � ‖|u|∇u‖22 +

∫

ρ2θ2|u|2 dx . (2.2)

Multiplying (1.2) by |u|2u, it follows from integration by parts that

1

4

d

dt
‖√ρ|u|2‖22 −

∫

(μ�u + (μ + λ)∇div u) · |u|2u dx

= −
∫

pdiv (|u|2u) dx

�
(

μ − λ

2

) ∫

|u|2|∇u|2 dx + C
∫

ρ2θ2|u|2 dx .
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Some elementary calculations show that

−
∫

(μ�u + (μ + λ)∇div u) · |u|2u dx � (2μ − λ)

∫

|u|2|∇u|2 dx .

Combining the above two inequalities leads to

d

dt
‖√ρ|u|2‖22 + 2(2μ − λ)‖|u|∇u‖22 �

∫

ρ2θ2|u|2 dx . (2.3)

Multiplying (2.3) by a sufficiently large number K depending only on R, γ, μ, λ

and κ and summing the result with (2.2), one obtains

d

dt
(‖√ρE‖22 + K‖√ρ|u|2‖22) + κcv‖∇θ‖22 + (2μ − λ)K‖|u|∇u‖22

�
∫

ρ2θ2|u|2 dx,

from which, noticing that the Hölder and Sobolev inequalities yield
∫

ρ2θ2|u|2 dx � ‖√ρθ‖2‖θ‖6‖|u|2‖6‖ρ‖
3
2
9

� ‖√ρθ‖2‖∇θ‖2‖∇|u|2‖2‖ρ‖∞‖ρ‖
1
2
3 , (2.4)

one obtains

d

dt
(‖√ρE‖22 + K‖√ρ|u|2‖22) + κcv‖∇θ‖22 + (2μ − λ)K‖|u|∇u‖22

� ‖ρ‖∞‖ρ‖
1
2
3 ‖√ρθ‖2‖∇θ‖2‖∇|u|2‖2.

Integrating this in t and using the Cauchy inequality, the conclusion follows. ��
Proposition 2.4. The following estimate holds:

sup
0�t�T

‖ρ‖33 +
∫ T

0

∫

ρ3 p dx dt � C sup
0�t�T

(‖ρ‖
2
3∞‖√ρu‖

1
3
2 ‖√ρ|u|2‖

1
3
2 ‖ρ‖33)

+C
∫ T

0
‖ρ‖2∞‖ρ‖23‖∇u‖22 dt + C‖ρ0‖33,

for a positive constant C depending only on R, γ, μ, λ, and κ .

Proof. Applying the operator �−1div to (1.2) yields

�−1div (ρu)t + �−1div div (ρu ⊗ u) − (2μ + λ)div u + p = 0. (2.5)

Multiplying the above equation by ρ3 and noticing that

∂tρ
3 + div (uρ3) + 2div uρ3 = 0,
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one obtains

2μ + λ

2
(∂tρ

3 + div (uρ3)) + ρ3 p + ρ3�−1div (ρu)t + ρ3�−1div div (ρu ⊗ u)

= 0. (2.6)

Integrating the above equation over R3 yields

2μ + λ

2

d

dt
‖ρ‖33 +

∫

ρ3 p dx +
∫

ρ3�−1div (ρu)t dx

= −
∫

ρ3�−1div div (ρu ⊗ u) dx . (2.7)

Using (1.1), one deduces
∫

ρ3�−1div (ρu)t dx

= d

dt

∫

ρ3�−1div (ρu) dx +
∫

[div (ρ3u) + 2div uρ3]�−1div (ρu) dx

=
∫

[2div uρ3�−1div (ρu) − ρ3u · ∇�−1div (ρu)] dx

+ d

dt

∫

ρ3�−1div (ρu) dx .

Therefore, it follows from (2.7) that

d

dt

∫ (
2μ + λ

2
+ �−1div (ρu)

)

ρ3 dx +
∫

ρ3 p dx

=
∫ [

ρ3(u · ∇�−1div (ρu)−�−1divdiv (ρu ⊗ u))−2div uρ3�−1div (ρu)
]
dx .

(2.8)

Noticing that

‖∇�−1div (ρu)‖2 � ‖ρu‖2 � ‖ρ‖3‖u‖6,
‖�−1div div (ρu ⊗ u)‖ 3

2
� ‖ρ|u|2‖ 3

2
� ‖ρ‖3‖u‖26,

it follows from the Hölder and Sobolev embedding inequality that
∫

ρ3(u · ∇�−1div (ρu) − �−1divdiv (ρu ⊗ u)) dx

� ‖ρ‖39‖ρ‖3‖u‖26 � ‖ρ‖2∞‖ρ‖23‖∇u‖22. (2.9)

By the Sobolev embedding and elliptic estimates we have that

‖�−1div (ρu)‖6 � ‖∇�−1div (ρu)‖2 � ‖ρu‖2
� ‖ρ‖3‖u‖6 � ‖ρ‖3‖∇u‖2,
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and, thus, the Hölder inequality yields
∣
∣
∣
∣

∫

div uρ3�−1div (ρu) dx

∣
∣
∣
∣ � ‖divu‖2‖ρ‖39‖ρ‖3‖∇u‖2 � ‖ρ‖2∞‖ρ‖23‖∇u‖22.

