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We perform Monte Carlo simulation of the ferroelectricity induced by spiral spin order in spin-1/2
LiCu2O2 based on the Mostovoy phenomenological theory. The simulated spiral spin order
parameter and ferroelectric polarization, respectively, as a function of temperature and magnetic
field are compared with recent experiments. The substantial differences in several aspects of the
multiferroicity between the simulation and experiments allow a reasonable argument that the spiral
spin order may not be the unique origin for the ferroelectricity generation. © 2009 American
Institute of Physics. �DOI: 10.1063/1.3062823�

Multiferroics are attracting attentions due to their poten-
tials for novel physics and applications.1,2 Recently, multifer-
roicity was found in a class of transitional metal �Me� oxides
known as “frustrated magnets” such as perovskite RMnO3

�R=Tb, Dy, and Gd�,3–5 RMn2O5 �R=Y, Tb, Dy, etc.�,6–8

delafossite CuFeO2,9 spinel CoCr2O4,10 and kagome magnet
Ni3V2O8.11 It is believed that the ferroelectricity in these
materials is directly generated by the frustrated spin configu-
ration with multifold interactions.12 On one hand, the spin
supercurrent model for Me–O–Me chain was proposed, in
which noncollinear spin alignment between the two Me ions
mediated by the O ion becomes the core ingredient of ferro-
electricity generation.13 On the other hand, the role of
Dzyaloshinskii–Moriya interaction �DMI� in generating fer-
roelectricity in RMnO3 was emphasized too.14 In our earlier
work,15 this DMI model was used to study the ferroelectric
�FE� polarization and the simulated results agree well with
reported experiments on Tb�Dy�MnO3. Based on the two
microscopic models and symmetry consideration, a phenom-
enological theory for ferroelectricity in noncollinear spin
systems was developed by Mostovoy,16 in which the ME
coupling takes the following form:

�em�P,M� = �P�M�� · M� − �M · ��M� , �1�

where P is the electric polarization, M is the magnetization,
and � scales the magnitude of the DMI or the spin supercur-
rent effect.

The simplest noncollinear spin order is the spiral spin
structure. The ferroelectricity in such structures was demon-
strated in RMnO3,4 Ni3V2O8,10 CoCr2O4,11 etc. It thus be-
comes reasonable that the ferroelectricity in LiCu2O2 has the
same origin because the exchange interaction goes beyond
the first neighbors and the structure has a triangular motif
susceptible to frustration.17–20 This material contains an
equal number of Cu1+ and Cu2+, the latter of which carries
spin S=1 /2. Each Cu2+ ion is on the center of oxygen square

with the Cu–O–Cu bond angle of 94° and forms edge-shared
chains with zigzag “ladders” along the b-axis, as illustrated
in Fig. 1. The measured spin spiral modulation along the
chain direction is 0.174, corresponding to a pitching angle of
62.6°.21,22

Fortunately, the ferroelectricity of LiCu2O2 and its re-
sponse to magnetic field �H� were investigated in details,19,20

allowing us to check the origin of ferroelectricity. Experi-
mentally, polarization P emerges along the c-axis below the
spiral spin ordering point, while the spin spiral axis is along
the b-axis. For a field applying along the b-axis, Hb, P was
observed to transit its direction from the c-axis to the a-axis.
More interesting, it was observed that the c-axis component
of P, Pc, initiates upon a field along the c-axis. Most re-
cently, starting from the Mostovoy theory, Fang et al.24 con-
structed a multiorder parameter phenomenological model for
the zigzag spin chain system based on a group theory
analysis.23 Our aim in this work is to start from this theory
and calculate in details by Monte Carlo �MC� technique the
FE response to temperature and magnetic field in LiCu2O2.

The MC simulation is performed on an L�L� lattice
with periodic boundary conditions. The lattice configuration
with multifold spin interactions is schematically shown in
Fig. 1. Here L=100 is the length of a double chain and L�
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FIG. 1. �Color online� A schematic of exchange interactions between mag-
netic Cu2+ ions in LiCu2O2.
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=10 is the number of the double chains. For such a lattice,
the Hamiltonian is

H = �
i,j

J1Si,jSi+1,j + J2Si,jSi+2,j + J4Si,jSi+4,j + J�Si,jSi,j+1

− g�BHSi,j − EPi,j +
Pi,j

2

2��0
+ �em, �2�

where the indices i and j run along and perpendicular to the
double chains, spin moment Si,j = �Si,j

x ,Si,j
y ,Si,j

z � are the three-
component classical vectors of 1/2 length �S=1 /2� at site
�i , j�, �B is the Bohr magnon, g is the Lande factor, E is a
small electric field, Pi,j =2eri,j, e is the charge of electron, ri,j

is the average displacement of O ions which mediate the
Cu2+ ions at site �i , j� and site �i+2, j�, � is the dielectric
constant, and �em is the ME coupling Hamiltonian which can
be expressed as24,25

�em = �c�
i,j

Pi,j
c �Si,j � �ySi,j�a + �a�

i,j
Pi,j

a �Si,j � �ySi+1,j

+ Si+1,j � �ySi,j�b, �3�

�ySi,j =
Si,j − Si−2,j

d
, �4�

where d=2.856 Å is the separation between the nearest
neighbor spins along the chain.

To quantitatively reveal the spiral order along the chains,
the spin structure factor C�k� for the chains is defined as26,27

C�k� =
4

L2 �
i,j=1

L/2

Si · Sje
ik�Ri−Rj�, �5�

where Si and Ri, respectively, denote the spin and coordinate
at site i in a single chain. For a well-defined spatial period-
icity �=2� /k, C�k� reaches its acme at wave vector k.

We line out the parameters taken for our simulation: J1

=6.4 meV, J2=−11.9 meV, J4=7.6 meV, J�=1.8 meV,
gL=2.3, and �=10. These parameters are chosen according
to reported values.17,19 The Curie temperature Tc�23 K and
the value of P ranges from 3 to 10 �C /m2, giving the dis-
placement of O between 10−4�10−3 Å with �ze /kB=5
�105 K and �xe /kB=2.5�105 K.

A typical snapshot showing the spin configuration at the
lowest T is presented in Fig. 2�a�, indicating the spiral spin
order along the chain direction. In Fig. 2�b�, C�k� as a func-
tion of k at various T under H=0 is presented. At lower T
�=5, 10 K�, the sharp characteristic peaks at k�0.32� are
observed, confirming the stability of the incommensurate
magnetic �ICM� phase. However, the peak height decreases
with increasing T, demonstrating the gradual suppression of
the ICM phase. Figure 2�c� depicts a typical T-dependence of
C�k=0.32�� and Pc at H=0. The two order parameters have
the same ordering point within the simulation errors, indicat-
ing the strong mutual influence of ferroelectricity and mag-
netic order. The simulated Pc below T=10 K is �6 �C /m2

and the FE transition occurs at T=TC�15 K, both compa-
rable to experimental values.

