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Abstract—We propose and demonstrate a simple and low-cost
uplink transmission scheme for coherent optical code-division
multiple access (OCDMA) passive optical networks (PONs), using
gain-switched Fabry—Pérot (GS-FP) lasers with external injection
as local light sources at optical network units. Experimental re-
sults based on the two-user 1.25-Gb/s OCDMA system confirm the
feasibility of this scheme. The system performance is compared
with that of the OCDMA system using a conventional mode-locked
laser (MLL). The auto-correlation peak to the maximum wing
level (P/W) ratio is also given as the central wavelength of the
GS-FP laser varies. The present low-cost scheme is highly prefer-
able for OCDMA PON applications.

Index Terms—Fabry-Pérot (FP) laser, gain-switching, optical
code-division multiple access (OCDMA), passive optical network
(PON).

1. INTRODUCTION

ASSIVE optical networks (PONs) have been attracting
P enormous research interest due to their low operational
costs and huge bandwidth. Optical code-division multiple ac-
cess (OCDMA) [1] is a promising multiple-access method for
PON, since it can offer various system benefits including asyn-
chronous operation, protocol transparency, simplified network
control, and enhanced security [2]. One of the important topics
for OCDMA PONs is to reduce the hardware cost, especially on
the user side or the optical network units (ONUs). In many of
the recently demonstrated OCDMA systems, short-pulse laser
sources, such as mode-locked lasers (MLLs), have been adopted
[3]-[5]. However, they are not suitable for the applications at
ONUs of OCDMA PONSs due to their high cost. An optical
pulse distribution approach has been proposed in [6], in which
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there is no need for short-pulse sources on the ONU side due to
the broadcast of unmodulated pulses from the optical line ter-
minal (OLT) to all ONUs. However, ONUs at various distances
from the OLT will receive optical pulses with quite different
qualities because of the fiber dispersion. Therefore, a low-cost
local optical pulse source is preferred for ONUs in the practical
implementation of OCDMA PONs. Several pulse sources, in-
cluding pulse carving distributed-feedback (DFB) lasers [7], [8]
and multiwavelength injection locking Fabry—Pérot (FP) lasers
[9]-[11], have been introduced to the OCDMA systems. Com-
pared with the former, the FP lasers are of much lower cost.
However, the existing OCDMA light sources based on FP lasers
often have broad pulsewidths and the feasibility has not yet been
confirmed in a high speed and multiuser OCDMA system.

In this letter, we propose an uplink transmission scheme for
coherent OCDMA PONSs. For the local optical pulse source at
each ONU, we employ a gain-switched FP (GS-FP) laser with
external injection, which is considered as a simple, low-cost
but high-quality short-pulse source [12]. A two-user 1.25-Gb/s
OCDMA system based on the GS-FP laser with a pulsewidth
of around 19 ps is experimentally demonstrated and the system
performance is compared with the OCDMA system using a
conventional MLL. Furthermore, we also investigate how the
auto-correlation peak to the maximum wing level (P/W) ratio
changes with the central wavelength shift of the GS-FP laser.

II. PROPOSED UPLINK TRANSMISSION SCHEME

Fig. 1 shows the architecture of an OCDMA PON with our
proposed scheme, which employs GS-FP lasers with external
injection at the ONUs. A continuous-wave (CW) laser used to
injection lock the FP lasers is located at the OLT to reduce the
cost and relax the management on the user side. The injecting
CW light is first combined with the encoded downlink signals
by a coarse wavelength-division multiplexer (CWDM) and then
transmitted to the ONUs through a 1 : N power splitter at the
remote node (RN). At each ONU, another CWDM is used to
separate the injecting light from the encoded downlink signals.
Then the separated CW light is injected into the FP laser, while
the received encoded signals are decoded by a matched decoder
to obtain the desired channel. Short pulses produced from the
GS-FP laser are modulated by uplink data, then encoded and
transmitted back to the OLT.

III. EXPERIMENT AND COMPARISON

The experimental setup of a two-user 1.25-Gb/s coherent
OCDMA system employing the GS-FP laser with external

1041-1135/$26.00 © 2010 IEEE

Authorized licensed use limited to: Zhejiang University. Downloaded on May 20,2010 at 03:06:32 UTC from IEEE Xplore. Restrictions apply.



584

/ OLT \ Downlink
cw
Laser

—_—

Feeder
Fiber

CWDM

Feeder

ombiner
- { splitter

e

\ / Uplink

Fig. 1. Architecture of an OCDMA PON with GS-FP lasers at the ONUs.
GS-FP laser: gain-switched FP laser.
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Fig. 2. Experimental setup. Case A: GS-FP laser; Case B: MLL followed by
optical filter. PPG: programmable pattern generator; ENC: encoder; DEC: de-
coder; EDFA: erbium-doped fiber amplifier; ED: error detector; VOA: variable
optical attenuator.

injection is illustrated in case A of Fig. 2. Previously we
have demonstrated the downlink transmission using the MLL
[13]. Here we only show the uplink channels utilizing the
low-cost GS-FP laser. The FP laser used is a commercial
1.55-pm multiple quantum-well (MQW) laser module with
cooled package, and has a threshold current of 13 mA and a
longitudinal mode spacing of 1.5 nm at 25°C. To realize the
gain-switching operation, a dc bias current in conjunction with
an amplified sinusoidal signal is applied to the laser. In our
experiment, the external injection seed is provided by a tunable
CW laser in order to tune the central wavelength of the GS-FP
laser. In practical implementations, a DFB laser with central
wavelength at one of the FP laser’s modes can be used instead
[11]. A 20-km single-mode fiber (SMF) is placed between the
isolator and the circulator to represent the downlink feeder
fiber. Two polarization controllers (PCs) are employed on the
ONU side: one is located before the GS-FP laser for controlling
the polarization state of the injection light from OLT, and the
other is used before the Mach—Zehnder modulator (MZM).
The matched polarization state can be obtained after carefully
adjusting the PCs and the polarization stability is good enough
for our measurements. However, in a practical application, a
depolarizer at OLT can be used to eliminate the polarization
dependence of injection locking, as proposed in [14], and the
PC before the modulator can be replaced by using a polariza-
tion-maintaining fiber pigtailed MZM.