(2.10)

By the Gagliardo-Nirenberg inequality and using the elliptic estimates, it follows
that

‖�−1div (ρu)‖∞ � ‖�−1div (ρu)‖
1
3
6 ‖∇�−1div (ρu)‖

2
3
4

� ‖ρu‖
1
3
2 ‖ρu‖

2
3
4 � ‖ρ‖

2
3∞‖√ρu‖

1
3
2 ‖√ρ|u|2‖

1
3
2 . (2.11)

Integrating (2.8) in t , using (2.9)–(2.11), and by some straightforward calculations,
the conclusion follows. ��
Proposition 2.5. Assume that

sup
0�t�T

‖ρ‖∞ � 4ρ̄.

Then, there is a positive constant C depending only on R, γ, μ, λ and κ , such that

sup
0�t�T

‖∇u‖22 +
∫ T

0

∥
∥
∥
∥

(√
ρut ,

∇G√
ρ̄

,
∇ω√

ρ̄

)∥
∥
∥
∥

2

2
dt

� C‖∇u0‖22 + C ρ̄ sup
0�t�T

‖√ρθ‖22 + C ρ̄3
∫ T

0
‖∇u‖42‖(∇u,

√
ρ̄
√

ρθ)‖22 dt

+C
∫ T

0
(ρ̄ + ρ̄2‖ρ‖

1
2
3 ‖√ρθ‖2)‖(∇θ, |u|∇u)‖22 dt,

where G = (2μ + λ)div u − p and ω = ∇ × u.

Proof. Multiplying (1.2) by ut , it follows from integration by parts that

1

2

d

dt
(μ‖∇u‖22 + (μ + λ)‖div u‖22) −

∫

pdiv ut dx + ‖√ρut‖22

= −
∫

ρ(u · ∇)u · ut dx . (2.12)

Noticing that div u = G+p
2μ+λ

, it follows that

−
∫

pdiv ut dx = − d

dt

∫

pdiv u dx +
∫

ptdiv u dx

= − d

dt

∫

pdiv u dx + 1

2(2μ + λ)

d

dt
‖p‖22 + 1

2μ + λ

∫

pt G dx . (2.13)

Note that (1.3) implies

pt = (γ − 1)(Q(∇u) − pdiv u + κ�θ) − div (up),
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and thus, integration by parts gives
∫

pt G dx =
∫

[(γ − 1)(Q(∇u) − pdiv u)G + (up − κ(γ − 1)∇θ) · ∇G] dx .

(2.14)

Substituting (2.14) into (2.13), then the result into (2.12), and noticing that ‖∇u‖22 =
‖ω‖22 + ‖div u‖22, by some straightforward calculations that one obtains that

1

2

d

dt

(

μ‖ω‖22 + ‖G‖22
2μ + λ

)

+ ‖√ρut‖22

= −
∫

ρ(u · ∇)u · ut dx + 1

2μ + λ

∫

(κ(γ − 1)∇θ − up) · ∇G dx

− γ − 1

2μ + λ

∫

(Q(∇u) − pdiv u)G dx . (2.15)

Use �u = ∇div u − ∇ × ∇ × u to rewrite (1.2) as

ρ(ut + u · ∇u) = ∇G − μ∇ × ω. (2.16)

Testing this by ∇G, noticing that
∫ ∇G ·∇ ×ω dx = 0, and recalling ‖ρ‖∞ � 4ρ̄,

yields

‖∇G‖22 =
∫

ρ(ut + u · ∇u) · ∇G dx

�
∫ ( |∇G|2

2
+ 2ρ̄ρ|ut |2

)

dx +
∫

ρu · ∇u · ∇G dx,

which gives

‖∇G‖22
16ρ̄

� 1

4
‖√ρut‖22 + 1

8ρ̄

∫

ρ(u · ∇)u · ∇G dx . (2.17)

Similarly,

μ2‖∇ω‖22
16ρ̄

� 1

4
‖√ρut‖22 + 1

8ρ̄

∫

ρ(u · ∇)u · ∇ × ω dx . (2.18)

Thanks to (2.17) and (2.18), one obtains from (2.15) that

1

2

d

dt

(

μ‖ω‖22 + ‖G‖22
2μ + λ

)

+ 1

2
‖√ρut‖22 + 1

16ρ̄
(‖∇G‖22 + μ2‖∇ω‖22)