The problems come out when one looks at the response
of P to H. We summarize the simulated results in Fig. 3

where the simulated Pa and Pc as a function of T at various
H �Ha :H �a, Hb :H �b, Hc :H �c� are plotted in order to com-
pare with experimental data. There are several substantial
differences between the simulated results and experiments.

�i� Experimentally, the measured Pc�T� reflects the first-
order FE transition by which Pc appears at T�Tc and
then rapidly approaches a saturated value. However,
in our simulation this transition is gradual and of
second-order characters, ascribed to the fact that the
spiral spin ordering itself is of second order. With de-
creasing T, this spiral spin ordering is gradually en-
hanced, leading to gradually increasing polarization.

�ii� Experimentally, Pc is suppressed and Pa is generated
for increasing Hb, i.e., the polarization flops from the
c-axis to the a-axis. The spins should flip to the ac
plane when the field applies along the b-axis. By such
a mechanism, nonzero Pa would be observable due to
the ME coupling. This is confirmed by our simulation.
However, the behavior of Pc under various Hb, char-

FIG. 2. �Color online� �a� Typical MC snapshot of the spiral spin structure at
T=5 K. �b� Spin structure factor at various temperatures. �c� Polarization Pc

and C �0.32�� as a function of T at zero H.
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acterized by a shifting of TC toward the low-T side, as
shown in Fig. 3�a�, is different from the experimen-
tally observed one where no shifting is observed. At
the same time, the simulated Pa under various Hb also
indicates that the change in P in real LiCu2O2 may be
from other unrevealed origin. Furthermore, at low T,
the spiral spin order is very robust. Its melting re-
quires a field Hb as high as 35 T. A complete suppres-
sion of Pc cannot be achieved unless Hb is as high as
70 T, which is far higher than the experimental value
of �10 T. Such a big difference may be due to the
fact that in real LiCu2O2, a suppression of Pc at Hb

�10 T does not mean a broken spiral spin order but
a flop to Pa. However, in the present model, no
mechanism other than breaking the spiral spin order is
responsible for the polarization suppression. On the
other hand, the ME coupling term helps to stabilize
the long-range spiral spin order and act against the
effect of H. Therefore, extra magnetic field is neces-
sary to destroy the spiral spin order and suppress the
polarization.

�iii� The above results are of generality if one looks at the
ferroelectricity upon application of H along the
a-axis, c-axis, Ha, and Hc, respectively. The simulated
data are presented in Figs. 3�c� and 3�d�. Since the
spiral spins at H=0 lie in the bc plane and are per-
pendicular to Ha, the spiral order remains metastable
against Ha because increasing Ha does not destabilize
any of these spiral spins, while the response of these
spins to Hc is much more sensitive. This is the reason
why Pc behaves more robust against Ha than Hc. The
stable Pc is observed even when Ha is as high as 80 T.
Furthermore, the appearance of Pa with increasing
Ha, observed experimentally, cannot be produced by
the simulation. On the other hand, it is expected that
Hc may flip the spiral plane from the bc to ab plane so

that Pc may be suppressed with increasing Hc. This is
confirmed by our simulation. Therefore, it is reason-
able to argue that experimentally observed enhance-
ment of Pc with increasing Hc must be due to some
other origin.

Anyway, so far available experiments on the ferroelec-
tricity of LiCu2O2 and its response to magnetic field cannot
be satisfactorily explained by the Mostovoy theory alone,
even in the qualitative sense.

The present work allows us to argue that the spiral spin
order may not be the unique origin for the ferroelectricity
generation in LiCu2O2.
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The Wang-Landau algorithm is used to study the thermodynamic and magnetic properties of triangular
spin-chain system based on two-dimensional Ising model in order to understand the magnetic-order dynamics
in Ca3Co2O6 compound. The calculated results demonstrate that the equilibrium state of the rigid spins
produces the two-step magnetization curve at low temperature even when the random-exchange term is con-
sidered. This work indicates that the four-step magnetization behavior observed experimentally must be due to
the nonequilibrium magnetization.

DOI: 10.1103/PhysRevB.79.172405 PACS number�s�: 75.40.Mg, 02.70.Uu, 05.50.�q

During the past few years, spin-chain system Ca3Co2O6
has drawn considerable attention from both experimental and
theoretical points of view due to their unique magnetic
behaviors.1–17 As revealed experimentally, Ca3Co2O6 has a
rhombohedral structure composed of Co2O6 chains running
along the c axis of the corresponding hexagonal cell. The Ca
ions are situated between them and are not involved in mag-
netic interactions.1 These chains are built by alternating,
face-sharing CoO6 trigonal prisms and CoO6 octahedral.
Each chain is surrounded by six equally spaced chains, form-
ing a triangular lattice on the ab plane that is perpendicular
to the chains along the c axis.

The most intriguing feature for such a spin-chain system
is a steplike magnetization �M� as a function of external
magnetic field �B� applied along the chains. Experimentally,
two steps are observed in the temperature �T� range of 10–25
K. Close to B=0, M reaches the first plateau at M =M0 /3
�where M0 is the saturated magnetization�. Then the plateau
stretches up to B=3.6 T where M springs up to M0. Experi-
mentally, when T�10 K, the first step at M0 /3 splits into
three equidistant steps at a slow magnetic-field sweep rate,
thus constituting a four-step magnetization pattern. The ori-
gin of such four-steplike magnetization behavior has been
extensively studied most recently, and it is still a matter of
debate.7–9

For Ca3Co2O6, because the intrachain-ferromagnetic
�FM� interaction is much stronger than the interchain-
antiferromagnetic �AFM� coupling, the chains can be as-
sumed to be in two ordered states �spin-up or spin-down� at
low T. Based on this basic assumption, Kudasov developed a
two-dimensional �2D� Ising model to investigate the steplike
magnetization by an analytical method regarding a spin
chain as a large rigid spin and assuming a quench at T=0.9

By this theory at the fourth approximations, four equidistant
steps can be produced in accordance with experimental
curves. Similar model was proposed and employed for ex-
ploring the static magnetization behavior of Ca3Co2O6 using
Monte Carlo simulation,15,16 and the four-step behavior, con-
sistent with experimental observation, was confirmed when a
random-exchange term was taken into account.