The output pulse train from the circulator is split into two
parts. One part is characterized by using an optical spectrum an-
alyzer with a resolution of 0.01 nm and a Tektronix (DSA8200-
80C10B) sampling oscilloscope with 80-GHz bandwidth and
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Fig. 3. Output of the GS-FP laser. (a) spectrum for the GS-FP laser (without
injection locking); (b) patterns of the 10-GHz optical pulse trains; (c) spectrum
for the GS-FP laser (with injection locking); (b) spectra for the filtered MLL
(blue) and GS-FP laser (red). V: vertical; H: Horizontal.
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6-ps time resolution for the optical channel. The other part is
modulated by an MZM with 27 — 1 pseudorandom bit sequence
(PRBS) at 1.25 Gb/s. The amplified optical signal is equally split
into two paths and encoded by two 127-chip, 320-Gchip/s super-
structured fiber Bragg gratings (SSFBGs). An optical delay line
(DL) is used to decorrelate the two encoded signals. After that,
the encoded signals are recombined, amplified, and launched
into another 20-km SMF followed by a dispersion-compensa-
tion fiber (DCF). On the OLT side, one of the uplink channels
are decoded by the matched SSFBG and direct detection is used
for signals reception. For comparison, we also test a two-user
1.25-Gb/s OCDMA system with an MLL as pulse source, which
is shown in case B of Fig. 2. An optical bandpass filter is applied
after the MLL to generate a pulse train with similar pulsewidth
and bandwidth as those of the GS-FP laser output.

IV. RESULTS AND DISCUSSION

The commercial FP laser used in our experiments has a
bandwidth of about 6 GHz in free running. Without external
light injection, there is nearly no pulse output at 10 GHz from
the GS-FP laser, as shown in Fig. 3(b). With —4.3-dBm external
CW light injection, the sidemode suppression ratio (SMSR) of
the FP laser exceeds 28 dB [comparing Fig. 3(a) and (c)] and
10-GHz optical pulses with a pulsewidth of around 19 ps can be
generated from the GS-FP laser [see Fig. 3(b)]. The bandwidth
of a GS-FP laser can be dramatically increased through proper
external light injection [12]. Here we note that in a practical
OCDMA PON, the large splitting loss of the 1 : IV splitter may
limit the maximal power of the external injection light reaching
ONUs. However, this power loss can be compensated by a
preamplifier in each ONU. We also show in Fig. 3(b) the pulse
train from the wavelength-filtered MLL, whose pulsewidth
is about 17 ps. The spectrum of the filtered MLL is shown
in Fig. 3(d), compared with the central longitudinal mode of
GS-FP laser in Fig. 3(c).

The measured eye diagrams are illustrated in Fig. 4. From the
eye diagrams in Fig. 4(e) and (f), one sees that the case of GS-FP
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Fig. 4. Eye diagrams. The case of GS-FP laser: (a) modulated signal before the
encoders; (b) encoded signals for the case of two users; (c) signal after matched
decoding; (d) signal after mismatched decoding; (e) decoded signal after 20-km
transmission, two users. For comparison, the case of MLL (f) decoded signal
after 20-km transmission, two users.
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Fig. 5. (a) BER curves; (b) P/W ratio as the central wavelength of GS-FP laser
varies within the 3-dB reflecting spectrum of SSFBG (shown in the inset).

laser gives similar performance as the case of the wavelength-fil-
tered MLL in terms of multiple access interference (MAI). The
BER curves in Fig. 5(a) show that for two users after 20-km
transmission the proposed scheme with the GS-FP laser has a
power penalty of around 1.5 dB (at BER = 10~?), as compared
with the scheme with the wavelength-filtered MLL. This, we
believe, should be acceptable. Together with their high cost-ef-
fectiveness, GS-FP lasers are thus very competitive candidates
for OCDMA PON applications.

We further investigate the P/W performance of the decoded
signal when the central wavelength of the FP laser changes
within the 3-dB bandwidth (~2 nm) of the “reflecting band” of
SSFBG, and the results are shown in Fig. 5(b). As one can see,
although the highest P/W is found when the center wavelength is
tuned to match that of the encoder/decoder, the P/W ratio fluctu-
ates in a region between 5 and 8.2 dB as the central wavelength
varies. The limited P/W ratio is caused by the relatively broad
pulsewidth of the generated pulses from GS-FP laser, which
is larger than the chip duration (~3 ps) of the present SSFBG
en/decoder with 127 chips. The SSFBGs used in [7] and [8] with
chip duration of more than 20 ps may be choices to compensate
this degradation. However, bit rate or security of the OCDMA
system will be decreased in this case.

V. CONCLUSION

We propose and first demonstrate a low-cost uplink trans-
mission scheme for a coherent OCDMA PON, which employs
GS-FP lasers with external injection as the light source at ONUs.
Compared with the OCDMA system using light source of the
conventional MLL, our two-user 1.25-Gb/s OCDMA system
based on the GS-FP laser gives reasonable experimental perfor-
mance with much lower cost. The P/W performance with cen-
tral wavelength shift of the GS-FP laser is also analyzed and
discussed.
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