� C
∫

ρ|u||∇u|
[

|ut | + 1

ρ̄
(∇G| + |∇ω|)

]

dx + C
∫

(|∇θ | + ρθ |u|)|∇G| dx

+ C
∫

(|∇u|2 + ρθ |∇u|)|G| dx =: I1 + I2 + I3. (2.19)

The terms I1, I2, and I3 are estimated as follows: for I1, by the Hölder and
Young inequalities, one obtains
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I1 �
√

ρ̄‖|u|∇u‖2‖√ρut‖2 + ‖|u|∇u‖2(‖∇G‖2 + ‖∇ω‖2)
� 1

6

[
1

2
‖√ρut‖22 + 1

16ρ̄
(‖∇G‖22 + μ2‖∇ω‖22)

]

+ C ρ̄‖|u|∇u‖22.

Recalling (2.4), it follows from the Hölder and Young inequalities that

I2 � ‖∇θ‖2‖∇G‖2 + ‖ρθu‖2‖∇G‖2
� ‖∇θ‖2‖∇G‖2 + √

ρ̄‖ρ‖
1
4
3 ‖√ρθ‖

1
2
2 ‖∇θ‖

1
2
2 ‖∇|u|2‖

1
2
2 ‖∇G‖2

� ‖∇G‖22
96ρ̄

+ C

(

ρ̄2‖ρ‖
1
2
3 ‖√ρθ‖2 + ρ̄

)

(‖∇θ‖22 + ‖|u|∇u‖22).

The elliptic estimates and Sobolev embedding inequality yield that

‖∇u‖6 � ‖∇ × u‖6 + ‖div u‖6 � ‖ω‖6 + ‖G‖6 + ‖ρθ‖6
� ‖∇ω‖2 + ‖∇G‖2 + ρ̄‖∇θ‖2. (2.20)

Using (2.20), by the Hölder, Sobolev, and Young inequalities, one deduces that

I3 � ‖∇u‖2‖∇u‖6‖G‖3 + ‖∇u‖2‖ρθ‖6‖G‖3
� C‖∇u‖2(‖∇G‖2 + ‖∇ω‖2 + ρ̄‖∇θ‖2)‖G‖

1
2
2 ‖∇G‖

1
2
2

+ρ̄‖∇u‖2‖∇θ‖2‖G‖
1
2
2 ‖∇G‖

1
2
2

� 1

96ρ̄
(‖∇G‖22 + μ2‖∇ω‖22) + C ρ̄3‖∇u‖42‖G‖22 + C ρ̄‖∇θ‖22.

Substituting the estimates for Ii , i = 1, 2, 3 that into (2.19) yields

d

dt

(

μ‖ω‖22 + ‖G‖22
2μ + λ

)

+ 1

2
‖√ρut‖22 + 1

16ρ̄
(‖∇G‖22 + μ2‖∇ω‖22)

� (ρ̄ + ρ̄2‖ρ‖
1
2
3 ‖√ρθ‖2)(‖∇θ‖22 + ‖|u|∇u‖22) + ρ̄3‖∇u‖42‖G‖22,

from which, integrating in t and using

‖∇u‖2 � ‖ω‖2 + ‖G‖2 + ‖ρθ‖2 � ‖ω‖2 + ‖G‖2 + √
ρ̄‖√ρθ‖2,

the conclusion follows by straightforward calculations. ��
Proposition 2.6. Assume that

sup
0�t�T

‖ρ‖∞ � 4ρ̄.

Then, there is a positive constant C depending only on R, γ, μ, λ, and κ , such that

sup
0�t�T

‖ρ‖∞ �‖ρ0‖∞eC ρ̄
2
3 sup0�t�T ‖√ρu‖

1
3
2 ‖√ρ|u|2‖

1
3
2 +C ρ̄

∫ T
0 ‖∇u‖2‖(∇G,∇ω,ρ̄∇θ)‖2 dt

.
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Proof. Denote O = {x ∈ R
3|ρ0(x) = 0} and � = {x ∈ R

3|ρ0(x) > 0}. Define X
as

∂t X (x, t) = u(X (x, t), t), X (x, 0) = x .

Then ρ(X (x, t), t) ≡ 0 for any x ∈ O, and ρ(X (x, t), t) > 0 for any x ∈ �. One
can verify that {X (x, t)|x ∈ R

3} = R
3 for any t ∈ (0, T ). Therefore

sup
x∈R3

ρ(x, t) = sup
x∈R3

‖ρ(X (x, t), t)‖∞ = sup
x∈�

ρ(X (x, t), t). (2.21)

Rewrite (2.5) as

∂t�
−1div (ρu) + u · ∇�−1div (ρu) − (2μ + λ)div u + p

= u · ∇�−1div (ρu) − �−1div div (ρu ⊗ u) = [u,R ⊗ R](ρu), (2.22)

where R is the Riesz transform on R
3. Using the fact that d

dt ( f (X (x, t), t)) =
(∂t f + u · ∇ f )(X (x, t), t), it follows from (1.1) that

d

dt
(log ρ(X (x, t), t)) = −div u(X (x, t), t), ∀x ∈ �.