Nevertheless, recent experiments seemed to question this
four-step magnetization once more. It was observed that the
number of the steps in the magnetization curve strongly de-
pends on the sweep rate of magnetic field B. As the sweep
rate is decreased, some of the magnetization steps disappear.
This phenomenon shows that the four-step magnetization
curve may be due to the nonequilibrium magnetization dy-
namics. Most recently, Kudasov et al.11 performed the simu-
lation of the nonequilibrium evolution by means of a
Glauber-type form of the spin-flip probability and investi-
gated the dependence of the magnetization curves on the
magnetic-field sweep rate in good agreement with the experi-
mental data. In addition, the influence of metastable states on
the magnetic behavior in Ca3Co2O6 compound has been
studied in detail using the same model.14 As the relaxation
time increases, the first three plateaus observed at low T tend
to merge into one step, likely generating eventually a two-
step pattern. These works seem to indicate that the spin-chain
system of triangular lattice under B at low T is easily trapped
into metastable states from equilibrium and probably the
equilibrium state of the magnetization dynamics is not of
four-step pattern.

Therefore, it is still an unsolved issue to demonstrate
this equilibrium pattern in order to understand the magnetic
behavior of the system. However, conventional Metropolis
algorithm of Monte Carlo simulation based on local spin
flip often fails to relax into the equilibrium state because
the model we studied here contains the frustration in
the exchange interaction due to the triangular lattice geom-
etry. To overcome this difficulty, one can appeal to the
Wang-Landau �WL� algorithm which enables the system to
avoid trapping to a metastable state because this algorithm is
very powerful to reach the ground state �equilibrium state�.
Since it was proposed in 2001,18,19 the WL algorithm has
been successfully applied to various problems, such as com-
plex spin models,20–22 quantum systems,23,24 fluids,25,26 and
proteins.27,28 However, as far as we know, there has been no
work on the magnetic properties of Ca3Co2O6 approached by
the WL algorithm in any quantitative sense. In this article,
we shall use the standard WL algorithm to calculate the ther-
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modynamic and magnetic properties of Ca3Co2O6 in order to
understand the complex magnetic order at the equilibrium
state.

Based on the rigid-chain model,9 the three-dimensional
issue of Ca3Co2O6 is reduced to the 2D AFM triangular Ising
model29

H = J �
�m,n�

SmSn − B�Bg�
m

Sm, �1�

where J�0 is the AFM-interchain coupling, Sm is the effec-
tive spin moment of a spin chain at the site m with the value
S, B is an external magnetic field applied along the direction
of up-spin chains �+c axis�, g is the Lande factor, and �B is
the Bohr magneton; �m ,n� denotes the summation over all
the nearest-neighbor pairs.

For investigating the magnetic properties of a system with
the WL algorithm, one has to calculate the density of state
�DOS� g�E ,M� in energy and magnetization space where E
denotes the energy of a given spin configuration of the
Hamiltonian without external field. Following the pathbreak-
ing work of Wang and Landau,18,19 we choose the simulation
procedure stated in Refs. 18 and 19.

At the very beginning, we set all entries to the DOS
g�E ,M�=1 and a histogram RH�E ,M�=0 for all possible
�E ,M� states. Then we begin our random walk in the energy
and magnetization space by flipping spins randomly. The
transition probability from state �E1 ,M1� to state �E2 ,M2� is

p�E1,M1 → E2,M2� = min�g�E1,M1�
g�E2,M2�

,1� , �2�

where states �E1 ,M1� and �E2 ,M2�, respectively, denote en-
ergies and magnetizations before and after a spin is flipped.
Each time a new state �Ei ,Mi� is visited, we modify the
existing DOS by a modification factor f0; i.e., g�Ei ,Mi�
=g�Ei ,Mi�f0. In this Brief Report an initial modification fac-
tor of f0=exp�1�, which allows us to reach all possible en-
ergy levels quickly, is used. If the random walk rejects a
possible move and stays at the same state �E ,M�, we also
modify the existing DOS by the same modification factor.
Each time, the histogram RH�Ei ,Mi� �the number of visits�
in the energy and magnetization space is accumulated. When
the histogram becomes “flat,” we reduce the modification
factor to a finer one according to the recipe f i+1= f i

1/2, reset
the histogram RH�E ,M�=0, and begin the next random
walk. After finishing the initial run we perform 27 cycles,
resulting in a final modification factor of 1.000 000 007 45.
In our simulations, the flat histogram means that histogram
RH�E ,M� for all possible �E ,M� is not less than 80% of the
average histogram. In addition, the histograms are generally
checked at each 10 000 Monte Carlo sweeps.

After g�E ,M� has been obtained, we calculate the thermo-
dynamic and magnetic quantities at any T and B. For ex-
ample, the internal energy can be calculated by

U�T,B� =

�
E,M

Hg�E,M�exp�− H/kBT�

�
E,M

g�E,M�exp�− H/kBT�
� 	H
T,B. �3�

The magnetization M�T ,B� as a function of T and B can
be calculated from

M�T,B� =

�
E,M

Mg�E,M�exp�− H/kBT�

�
E,M

g�E,M�exp�− H/kBT�
. �4�

Our simulation is performed on L�L triangular lattices
with period-boundary conditions. Unless stated otherwise,
L=12 is chosen in this Brief Report. The values of these
parameters for the simulation are listed in Table I, and these
parameters have been employed for a number of earlier the-
oretical and simulation works.11,14–16

The simulated DOS g�E ,M� for Ca3Co2O6 compound is
presented in Fig. 1�a�. In the low-energy range �E�0�, as
shown in Fig. 1�b�, g�E ,M� shows a parabolic shape for a
given energy value and reaches its single maximum value
at M =0. The calculated DOS at the lowest energy
Emin��−26.64� is quite considerable, indicating that the
ground state is thus highly degenerate and can be any of a
number of spin-frustrated configurations with the same en-

TABLE I. Parameters chosen for the simulation.

Parameter Value Parameter Value

kB�J /K� 1.3807�10−23 J�J� 3.592�10−25

�B�J /T� 9.274�10−24 S 32
g 2

FIG. 1. �Color online� Evaluated DOS ln�g�E ,M�� for
Ca3Co2O6 compound and curves in �b�–�d� represent the cross-
sectioned ln�g�E ,M�� at various energy values E.
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ergy Emin �within the simulation uncertainty�. The similar
behavior can be observed for some other systems such as
Mo72Fe30.

