The microfluidic Kelvin water dropper
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< The so-called “Kelvin water dropper” is a simple exper-
O iment demonstrating the spontaneous appearance of in-
duced free charge in droplets emitted through a tube. As
C)_Lord Kelvin explained, water droplets spontaneously ac-
quire a net charge during detachment from a faucet due
to the presence of electrical fields in their surrounding cre-
O ated by any metallic object. In his experiment, two streams
of droplets are allowed to drip from separated nozzles into
—— separated buckets, which are at the same time intercon-
" nected through the dripping needles. In this paper we
build a microfluidic water dropper and demonstrate that
_C? the droplets get charged and break-up due to electrohy-
—) drodynamic instabilities. A comparison with recent sim-
u— ulations shows the dependence of the acquired charge in
(/) the droplets on different parameters of the system. The
&) phenomenon opens a door to cheap and accessible trans-
"U) formation of pneumatic pressure into electrical energy and
> to an enhanced control in microfluidic and biophysical ma-
nipulation of capsules, cells and droplets via self-induced
— charging of the elements.

AN In 1867, Sir William Thomson (later known as Lord Kelvin)
(B devised an apparatus to “illustrate the voltaic theory” as he lit-
o) erally stated!. The apparatus has become very popular as a
00 simple demonstration of electrostatic processes, since it can
O\l safely generate high voltages and electrical discharges by just
07. letting water falling from a couple of faucets. The physi-
(O cal mechanism is however complex and still intriguing: two
") faucets are dripping water into two separate metallic buck-
! ets (figure 1)) which have to be connected in a particular way.
= When a drop detaches from a metallic faucet at high enough
, frequency it will acquire a tiny residual amount of charge.
>< The amount of acquired charge depends on the material of
E the faucet, on the water electrical conductivity and on the lo-
cal electrical field at the detachment point. A metallic ring
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is now placed under the faucet (I1 in figure [I), so when a
droplet passes with a small charge, it will induce an oppo-
site charge in the metallic ring. The droplet continues and
ends up in the metallic bucket (C1 in figure [I]), with its tiny
charge dispersed in it. The idea of Lord Kelvin was to make
a self-feeding system with the help of the second faucet: the
metallic ring is connected to a second metallic bucket (C2 in
figure [I). Therefore, the ring will be slightly charged with
the charge induced in the second faucet. Assuming it is neg-
atively charged, the ring will then induce positive charges in
the droplets of the first faucet. They will fall down with their
positive charges into bucket I1. The bucket is connected to
the second metallic ring (I2 in figure [I) in the adjacent sys-
tem, in such a way that negative charge induction is enhanced
in the second faucet’s droplets (see figure[I). A voltage dif-
ference of order of several kilovolts can be created between
the two buckets in a matter of seconds. In popular demonstra-
tions like the classical videos from Melcher, Zahn and Silva?
or the more recent by Walter Lewin in MIT?, electrical sparks
can be visible between the two metallic buckets with simple
arrangements. With this experiment, Kelvin intended to ex-
plain the spontaneous generation of electricity in atmospheric
phenomena as thunderstorms. Besides the unfruitful efforts to
apply the invention to obtain AC electrical energy®, the bril-
liant device of Lord Kelvin has merely remained since then as
an interesting demonstration.

A way to improve the energy conversion efficiency would
be to scale down the apparatus, transforming it into a microflu-
idic device. Such an approach to increase energy transforma-
tion efficiencies has been followed by Xie et al.” in a different
system, in which the authors have reported energy conversion
from pneumatic into electrical energy with efficiencies up to
48% making use of a charged liquid microjet at high velocity.
In other sort of applications as flow cytometry, electrostatic
charging is employed for sorting droplets containing cells in
special type of FACS (Fluorescent Activated Cell Sorting)®,
and has recently been extended to use dielectrophoretic forces
to sort uncharged droplets”.