Therefore, for any x ∈ �, it follows from (2.22) that

d

dt

(
(2μ + λ) log ρ(X (x, t), t) + (�−1div (ρu))(X (x, t), t)

)

+p(X (x, t), t) =
(
[u,R ⊗ R](ρu)

)
(X (x, t), t).

Due to p � 0 and (2.21), one can easily derive from the above equality that

‖ρ‖∞ � ‖ρ0‖∞e
C

(
sup0�t�T ‖�−1div (ρu)‖∞+∫ T

0 ‖[u,R⊗R](ρu)‖∞ dt
)

. (2.23)

Using the Gagliardo-Nirenberg inequality and the commutator estimates, one de-
duces

‖[u,R ⊗ R](ρu)‖∞ � ‖[u,R ⊗ R](ρu)‖
1
5
3 ‖∇[u,R ⊗ R](ρu)‖

4
5
4

� ‖u‖
1
5
6 ‖ρu‖

1
5
6 ‖∇u‖

4
5
6 ‖ρu‖

4
5
12 � ρ̄‖u‖

1
5
6 ‖u‖

1
5
6 ‖∇u‖

4
5
6

(

‖u‖
3
4
6 ‖∇u‖

1
4
6

) 4
5

� ρ̄‖∇u‖2‖∇u‖6 � ρ̄‖∇u‖2(‖∇G‖2 + ‖∇ω‖2 + ρ̄‖∇θ‖2),

where, in the last step, (2.20) has been used. Thanks to this and recalling (2.11),
the conclusion follows from (2.23). ��
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2.2. A Priori Estimates

Proposition 2.7. Assume that 2μ > λ. Denote

NT = ρ̄ sup
0�t�T

(‖ρ‖3 + ρ̄2‖√ρu‖22)(t) sup
0�t�T

(‖∇u‖22 + ρ̄‖√ρE‖22)(t).

Then, there is a positive constant η0 depending only on R, γ, μ, λ and κ , such that
if

η � η0, sup
0�t�T

‖ρ‖∞ � 4ρ̄, and NT � √
η,

then the following estimates hold:

sup
0�t�T

‖√ρE‖22 +
∫ T

0
‖(∇θ, |u|∇u)‖22 dt � C‖√ρ0E0‖22,

sup
0�t�T

‖ρ‖3 +
(∫ T

0

∫

ρ3 p dx dt

) 1
3

� C(‖ρ0‖3 + ρ̄2‖√ρ0u0‖22),

ρ̄2

(

sup
0�t�T

‖√ρu‖22 +
∫ T

0
‖∇u‖22 dt

)

� C(‖ρ0‖3 + ρ̄2‖√ρ0u0‖22),

sup
0�t�T

‖∇u‖22 +
∫ T

0

∥
∥
∥
∥

(√
ρut ,

∇G√
ρ̄

,
∇ω√

ρ̄

)∥
∥
∥
∥

2

2
dt � C(‖∇u0‖22 + ρ̄‖√ρ0E0‖22),

sup
0�t�T

‖ρ‖∞ � ρ̄eCN
1
6

0 +CN
1
2

0 ,

for a positive constant C depending only on R, γ, μ, λ and κ , where

N0 = ρ̄(‖ρ0‖3 + ρ̄2‖√ρ0u0‖22)(‖∇u0‖22 + ρ̄‖√ρ0E0‖22).

Proof. By assumption, it follows from Proposition 2.3 that

sup
0�t�T

‖√ρE‖22 +
∫ T

0
(‖∇θ‖22 + ‖|u|∇u‖22) dt

� C‖√ρ0E0‖22 + Cη
1
4
0

∫ T

0
(‖∇θ‖22 + ‖|u|∇u‖22) dt,

which, by choosing η0 suitably small, implies that

sup
0�t�T

‖√ρE‖22 +
∫ T

0
(‖∇θ‖22 + ‖|u|∇u‖22) dt � C‖√ρ0E0‖22. (2.24)



Global Solutions of Compressible Navier–Stokes Equations with Vacuum

Thanks to (2.24), using the assumptions, and applying Proposition 2.2, one obtains

sup
0�t�T

‖√ρu‖22 +
∫ T

0
‖∇u‖22 dt � C‖√ρ0u0‖22 + C‖√ρ0E0‖22 sup

0�t�T
‖ρ‖23

� C‖√ρ0u0‖22 + C sup
0�t�T

‖√ρE‖22 sup
0�t�T

‖ρ‖23

� C‖√ρ0u0‖22 + C
√

η0

ρ̄2 sup
0�t�T

‖ρ‖3. (2.25)