22 In the intermediate energy range �0�E /kB
�62.9 K�, as shown in Fig. 1�c�, the single maximum of
g�M� at M =0 is replaced by a relatively flat profile. It can be
observed that the profile becomes wide with increasing E and
eventually concave at E /kB�37 K. Furthermore, the pos-
sible M range is divided into two separate subranges from
M =0 when E exceeds 62.9 K. This behavior may stem from
the fact that the model has discontinuous degrees of freedom.
The two subranges shrink themselves when E further in-
creases, as shown in Fig. 1�d�. At the highest energy, only
two M states �M =1,−1� which correspond to the ferromag-
netic orders are possible. Note that the calculated DOS
g�E ,M� covers all possible �E ,M� space, so the thermody-
namic and magnetic properties of the system can be accu-
rately evaluated with the former expressions.

The calculated M as a function of T and B is shown in
Fig. 2. The magnetization curves clearly show two steps at
low temperature �T�20 K�. When field B increases from
zero, M rapidly reaches the first plateau �M �M0 /3� and
then switches to M0 above B�3.6 T. As it was reported in
Ref. 9, the first plateau results from the homogeneous ferri-
magnetic order of the spin chains due to the AFM interaction
between the chains. As temperature is raised, the steps are
progressively washed out due to the thermal activation.
When T�40 K, the first step disappears completely and the
M-B relation becomes linear. Therefore, our simulation re-
sult convincingly demonstrates that the equilibrium state of
the perfect triangular lattice of the rigid spins does produce
the two-step magnetization curve at low temperature.

It is understood that for realistic materials significant ran-
dom field as background of the lattice interactions may be
available. Now we consider the effect of inhomogeneity in
the system. For such a purpose, a random-exchange term
�m,n is taken into account. The Hamiltonian can be written as
follows:

H = �
�m,n�

�J + J�m,n�SmSn − B�Bg�
m

Sm, �5�

with
�m,n = span · RAMm,n, �6�

where RAMm,n is the random number in �−1,1� and span
represents the magnitude of the random-exchange term. Such
a strategy was extensively accepted for random fields.

In order to compare with earlier work,15,16 a random-
exchange term with its magnitude span=0.15 is considered
first. Figure 3 shows the comparison of the magnetization
and internal energy at various T as a function of B for the
WL and Metropolis simulations. The two simulations are
well coincident with each other at T=10 K, as clearly shown
in Figs. 3�a� and 3�b�, indicating that the Metropolis algo-
rithm also allows the equilibrium state to be reached at rel-
evant T just as the WL method does. However, there is a big
discrepancy between the two simulations below B=3.6 T at
T=2 K which is shown in Figs. 3�c� and 3�d�. The M0 /3
step splits into three equidistant steps in the Metropolis simu-
lation while it keeps invariant in the WL simulation. The
relevant internal energies obtained from the Metropolis

simulation are higher than the corresponding WL simulation
results, as clearly shown in Fig. 3�d�, allowing us to argue
that the four-step M�B� curve must attribute to the nonequi-
librium states. The equilibrium state of the rigid spins can
only produce the two-step magnetization curve at T=2 K
even when the random-exchange term is considered.

Now we can check the dependence of the steplike mag-
netization feature on the inhomogeneity �random-exchange
term� probably available in realistic systems, and the simu-
lated results are presented in Fig. 4�a�, where M as a function
of B at T=2 K upon various span values are plotted in order
to understand the effect of the random exchange. One can
find that the random-exchange term only smoothens the
jumps but cannot assist in generating additional steps. The
smoothness of the M�B� curves may be due to the inhomo-
geneous states induced by the random exchange. As span
arises from 0 to 0.3, the borders between the steps become
more and more faint. A similar result can also be found in
earlier work in which a mean-field approach is employed to
study the magnetic properties of the triangular lattice.16

At last, we come to check the finite-lattice-size effect in
our simulations in order to exclude the artificial facts due to
the finite lattice size. The simulated M�B� for different L at
T=2 K upon span=0.15 are plotted in Fig. 4�b�. It is dem-
onstrated that the finite-size effect on the magnetization of
the system is nearly negligible and our conclusion is reliable.

Our calculated results can be qualitatively explained by
means of the spin-configuration analysis. In such a magnetic

FIG. 2. �Color online� Simulated M /M0 as a function of T and
B.

FIG. 3. �Color online� Comparison of �a�,�c� M /M0 and �b�,�d�
U /N as a function of B calculated from WL method with computed
using the Metropolis algorithm at T=10 K and T=2 K.
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system, M is determined by the competition between the
exchange interaction and applied magnetic field. When the
random-exchange term is ignored, antiferromagnetic con-
figurations, ↑↑↓ �spin-up, spin-up, and spin-down� and ↑↓↓
appear with the same probability for a triangular sublattice at
B=0, leading to the zero M. However, a weak B breaks the
infinite degeneracy, leaving the ground state ↑↑↓ corre-
sponding to M =M0 /3.30 Such a regular ferrimagnetic struc-
ture is formed by taking one spin-down surrounding with six
chains of spin-up.15 As the static magnetic energy increases
to be comparable with the interaction energy, the central
down spin may flip. The critical field can be estimated to be
6JS / �g�B��3.6 T. So when B�3.6 T, the ferromagnetic
state ↑↑↑ is formed. When the random-exchange term is
considered, the perfect ↑↑↓ state may be partially destroyed
near the critical fields �B=0 and 3.6 T�, leading to the
smoothness of the M�B� curve.

The present work seems to reveal once more that geo-
metrically frustrated spin systems such as the spin-chain
Ca3Co2O6 offer very complicated spin configuration which is
very sensitive to external fluctuations. Although this argu-
ment has been made repeatedly, a reliable experimental ap-
proach of the fascinating magnetic phenomena in these frus-
trated systems becomes extremely challenging in terms of
understanding their ground state or equilibrium states. The
magnetic property of Ca3Co2O6, as an example, has attracted
attention for many years, but clear knowledge of its equilib-
rium magnetization remained ambiguous before the present
WL simulation.