In this paper we report the miniaturization of the popular
Kelvin water dropper into a microfluidic device, which is able
to charge droplets of several picoliters “spontaneously” at typ-
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Classical Kelvin water dropper

Microfluidic version

Fig. 1 Upper sketch: Illustration of a classical Kelvin water dropper
as used in popular demonstrations and house-made experiments.
Lower sketch: Representation of the microfluidic Kelvin water
dropper.

ical rates of 10° droplets per second. An illustration of the
device is depicted in the lower figure[I] It basically consists
in two microfluidic drop generators build in PDMS and closed
with glass slides, where the electrodes are precisely deposited.
The droplets then encounter an induction electrode (analogous
to the rings in the classical water dropper), and further down-
stream a second larger electrode is used to receive the droplet
charge (analogous to the metallic bucket in the classical con-
figuration). Inductors and receivers are interconnected to pro-
duce the charge buildup. Due to the growth of the voltages, it
is crucial to maintain both electrical circuits well isolated and
separated to avoid discharges. Also note that the only elec-
trodes in direct contact with the water droplets are the receiv-
ing electrodes (C1 and C2 in figure[I)) and not the inductors.

The liquids employed are silicone oil Rhodorsil 47 v20
(density p = 950 kg/m3, viscosity u = 20 ¢St) as external
phase, and a salty water solution as inner liquid (0.9% Nal,
electrical conductivity circa 5 mS/cm). The droplet generation
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Fig. 2 Water droplets in the microchannel as they pass by the
inductor electrode (black at bottom and top). Their shape becomes
elliptical with singular tips (marked with white arrows) that tend to
emit daughter droplets, identically as in the classical Rayleigh
explosions [Videos added as supplementary material].

frequency is controlled by the oil-to-water flow rate ratio. At
low frequencies, the droplets flow normally without any spe-
cial feature. As the frequency is increased, the charge relax-
ation time becomes comparable to the typical break-up time,
and the charge buildup is then triggered at a certain critical
frequency. After a typical charging time of a few seconds, the
droplets lose their apparent circular shape and develop tran-
sient tips and microscopic jets as they pass close to the induc-
tor electrodes, as shown in figures[2]and[3] In spite of the high
rate of droplet generation, the Reynolds number, defined as
Re =pUD/u, where U is the typical external flow velocity and
D the typical droplet size, is kept at values below 10~2. Defor-
mation and break-up of droplets by electric fields is a classical
topic which gave birth to what we know nowadays as Elec-
trohydrodynamics. The pioneering works by Lord Rayleigh
and later by Taylor and Melcher® 1@ contain all the elements
needed to understand the origin of these complex phenom-
ena. The topic has continued developing in the present,
mainly due to its applications in mass spectrometrylm. When
an isolated droplet with an electrical charge Q is subjected to
a constant electric field E, the charges migrate to the poles of
the droplet (dictated by the direction of the field). The charges
exert a normal stress that tends to deform the droplet ellip-
tically. When the field reaches a critical value, singular tips
appear at the tip of the drops, which are regularized by charge
and mass emission on the form of smaller and highly charged
daughter droplets. Such an event occurs at critical values of
the electrical field E. which is in general a function of the sur-
face tension of the liquid, its electrical permittivity and its size.
The maximum charge bearable for an isolated charged droplet
in the absence of electrical fields (Q # 0,E = 0) was solved
analytically by Rayleigh. Recently, Fontelos et al =3 solved
numerically the transient problem for viscous and conducting
drops, being able to calculate the critical electrical field as a
function of the droplet charge, and identifying all the different
deformation modes.

In the case of the Kelvin water dropper, it is interesting to
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Fig. 3 Sequence of images depicting the deformation and relaxation
of a droplet as it passes to its closest position from the inductor
electrode. The time between frames is approximately 28
microseconds. The outer-to-inner flow rate ratio is 8.7, yielding a
drop frequency of about 1 kHz. The video is included as
supplementary document.

note that the voltage in the inductor electrode is unavoidably
linked with the charge that the droplet acquires in an early
stage before pinching-off. We make use of this to find a rela-
tion between the charge carried by a droplet and the electric
field present in our microfluidic system. COMSOL has been
used to solve the electrostatic problem considering that the jet
is grounded, the inductor electrode is at 1 V and the droplet
charge is equal to the charge induced on the jet surface (see
supplementary material for details). From the solution of the
electric potential, the charge on the droplet and the maximum
magnitude of the electric field on its surface (Epmax) can be
obtained. Following the formalism by Fontelos et al.l2, we
define dimensionless charge and electrical fields respectively
as X = 0% /(32n°¢,;;YR?) and E* = E /€, Ry, where R is the
droplet radius, €,; is the electrical permittivity of oil and 7y is
the oil-electrolyte interfacial tension. The following relation
is found for our system:

Efa =2.52VX (1)

Where the factor 2.52 is specific of our geometry, but the
scaling E} .. ~ v/ X is universal. In figure |4| we plot the sta-
bility curve calculated via numerical simulations by Fontelos
et al.=2 for the case of an homogeneous electrical field, and
the calculated E}f,, (X) curve (eq. [1)) obtained with our elec-
trostatic simulations. We acknowledge that the situation in our
system is different of that in Fontelos et al., where an homoge-
neous electric field is applied. But for the sake of comparison

between both situations, we take Ey,x as a representative value
of the electric field magnitude around the droplet.

In a normal working procedure, the system will get quickly
charged, and the electric field experienced by the droplets will
increase following the E*(X) curve until E* it reaches the crit-
ical stability value E;; (red curve in figure ). When this stage
is reached, the droplets emit their charge in the form of tiny
droplets before reaching the collector electrode and the sys-
tem gets discharged again. This critical point actually gives
us the maximum droplet charge achievable before the insta-
bility is triggered, which in our particular design and droplet
size yields values of several kilovolts for the inductor electrode
voltage and 0.2 pC of droplet charge. Such values have been
experimentally checked by introducing an additional electrode
downstream the inductor electrode connected to an electrom-
eter. When a charged droplet passes by, it induces a charge in
the electrode proportional to its own charge that can be mea-
sured with the electrometer. The average charge in time was
then measured with a precision electrometer (Keithley elec-
trometer 6517B) and with low-current ammeters (Keithley pi-
coammeter 6485), yielding maximum electrical currents in the
order of 0.5 nA.

The presented analysis gives a good understanding of the
phenomena taking place in the system, but it would indeed
require further improvements in the future. It would be nec-
essary to recalculate the stability curve from Fontelos et al. 2
assuming a non-homogeneous electric field as that depicted
in figure S3 in the supplementary material. This is however
beyond the scope of this paper; we only note that the non-
homogeneities of the electrical field may modify the presented
curve substantially depending on the electrode configuration.
It would also be necessary to take into account sharp cor-
ners, roughness, etc, which could induce locally extremely
large electrical fields. Regarding the hydrodynamics, viscous
stresses in the external flow around the droplets could also
play an important role even at low Reynolds numbers, as noted
by Fontelos et al.> and could explain the oblique angles at
which the droplets burst respect to the electrode position.

Depending on the desired application, different electrode
and fluidic channel configurations can be designed to promote
higher charging of the droplets without break-up (higher X
with E* < E}), or droplet break-up at low charging (low X
with E > E*, the current case). The phenomenon is not only a
interesting way of charging droplets but also to provoke their
break-up. In many applications, the breakup or the electropo-
ration of cells or vesicles is required to allow access to them'%,
For example, the current device could be able to provoke con-
tinuous breakup of targeted capsules. The present geometry
contains only the basic elements for this phenomenon to occur,
but it could be easily combined with other features, like dif-
ferent branches, or with several inductor electrodes. Finally, it
would be interesting to explore the phenomenon to transform
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Fig. 4 Droplet Stability diagram in terms of the dimensionless
electric field E* between droplet and inductor electrodes and the
dimensionless droplet charge X. The curve in red represents the
stability droplet limit calculated by Fontelos et al.l>. The blue curve
represents the charging curve followed by the geometry employed in
our experiments E* = 2.52v/X. The droplets get charged following
the blue curve until droplet instability occurs at E* = E}.
Eventually, the electrodes will get discharged and the process starts
again.

hydraulic pressure into electricity in an efficient way. Multi-
component water droppers as the one proposed by Markus

Zahn* could be employed to multiply the energy outcome,
which is now easily achievable with the severe miniaturiza-
tion of the microfluidic devices.
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