Using the assumptions and (2.25), it follows from Proposition 2.4 and the Young
inequality that

sup
0�t�T

‖ρ‖33 +
∫ T

0

∫

ρ3 p dx dt

� C‖ρ0‖33+Cη
1
12
0 sup

0�t�T
‖ρ0‖33+C ρ̄2

(

‖√ρ0u0‖22+
√

η0

ρ̄2 sup
0�t�T

‖ρ‖3
)

sup
0�t�T

‖ρ‖23

� C‖ρ0‖33 +
(

Cη
1
12
0 + 1

4
+ C

√
η0

)

sup
0�t�T

‖ρ‖33 + C ρ̄6‖√ρ0u0‖62,

from which, by choosing η0 sufficiently small, one obtains

sup
0�t�T

‖ρ‖3 +
(∫ T

0

∫

ρ3 p dx dt

) 1
3

� C(‖ρ0‖3 + ρ̄2‖√ρ0u0‖22). (2.26)

Combing (2.25) with (2.26) yields

ρ̄2

(

sup
0�t�T

‖√ρu‖22 +
∫ T

0
‖∇u‖22 dt

)

� C(‖ρ0‖3 + ρ̄2‖√ρ0u0‖22). (2.27)

Using (2.24) and (2.27), it follows from Proposition 2.5 that

sup
0�t�T

‖∇u‖22 +
∫ T

0

∥
∥
∥
∥

(√
ρut ,

∇G√
ρ̄

,
∇ω√

ρ̄

)∥
∥
∥
∥

2

2
dt

� ‖∇u0‖22 + ρ̄‖√ρ0E0‖22 + ρ̄3
∫ T

0
‖∇u‖22 dt sup

0�t�T

(
‖∇u‖22 + ρ̄‖√ρθ‖22

)

× sup
0�t�T

‖∇u‖22 +
(

ρ̄ + ρ̄2 sup
0�t�T

‖ρ‖
1
2
3 ‖√ρθ‖2

) ∫ T

0
‖(∇θ, |u|∇u)‖22 dt

� ρ̄(‖ρ0‖3 + ρ̄2‖√ρ0u0‖22) sup
0�t�T

(
‖∇u‖22 + ρ̄‖√ρE‖22

)
sup

0�t�T
‖∇u‖22

+ρ̄2 sup
0�t�T

‖ρ‖
1
2
3 ‖√ρθ‖2‖√ρ0E0‖22 + ‖∇u0‖22 + ρ̄‖√ρ0E0‖22. (2.28)
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Recalling the definition ofNT and the assumption thatNT � √
η0, it is clear that

ρ̄(‖ρ0‖3 + ρ̄2‖√ρ0u0‖22) sup
0�t�T

(
‖∇u‖22 + ρ̄‖√ρE‖22

)

� ρ̄ sup
0�t�T

(‖ρ‖3 + ρ̄2‖√ρu‖22) sup
0�t�T

(
‖∇u‖22 + ρ̄‖√ρE‖22

)
� NT � √

η0

and

ρ̄ sup
0�t�T

‖ρ‖
1
2
3 ‖√ρθ‖2 �

(

ρ̄2 sup
0�t�T

‖ρ‖3 sup
0�t�T

‖√ρE‖22
) 1

2

� N
1
2

T � η
1
4
0 .

Thanks to the above two estimates, by choosing η0 sufficiently small, one can easily
derive from (2.28) that

sup
0�t�T

‖∇u‖22 +
∫ T

0

∥
∥
∥
∥

(√
ρut ,

∇G√
ρ̄

,
∇ω√

ρ̄

)∥
∥
∥
∥

2

2
dt � C(‖∇u0‖22 + ρ̄‖√ρ0E0‖22).

(2.29)

The estimate for ‖ρ‖∞ follows from Proposition 2.6 by (2.24), (2.27), and
(2.29). ��
Proposition 2.8. Assume that 2μ > λ. Let η0,NT , andN0 be as in Proposition 2.7.
Then, the following two things hold:

(i) There is a number ε0 ∈ (0, η0) depending only on R, γ, μ, λ and κ, such that
if

sup
0�t�T

‖ρ‖∞ � 4ρ̄, NT � √
ε0, and N0 � ε0,

then

sup
0�t�T

‖ρ‖∞ � 2ρ̄ and NT �
√

ε0

2
.

(ii) As a consequence of (i), the following estimates hold:

NT �
√

ε0

2
and sup

0�t�T
‖ρ‖∞ � 2ρ̄,

as long as N0 � ε0.