In conclusion, we have calculated the magnetization of
triangular spin-chain system as a function of temperature and
applied magnetic field using the WL method. Our simulation
demonstrates that the equilibrium state of the rigid spins pro-
duces the two-step magnetization curve at low temperature
regardless of the random-exchange term being taken into ac-
count or not. The random-exchange term only smoothens the
jumps but cannot result in additional steps. It is indicated that
the four-step magnetization curve observed in experiments
must be due to the nonequilibrium magnetization.
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means of Monte Carlo simulation. Besides the conventional magnetic-chiral phase, the phase diagram shows
an obvious region in which the magnetism is algebraically ordered but the chirality remains disordered. In
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I. INTRODUCTION

Symmetry breaking decides orders. The spontaneous
breaking of continuous symmetry in magnetic systems leads
to the magnetic order, such as ferromagnetic or antiferromag-
netic order. However, this mechanism may not be always
true and may fail in low-dimensional systems due to the
thermal or quantum fluctuations.1 For instance, the classical
two-dimensional �2D� XY model cannot sustain long-range
magnetic order even with trivial thermal fluctuations, and
alternatively the so-called algebraic-magnetic �aM� order
with Kosterlitz-Thouless �KT� transition may ensue.2 On the
contrary, the spontaneous breaking of discrete symmetry is
still allowed.3 The spin liquids are typical states with no
conventional magnetic order, and yet can show some non-
trivial orders which break some hidden discrete symmetries
due to the frustrated interactions, and thus can be scaled by
the topological number. For instance, spin chirality is rel-
evant with the spontaneous breaking of discrete Z2
symmetry.4 The vector spin chirality �vSC� is defined as
��Si�S j� with the spin Si at site i, which is odd under
spatial inversion and is closely related to multiferroic
behavior.5–8 Besides the vSC, there is another scalar spin
chirality �Si�S j �Sk�, which breaks the time-reversal sym-
metry and parity, and is related to the noncoplanar spin order
observed in nontrivial glass transitions.9–11

A typical model which contains both continuous and dis-
crete symmetries can give rise to fertile phase transitions.
The 2D fully frustrated XY �FFXY� model is a typical repre-
sentative with a continuous U�1� symmetry associated with
global spin rotations and a discrete Z2 symmetry since the
ground state is double degenerate.4,12 At low temperature
�T�, this model has both algebraic XY order and long-range
vSC order. As T increases, a two-stage transition will occur
in which the XY order and chiral order will be destroyed at
TKT and T�, respectively.13–16 In fact, the two transition tem-
peratures are extremely close to each other, with T� slightly
higher than TKT, indicating that the chiral order is associated
with the algebraic-magnetic order, although there does exist
a narrow T range only with chiral order.

Based on these studies, Park et al. recently investigated
the FFXY model on a triangular lattice in which an antifer-
ronematic coupling ��� is included. Their calculation showed
that a phase with both aM order and chiral order �magnetic-
chiral phase� can transform into a phase with algebraic-
nematic �aN� order and chiral order �nematic-chiral phase�
with increasing � at low T.17 In Fig. 1, a schematic illustra-
tion of the transition from magnetic-chiral phase to nematic-
chiral phase is given. The spins within the same sublattice
arrange along or against a certain direction as visually shown
with red arrows �gray arrows� in Fig. 1�b�, forms the nematic
order. The chiral order in this novel nematic-chiral phase is
induced by the broken Z2 symmetry in the nematic phase. In
fact, the transition from an algebraic-magnetic order to a
nematic order in a regular XY model with the nematic cou-
pling was discussed earlier in Ref. 18, where it was pointed
out that the phase transition is associated with an Ising tran-
sition from an integer vortex pair excitation in the aM phase
to an half-integer vortex pair excitation in the nematic phase.

One may notice that the frustration in the model studied in
Ref. 17 is stemmed from the triangular lattice geometry, and
may question that if there are some interesting phases in
other frustrated magnetic systems in which the frustrations
are induced by ingredients such as the exchange interaction
other than the geometric frustration. However, as far as we
know, few works on this subject have been reported. In order
to make clear this question, we will study a FFXY model
with the nematic coupling on a square lattice. The phase

FIG. 1. �Color online� A schematic depiction of the transition
from �a� magnetic-chiral phase to �b� nematic-chiral phase.
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diagram obtained by means of Monte Carlo simulation
shows a phase in which the magnetism is algebraically or-
dered but the chirality remains disordered over an extended T
window. In addition, the nematic-chiral phase without mag-
netic order is also observed in the phase diagram, suggesting
that our model as another classical spin model exhibits a
vector chiral spin-liquid phase.

The remainder of this paper is organized as follows: In
Sec. II the model and the simulation method will be de-
scribed. Section III is attributed to the simulation results and
discussion. At last, the conclusion is presented in Sec. IV.

II. MODEL AND METHOD OF SIMULATION

Here, we study a classical XY spin model on a square
lattice. Different Hamiltonians for such a model were exten-
sively investigated by rigorous and numerical
approaches.18,19 We consider the following Hamiltonian
which includes the frustration ingredient

H = − J1�
�i,j�

cos��i − � j − Aij� − J2�
�i,j�

cos�2�i − 2� j − Aij� ,

�1�

where 0��i�2�, indicates the spin orientation at site i,
�i , j� denotes the summation over all the nearest-neighbor
spin pairs, J1=1−� the strength of the first coupling, J2=�
the nematic coupling, the bond angle Aij =� or −� for those
bonds where both yi and yj, the y coordination of sites i and
j, are odd, and Aij =0 elsewhere. For definition of the energy
parameters J1 and J2, the Boltzmann constant and also the
lattice constant are set to unity. The J2=0 limit was exten-
sively studied due to its relevance with Josephson-junction
arrays in a uniform transverse magnetic field, and it is be-
lieved to have the chirality transition at T�	0.452 and the
KT transition at TKT	0.446.13–15,20–23

Unlike the model studied in Ref. 19, which lacks the frus-
tration ingredient, our model contains possible chiral orders
induced by the frustration in the magnetic coupling. The
ground state for our model is one in which the angular dif-
ference between the nearest neighbors is �ij =�i−� j −Aij
= 	� /4 in the J2=0 limit and 
ij =2�i−2� j −Aij = 	� /4 in
the J1=0 limit. Therefore the two interactions are frustrated,
and the ground state is decided by the competition between
the two interactions, which is different from the model in
Ref. 17 where no frustration exists between the J1 and J2
terms and the first term just lifts the degeneracy of the
ground state of the second term.

Our simulation is performed on a 2D L�L �L=16,
24,32,40,48,64� square lattice with period boundary condi-
tions using the standard Metropolis algorithm and tempera-
ture exchange method.24,25 Here, the temperature exchange
method is utilized in order to prevent the system from trap-
ping in metastable free-energy minima caused by the frustra-
tion, if any. The initial spin configuration is totally disor-
dered. Typically, the initial 1.5�105 Monte Carlo steps are
discarded for equilibrium consideration and another 2�105

Monte Carlo steps are retained for statistic averaging of the
simulation.