Proof. (i) Let ε0 � η0 be sufficiently small. By assumption, all the conditions in
Proposition 2.7 hold, and thus

NT � C ρ̄(‖ρ0‖3 + ρ̄2‖√ρ0u0‖22)(‖∇u0‖22 + ρ̄‖√ρ0E0‖22)
= CN0 � Cε0 �

√
ε0

2
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and

sup
0�t�T

‖ρ‖∞ � ρ̄eCN
1
6

0 +CN
1
2

0 � ρ̄eCε
1
6
0 +Cε

1
2
0 � 2ρ̄,

as long as ε0 is sufficiently small. The first conclusion follows.
(ii) Define

T# := max

{

T ∈ (0, T ]
∣
∣
∣
∣NT � √

ε0, sup
0�t�T

‖ρ‖∞ � 4ρ̄

}

.

Then, by (i), we have

NT �
√

ε0

2
, sup

0�t�T
‖ρ‖∞ � 2ρ̄, ∀T ∈ (0, T#). (2.30)

If T# < T , noticing that NT and sup0�t�T ‖ρ‖∞ are continuous on [0, T ],
there is another time T## ∈ (T#, T ] such that

NT## � √
ε0 and sup

0�t�T##

‖ρ‖∞ � 4ρ̄,

which is the contradiction to the definition of T#. Thus,we have T# = T , and the
conclusion follows from (2.30) and the continuity ofNT and sup0�t�T ‖ρ‖∞
on [0, T ]. ��
The following corollary is a straightforward consequence of Proposition 2.7

and (ii) of Proposition 2.8:

Corollary 2.1. Assume that 2μ > λ. Let ε0 be as in Proposition 2.8 and assume
that N0 � ε0. Then, there is a positive constant C depending only on R, γ , μ, λ,
κ , ρ̄, ‖ρ0‖3, ‖√ρ0u0‖2, ‖√ρ0E0‖2 and ‖∇u0‖2, such that the following estimates
hold:

sup
0�t�T

(‖(√ρE,
√

ρu,∇u)‖22 + ‖ρ‖3 + ‖ρ‖∞) � C,

∫ T

0

(

‖ (∇θ, |u|∇u,
√

ρut ,∇G,∇ω
) ‖22 + ‖∇u‖26 +

∫

ρ3 p dx

)

dt � C.

3. Proof of Theorem 1.1

The following blow-up criteria is cited from Huang–Li [17].

Proposition 3.1. Let T ∗ < ∞ be the maximal time of existence of a solution
(ρ, u, θ) to system (1.1)–(1.3), with initial data (ρ0, u0, θ0). Then,

lim
T →T ∗(‖ρ‖L∞(0,T ;L∞) + ‖u‖Ls (0,T ;Lr )) = ∞

for any (s, r) such that 2
s + 3

r � 1 and 3 < r � ∞.
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We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let ε0 and NT be as in Proposition 2.8 and assume that
N0 � ε0. By Proposition 2.1, there is a unique local strong solution (ρ, u, θ) to
system (1.1)–(1.3), with initial data (ρ0, u0, θ0). Extend the local solution (ρ, u, θ)

to the maximal time of existence Tmax. If Tmax = ∞, then (ρ, u, θ) is a global
solution and we are down. Assume that Tmax < ∞. Then, by Proposition 3.1, it
holds that

lim
T →Tmax

(‖ρ‖L∞(0,T ;L∞) + ‖u‖L4(0,T ;L6)) = ∞. (3.1)

By Corollary 2.1, it follows that we have sup0�t�T (‖ρ‖∞ + ‖∇u‖22) � C which,
by the Sobolev embedding inequality, gives ‖ρ‖L∞(0,T ;L∞) + ‖u‖L4(0,T ;L6) � C
for any T ∈ (0, Tmax) for a positive constant C independent of T . This implies that

lim
T →Tmax

(‖ρ‖L∞(0,T ;L∞) + ‖u‖L4(0,T ;L6)) � C < ∞,

which is in contradiction to (3.1). Therefore, we must have that Tmax = ∞, proving
Theorem 1.1. ��

Acknowledgements. The author is grateful to the anonymous referees for the kind sugges-
tions that improved this paper. This work was supported in part by the National Natural
Science Foundation of China Grants 11971009, 11871005, and 11771156, by the Natural
Science Foundation of Guangdong Province Grant 2019A1515011621, by the South China
Normal University start-up Grant 550-8S0315, and by the Hong Kong RGC Grant CUHK
14302917.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

References

1. Bresch, D., Jabin, P.E.: Global existence of weak solutions for compressible Navier–
Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress
tensor. Ann. Math. 188, 577–684, 2018

2. Chen, G.-Q., Hoff, D., Trivisa, K.: Global solutions of the compressible Navier–
Stokes equations with large discontinuous initial data. Commun. Partial Differ. Equ. 25,
2233–2257, 2000

3. Chen, Q.,Miao, C.,Zhang, Z.:Globalwell-posedness for compressibleNavier–Stokes
equations with highly oscillating initial velocity. Commun. Pure Appl. Math. 63, 1173–
1224, 2010

4. Chikami, N., Danchin, R.: On the well-posedness of the full compressible Naiver–
Stokes system in critical Besov spaces. J. Differ. Equ. 258, 3435–3467, 2015

5. Cho, Y.,Choe, H.J.,Kim, H.: Unique solvability of the initial boundary value problems
for compressible viscous fluids. J. Math. Pures Appl. 83, 243–275, 2004

6. Cho, Y., Kim, H.: On classical solutions of the compressible Navier–Stokes equations
with nonnegative initial densities. Manuscr. Math. 120, 91–129, 2006



Global Solutions of Compressible Navier–Stokes Equations with Vacuum

7. Cho, Y., Kim, H.: Existence results for viscous polytropic fluids with vacuum. J. Differ.
Equ. 228, 377–411, 2006

8. Danchin, R.: Global existence in critical spaces for flows of compressible viscous and
heat-conductive gases. Arch. Ration. Mech. Anal. 160, 1–39, 2001

9. Danchin, R.,Xu, J.: Optimal decay estimates in the critical Lp framework for flows of
compressible viscous and heat-conductive gases. J. Math. Fluid Mech. 20, 1641–1665,
2018

10. Deckelnick, K.: Decay estimates for the compressible Navier-Stokes equations in
unbounded domains. Math. Z. 209, 115–130, 1992

11. Fang, D., Zhang, T., Zi, R.: Global solutions to the isentropic compressible Navier–
Stokes equations with a class of large initial data. SIAM J. Math. Anal. 50, 4983–5026,
2018

12. Feireisl, E.,Novotný, A., Petzeltová, H.: On the existence of globally definedweak
solutions to the Navier–Stokes equations. J. Math. Fluid Mech. 3, 358–392, 2001

13. Feireisl, E.: On the motion of a viscous, compressible, and heat conducting fluid.
Indiana Univ. Math. J. 53, 1705–1738, 2004

14. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford Lecture Series in Math-
ematics and its Applications, 26. Oxford University Press, Oxford 2004

15. Graffi, D.: Il teorema di unicitá nella dinamica dei fluidi compressibili (Italian). J.
Ration. Mech. Anal. 2, 99–106, 1953

16. Hoff, D.: Discontinuous solutions of the Navier–Stokes equations for multidimensional
flows of heat-conducting fluids. Arch. Ration. Mech. Anal. 139, 303–354, 1997

17. Huang, X., Li, J.: Serrin-type blowup criterion for viscous, compressible, and heat
conducting Navier–Stokes and magnetohydrodynamic flows. Commun. Math. Phys.
324, 147–171, 2013

18. Huang, X., Li, J.: Global classical and weak solutions to the three-dimensional full
compressible Navier–Stokes system with vacuum and large oscillations. Arch. Ration.
Mech. Anal. 227, 995–1059, 2018

19. Huang, X., Li, J., Xin, Z.: Global well-posedness of classical solutions with large os-
cillations and vacuum to the three-dimensional isentropic compressible Navier–Stokes
equations. Commun. Pure Appl. Math. 65, 549–585, 2012

20. Itaya, N.: On the Cauchy problem for the system of fundamental equations describing
the movement of compressible viscous fluids. Kodai Math. Sem. Rep. 23, 60–120, 1971

21. Jiang, S., Zhang, P.: Axisymmetric solutions of the 3D Navier–Stokes equations for
compressible isentropic fluids. J. Math. Pures Appl. 82, 949–973, 2003

22. Jiang, S., Zlotnik, A.: Global well-posedness of the Cauchy problem for the equations
of a one-dimensional viscous heat-conducting gas with Lebesgue initial data. Proc. R.
Soc. Edinb. Sect. A 134, 939–960, 2004

23. Kanel, J.I.: A model system of equations for the one-dimensional motion of a gas.
Differ. Uravn. 4, 721–734, 1968. (in Russian)

24. Kazhikhov, A.V.: Cauchy problem for viscous gas equations. Sib. Math. J. 23, 44–49,
1982

25. Kazhikhov, A.V., Shelukhin, V.V.: Unique global solution with respect to time of
initial boundary value problems for one-dimensional equations of a viscous gas. J. Appl.
Math. Mech. 41, 273–282, 1977

26. Kobayashi, T., Shibata, Y.: Decay estimates of solutions for the equations of motion of
compressible viscous and heat-conductive gases in an exterior domain in R3. Commun.
Math. Phys. 200, 621–659, 1999

27. Li, J.: Global well-posedness of the one-dimensional compressible Navier–Stokes equa-
tions with constant heat conductivity and nonnegative density. SIAM J. Math. Anal. 51,
3666–3693, 2019

28. Li, J.: Global well-posedness of non-heat conductive compressible Navier–Stokes equa-
tions in 1D. Nonlinearity 33, 2181–2210, 2020