III. SIMULATION RESULTS AND DISCUSSION

A phase diagram in the �-T plane for the present model is
constructed by the extensive simulation, and without any de-
tailed analysis the simulated result is shown in Fig. 2. The
three curves mark the boundaries between three different
phases. The transition from the chiral �C� phase to the para-
magnetic �PM� phase occurs at T�, and the transition from
the algebraically correlated phase to the PM phase occurs at
TKT. As � increases, the transition from the aM order to the
aN order occurs at TN. In addition to the conventional
magnetic-chiral order, our simulated result shows a obvious
region in which the magnetism is algebraically ordered but
the chirality remains disordered �T��TKT�. In the large �
region, a nematic-chiral phase without magnetic order is ob-
served, same as earlier report.17 In Sec. III A, we shall ad-
dress separately these phase transitions in the phase diagram.

A. KT transition at TKT

To determine TKT, the point for the KT transition, we
measure the helicity modulus, also called the spin-wave
stiffness.4,26 For this case, the helicity modulus can be de-
fined by

� =
J1

L2
�
�i,j�

xij
2 cos��i − � j − Aij��

+
4J2

L2 
�
�i,j�

xij
2 cos�2�i − 2� j − Aij��

−
1

TL2
�J1�
�i,j�

xij sin��i − � j − Aij�

+ 2J2�
�i,j�

xij sin�2�i − 2� j − Aij�
2� , �2�

where xij =xi−xj is the separation of the x coordinates. For a
given lattice size L, the KT transition point can be estimated
by the crossing between the straight line �2 /���J1+4J2�T
= �2 /���1+3��T and the helicity modulus curve ��T�. The

FIG. 2. �Color online� Calculated phase diagram for the model
in Eq. �1�. The high-temperature paramagnetic phase is denoted by
PM, the phases with algebraic correlations in magnetic and nematic
order by aM and aN, respectively, and the long-range correlations in
the chirality order by C. The statistical errors of all the symbols are
the same as their thickness in the T direction.
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helicity modulus for L=16–64 at �=0.5 and 0.9 are plotted
in Figs. 3�a� and 3�c�, and the corresponding crossing points
are shown in Figs. 3�b� and 3�d�. In the bulk limit, the ex-
trapolations using the polynomial fits give TKT=0.340�3� at
�=0.5 and TKT=0.403�1� at �=0.9. This method has been
approved to be effective in giving a good estimate of the KT
transition temperature in some earlier works, and another
method taking into account the logarithmic correction gives
a similar result.17,23

B. Chirality transition at T�

For the chirality transition, it is customary to study the
staggered magnetization16

M =
J1

L2��
i

�− 1�xi+yim1i� +
2J2

L2 ��
i

�− 1�xi+yim2i� , �3�

where the sum is over all the plaquettes of the system, m1
=sin �12+sin �23+sin �34+sin �41 and m2=sin 
12
+sin 
23+sin 
34+sin 
41 are the vorticities. For determin-
ing the phase-transition temperature, it is convenient to em-
ploy the Binder’s fourth-order cumulant27

UL = 1 −
�M4�

3�M2�2 , �4�

where � . . . � is the ensemble average. For the usual cases
where finite-size scaling applies, this quantity is size inde-

pendent at the critical point. So, the critical temperature T�

can be obtained from the crossing of UL for different L. As
an example, the simulated UL as a function of T at �=0.5
and 0.9 for different lattice sizes are plotted in Fig. 4. From
the well common defined crossing points shown in Figs. 4�a�
and 4�b�, we estimate T�=0.328�5� at �=0.5 and T�

=0.408�9� at �=0.9.
As clearly shown in Fig. 2, T� stays slightly above TKT in

the small � range ���0.15� and in the large � region ��
�0.7�, same as earlier report.17 In addition, the phase dia-
gram contains two crossings of the KT transition and the
chirality transition, as well as a certain � range in which TKT
stays well above T�. The identification of TKT well above T�

FIG. 3. �Color online� Helicity modulus � as a function of T for various sizes L �a� at �=0.5 and �c� �=0.9. The straight line is
�2 /���1+3��T. The crossing temperatures of this line and � for each L−1 are shown in �b� for �=0.5 and �d� �=0.9 with the extrapolation
to L−1=0.

FIG. 4. �Color online� Binder’s fourth-order cumulant UL as a
function of T for different lattice sizes at �a� �=0.5 and �b� �
=0.9.
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proves the existence of the phase with only aM order in our
model. In fact, the phase with only aM order has been ob-
served in earlier work in which the phase diagram of the
generalized FFXY model on square lattice is studied in
details.23 It is identified that the chirality order disappears
when p, the manipulated parameter of the interaction poten-
tial, becomes larger than its critical value pc, due to the
ground state in this region has no broken chirality symmetry.
This result is different from our work where the chirality
order exists in the whole � region. As analyzed earlier, the
two terms �J1 and J2� of our model compete with each other
for the formation of the chirality orders, while both of them
contribute to the KT phase transition. Therefore in the
middle � region, the chirality order can be significantly sup-
pressed, leading to T� stays well below TKT.

In Fig. 5, we plot the simulated M and its susceptibility,
�= �L2 /T���M2�− �M�2�, in the scaling form: M
=L−
/�f��t�L1/��, �=L�/�g�tL1/��, with t= �T−T�� /T�, at �
=0.05, 0.5, and 0.9. It is observed that the chiral transition at
these small sizes with the critical exponents �=0.813�5�, 

=0.089�8�, and �=1.448�5� in the small � range ���0.15�
and in the large � region ���0.7�, consistent with earlier
report at �=0.14 However, recent research at large sizes �up
to L=O�103�� at �=0 has demonstrated that the chiral criti-
cal exponents are those of the 2D Ising model, i.e., �=1, 

=1 /8, and �=7 /4 which can be observed only after a preas-
ymptotic regime.21,22 The non-Ising exponents obtained ear-
lier have been thought of as an enhanced finite-size scaling
effect at small sizes due to the screening length associated

with the nearby KT transition.15 On the other hand, in the
middle � region �0.2���0.6� where TKT stays well away
from T�, the finite-size scaling effect can be significantly
weakened leading to the chirality transition with the expo-
nents of 2D Ising model even at small sizes. So, it is likely
that the non-Ising exponents obtained in this work are also
effective ones and the true universality class of the chirality
transition in the whole � region is that of 2D Ising transition.

C. Nematic transition at TN

For ��0.68, a further transition from the aN phase to the
aM one, which is associated with the transition from the
integer vortex pair to the half-integer vortex pair, occurs at
TN. Following earlier work,17 the order parameter can be
defined by

I = �4/L2��
i�B

sgn�cos��i − �i0
�� , �5�

where �i0 is the spin angle at some reference site i0 of the
sublattice B. Here, the site i in the sublattice B is selected
with both odd xi and yi. In the nematic phase, �i and �i+�
occur with equal probabilities, leading to a zero-order param-
eter I. In Fig. 6�a�, parameter I and specific heat C as a
function of T at �=0.9 for L=48 are plotted. The sudden flop
of I and the lower-temperature specific-heat peak at TN
=0.12�2� clearly mark the nematic transition. However, the
nematic transition cannot be scaled with the 2D Ising critical
exponents, which may due to the frustrations in our system.
As clearly shown in Fig. 2, this nematic transition occurs at
a much lower temperature than either the chiral or the KT
transition, leading to the existence of a nematic-chiral phase
in which the chirality is ordered but the magnetism remains
disordered. The chiral phase is induced by the breaking of Z2
symmetry in the nematic transition as reported earlier. To
some extent, our work proves that the same mechanism may
hold true in some other similar frustrated systems. In Fig.
6�b�, we show a snapshot of the nematic-chiral order at T
=0.2 for �=0.9. The spins within the same sublattice gener-
ally parallel or antiparallel with each other, as clearly shown
with the red arrows. Therefore, apart from the FFXY model
on the triangular lattice, our model is another classical spin
model which exhibits a vector chiral spin-liquid phase.

FIG. 5. �Color online� A scaling plot of M and its susceptibility
� for �=0.05, �=0.5, and �=0.9.

FIG. 6. �Color online� �a� Simulated curves of I and special heat
C as a function of T at �=0.9. �b� A snapshot of the nematic-chiral
state at T=0.2 for �=0.9. The spins in the same sublattice are
shown with red arrows �gray arrows� for clarity.
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IV. CONCLUSION

In summary, we have studied the phase diagram of a frus-
trated XY model with a nematic coupling ��� on the square
lattice using Monte Carlo simulation. The phase diagram for
middle � exhibits a phase in which the magnetism is ordered
but the chirality remains disordered, which is ascribed to the
competition between the two couplings in the formation of
the chirality order. For large �, the simulated result shows
the existence of the nematic-chiral phase without any mag-
netic order, which qualifies our model as another classical

spin model that exhibits a vector chiral spin-liquid phase, in
addition to the FFXY model on the triangular lattice.
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The magnetoelectric coupling in Eu0.55Y0.45MnO3 is studied based on a microscopic spin model
which includes the superexchange interaction, the single-ion anisotropy, the Dzyaloshinskii–Moriya
interaction, and the cubic anisotropy. Our Monte Carlo simulation reproduces the experimentally
observed multiferroic response to magnetic field B. It is demonstrated that the magnetic field can
control the multiferroic behaviors by modulating the spin arrangements, leading to various flops of
electric polarization. In addition, an interesting state in which both the electric polarizations along
the a-axis and c-axis are activated under high B is predicted and discussed. © 2011 American
Institute of Physics. �doi:10.1063/1.3565241�

Multiferroics are attracting continuous attentions due to
the interesting physics and potential applications.1 In the past
few years, multiferroicity has been found in a number of
systems, such as spiral magnets, orthorhombically distorted
perovskite manganites RMnO3 �R=Tb, Dy, Eu1−xYx, etc.,
crystal structure on the ab-plane is shown in Fig. 1�a��,2

Ni3V2O8,3 MnWO4,4 and a conical magnet CoCr2O4.5 The
ferroelectricity in these materials is induced by spiral spin
order through the inverse Dzyaloshinskii–Moriya �DM�
mechanism �alternatively the spin current model�.6 In the
spin current scenario, adjacent two spins �Si ,Sj� can generate
a local polarization Pij �−eij � �Si�Sj� with eij the unit vec-
tor connecting the two neighboring sites. Thus, polarization
P in the ab-plane cycloidal spin �ab-CS� phase with propa-
gation vector along the b-axis is induced along the a-axis
while in the bc-plane cycloidal spin �bc-CS� phase it is in-
duced along the c-axis, as illustrated in Figs. 1�b� and 1�c�.
RMnO3 offers the capability for magnetic control of ferro-
electricity via the strong magnetoelectric �ME� coupling. For
TbMnO3 and DyMnO3, application of a magnetic field B
along the b-axis �field Bb� flops P from the c-axis �polariza-
tion Pc� to the a-axis �polarization Pa�.7 Several theoretical
works in order to understand the origin for such multiferroic
response and the ME coupling in RMnO3 are available.8,9

Most recently, a microscopic spin model �Mochizuki–
Furukawa model� which includes the superexchange interac-
tion, the single-ion anisotropy �SIA�, the DM interaction, and
the cubic anisotropy, was proposed and reproduced the phase
diagrams of RMnO3 in the plane of temperature �T� versus
R-site ionic radius.9 It was demonstrated that the orthorhom-
bic lattice distortion mainly controlled by the R-ionic radius
tunes the SIA and the DM interaction energies and in turn
determines the competition between the ab-CS phase and
bc-CS phase. This leads to the flop of P from the a-axis to
the c-axis with reduced R-ionic radius. Subsequently, several
other phenomena have been well explained based on the
same or similar models.10–14 For example, the phase dia-

grams of TbMnO3 and DyMnO3 under magnetic field B have
been reproduced.11

On the other hand, several multiferroic states and strong
ME effects were revealed in RMnO3 �R=Eu1−xYx� by tuning
the R site ionic size.15–17 In Eu0.55Y0.45MnO3, polarization P
flops from Pa to Pc when B is applied along the a-axis �Ba�
while it flops from Pc to Pa with B along the c-axis �Bc� �see
Figs. 1�d�–1�f��.16 These ME phenomena may help us to un-
derstand the origin of the multiferroic response to B, due to
the fact that this system is free from the influence of mag-
netic moments of R ions. Furthermore, a multiferroic state in
which P is induced via the spin exchange striction mecha-
nism was observed in EuMnO3 under a field up to 30 Tesla
�T�.10 It is thus reserved to question some unrevealed phases
in Eu0.55Y0.45MnO3 in the high B range.

a�Electronic mail: liujm@nju.edu.cn.