J. Li

29. Li, J., Liang, Z.: Some uniform estimates and large-time behavior of solutions to one-
dimensional compressibleNavier–Stokes system in unbounded domainswith large data.
Arch. Ration. Mech. Anal. 220, 1195–1208, 2016

30. Li, J., Xin, Z.: Global well-posedness and large time asymptotic behavior of classical
solutions to the compressible Navier–Stokes equations with vacuum. Ann. PDE 5, 7,
2019

31. Li, J.,Xin, Z.: Entropy bounded solutions to the one-dimensional compressible Navier–
Stokes equations with zero heat conduction and far field vacuum. Adv. Math. 361,
106923, 2020

32. Li, J., Xin, Z.: Entropy-bounded solutions to the heat conductive compressible Navier–
Stokes equations. arXiv:2002.03372v1 [math.AP]

33. Li, J., Xin, Z.: Entropy-bounded solutions to the multi-dimensional heat conductive
compressible Navier–Stokes equations (in preparation)

34. Lions, P.L.: Existence globale de solutions pour les équations de Navier–Stokes com-
pressibles isentropiques.Comptes Rendus Acad. Sci. Paris Sér. I Math. 316, 1335–1340,
1993

35. Lions, P.L.: Mathematical Topics in Fluid Mechanics, vol. 2. Clarendon, Oxford 1998
36. Lukaszewicz, G.: An existence theorem for compressible viscous and heat conducting

fluids. Math. Methods Appl. Sci. 6, 234–247, 1984
37. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of

viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104, 1980
38. Matsumura, A., Nishida, T.: The initial boundary value problem for the equations

of motion of compressible viscous and heat-conductive fluid. Preprint University of
Wisconsin, MRC Technical Summary Report no. 2237 (1981)

39. Matsumura, A., Nishida, T.: Initial-Boundary Value Problems for the Equations of
Motion of General Fluids. Computing Methods in Applied Sciences and Engineering,
V (Versailles, 1981), pp. 389–406. North-Holland, Amsterdam 1982

40. Matsumura, A., Nishida, T.: Initial boundary value problems for the equations of
motion of compressible viscous and heat-conductive fluids. Commun. Math. Phys. 89,
445–464, 1983

41. Nash, J.: Le problème de Cauchy pour les équations différentielles d’un fluide général.
Bull. Soc. Math. Fr. 90, 487–497, 1962

42. Ponce, G.: Global existence of small solutions to a class of nonlinear evolution equa-
tions. Nonlinear Anal. 9, 399–418, 1985

43. Serrin, J.: On the uniqueness of compressible fluid motions. Arch. Ration. Mech. Anal.
3, 271–288, 1959

44. Tani, A.: On the first initial-boundary value problem of compressible viscous fluid
motion. Publ. Res. Inst. Math. Sci. 13, 193–253, 1977

45. Valli, A.: An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl.
130, 197–213, 1982

46. Valli, A., Zajaczkowski, W.M.: Navier-Stokes equations for compressible fluids:
global existence and qualitative properties of the solutions in the general case. Commun.
Math. Phys. 103, 259–296, 1986

47. Vol’pert, A.I., Hudjaev, S.I.: On the Cauchy problem for composite systems of non-
linear differential equations. Math. USSR-Sb 16, 517–544, 1972 [previously in Mat. Sb.
(N.S.) 87, 504–528 1972 (in Russian)]

48. Wen, H., Zhu, C.: Global solutions to the three-dimensional full compressible Navier-
Stokes equations with vacuum at infinity in some classes of large data. SIAM J. Math.
Anal. 49, 162–221, 2017

49. Zlotnik, A.A.,Amosov, A.A.: On stability of generalized solutions to the equations of
one-dimensional motion of a viscous heat-conducting gas. Sib. Math. J. 38, 663–684,
1997

50. Zlotnik, A.A., Amosov, A.A.: Stability of generalized solutions to equations of one-
dimensional motion of viscous heat conducting gases. Math. Notes 63, 736–746, 1998

http://arxiv.org/abs/2002.03372v1


Global Solutions of Compressible Navier–Stokes Equations with Vacuum

Jinkai Li
South China Research Center for Applied Mathematics and Interdisciplinary Studies,

South China Normal University,
Zhong Shan Avenue West 55, Tianhe District,

Guangzhou
510631 China.

e-mail: jklimath@m.scnu.edu.cn; jklimath@gmail.com

(Received June 22, 2019 / Accepted March 25, 2020)
© Springer-Verlag GmbH Germany, part of Springer Nature (2020)


	3pc Global Small Solutions of Heat Conductive Compressible Navier–Stokes Equations with Vacuum: Smallness on Scaling Invariant Quantity
	Abstract
	1 Introduction
	2 A Priori Estimates
	2.1 Energy Inequalities
	2.2 A Priori Estimates

	3 Proof of Theorem 1.1
	Acknowledgements.
	References