FIG. 1. �Color online� �a� Crystal structure �ab-plane� of RMnO3. The in-
duced P and spin-helicity vector h=�ijSi�Sj in the ab-CS �b� and bc-CS
�c� states. Experimentally obtained B-T phase diagrams for �d� B �a, �e� B �b,
and �f� B �c are reproduced from Ref. 16.
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In this work, we study the Mochizuki–Furukawa model
with Mn spin S=2 on a cubic lattice.9 The Hamiltonian can
be written as H=Hex+HSIA+HDM+Hcub+HZeeman. The first
term Hex=��i,j�Jij � �Si ·Sj� denotes the spin exchange inter-
actions, where Jab=−0.8 and Jb=0.8 are the coupling con-
stants in the Mn–Mn bonds on the ab plane �Fig. 1�a��, Jc
=1.25 is the antiferromagnetic �AFM� exchange in the
Mn–Mn bonds along the c-axis. Here the energy unit is mil-
lielectron volt. The second term is the SIA, which consists of
two parts as HSIA=D ·�iS�i

i +E ·�i�−1�ix+iy · �S�i
i −S�i

i � with D
=0.25, E=0.30. Here, �i, �i, �i are the tilted local axes at-
tached to the ith MnO6 octahedron, as clearly given in Ref. 9.
For their direction vectors, we use the experimental data of
EuMnO3.18 The third term HDM represents the DM interac-
tions expressed by HDM=��i,j�di,j � �Si�Sj�. Here the DM
vectors di,j are determined by five DM parameters,
��ab ,	ab ,
ab�= �0.10,0.10,0.14� and ��c ,	c�= �0.30,0.30�.
The fourth term Hcub=A ·�i�Sxi

4 +Syi
4 +Szi

4 � /S�S+1� represents
the cubic anisotropy with coupling constant A=0.0162. The
last term HZeeman=−B�Bg�iSi stands for the Zeeman cou-
pling. Here g=2 is the Lande factor, and �B is the Bohr
magneton.

Our Monte Carlo simulation is performed on a 36�36
�6 cubic lattice with periodic boundary conditions using the
standard Metropolis algorithm and temperature exchange
method.19–21 The selected parameters reproduce well the
magnetic states of Eu0.55Y0.45MnO3 in the absence of B.
With decreasing T, the system successively exhibits the
paramagnetic �PM� phase, the sinusoidal collinear antiferro-
magnetic �sc-AFM� order with Mn spins along the b-axis,
the bc-CS phase, and the ab-CS phase. The specific heat
C�T�= ��H2�− �H�2� /NkBT2 and spin-helicity vector h
�T�
= �	�iSi�Si+b	� /NS2 �
=a ,b ,c� are calculated to determine
the transition points and spin structures, here N is the number
of Mn ions, kB is the Boltzmann constant, and the brackets
denote thermal and configuration averaging. The spin and
spin-helicity correlation functions in the momentum space,
�
�k ,T�=�ij�S
i ·S
j�exp�ik · �ri−rj�� /N2 and 

�k ,T�
=�ij�h
i

b ·h
j
b �exp�ik · �ri−rj�� /N2 for 
=a ,b ,c are also calcu-

lated in order to characterize the spin structures.
The calculated phase diagram in the B-T plane with

B �a-axis is shown in Fig. 2�a�, which reproduces the ob-
served P flop from the a-axis to the c-axis, in associated with
the flop of the spiral-spin plane from the ab-plane to the
bc-plane. In the low field range �Ba=3.0 T�, the simulated
C�T� curve shows three specific-heat peaks, indicating the
successive three phase transitions with decreasing T, as
shown in Fig. 2�b�. The first one is the transition from the
PM phase to the sc-AFM phase. When T falls down to the
second transition point, spin-helicity vector ha�T� increases
while hb�T� and hc�T� remain small, fingering a transition to
the bc-CS order. At the third transition, hc�T� steeply in-
creases, accompanied with the sudden drop of ha�T�, as a
sign of spin spiral flop from the bc-plane to the ab-plane. In
addition, the third transition point shifts toward the low-T
side as Ba increases, indicating that the spiral-plane gradually
flops from the bc-plane to the ab-plane at low T. As Ba
increases up to 5 T and above, the system exhibits only two
transitions at low T. For instance, at Ba=6 T, C�T� shows
two peaks and ha�T� is small over the whole T-range, as
shown in Fig. 2�c�. This simply indicates that the bc-CS

order component if any is completely suppressed and the
ab-CS order occupies the whole T-range below the second
transition point, in agreement with experiments. It is well
known that for an isotropic AFM or spiral spin system, field
B tends to align the spins in perpendicular to B. The flop of
spiral spin order into the bc-plane from the ab plane under
high Ba becomes physically reasonable. Surely, such spiral-
plane flop must be accompanied with the reorientation of P.

The effect of B on the multiferroicity revealed above
also applies to the case with B �c-axis �Bc�. The calculated
Bc-T phase diagram is displayed in Fig. 3�a�. The magnetic
field applied along the c-axis suppresses the bc-CS order
while it enhances the ab-CS order, resulting in the flop of P
from the c-axis to the a-axis. The ab-CS order overwhelms
the bc-CS order at Bc
3.0 T, coinciding with experiments.
For details, the calculated C�T� and h
�T� for Bc=6.0 T are
shown in Fig. 3�b�, indicating that the ab-plane spiral spin
order is completely suppressed.

Subsequently, we look at the case of B �b-axis �Bb�. A
prominent feature is that the magnetic phases in
Eu0.55Y0.45MnO3 show little dependence on Bb up to Bb
=7.0 T, which is also reproduced in our simulation. At low
field, the three magnetic transitions remain essentially un-
changed and in fact no changes in the transition points �not
shown here�. One notes that for RMnO3, the ac-CS order is
unfavorable due to the fact that it cannot be stabilized by the
DM interaction and the SIA. A low Bb cannot flip the spins
into the ac-plane from the initial ab-plane and bc-plane, sug-
gesting the robustness of the ab-CS or bc-CS orders. For
high field case, as an example, we present the simulated C�T�
and h
�T� at Bb=9 T in Fig. 3�c�. The first and second tran-
sitions remain roughly unchanged while the third transition
shifts toward the low-T side. In addition, below the second
transition point, both ha�T� and hc�T� have large values, in-
dicating the coexistence of the bc-CS order and the ab-CS

FIG. 2. �Color online� �a� Calculated Ba-T phase diagram of
Eu0.55Y0.45MnO3. Here, the high-temperature PM phase is denoted by PM,
accompanied by the paraelectric phase PE, CS order denotes cycloidal spin
order, sc-AFM stands for sinusoidal collinear antiferromagnetic order. Spe-
cific heat C�T� and spin-helicity vector h
�T� �
=a ,b ,c� as a function of T
under various Ba: �b� Ba=3.0 T, and �c� Ba=6.0 T.

102510-2 Qin et al. Appl. Phys. Lett. 98, 102510 �2011�

Downloaded 12 Mar 2011 to 222.200.137.73. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions



order. In this case, the spins have both a-axis components
and c-axis components. At the same time, the DM interaction
with vectors on the in-plane Mn–O–Mn bonds stabilizes the
ab-CS order while the DM interaction with vectors on the
out-of-plane bonds stabilizes the bc-CS order. This leads to
the simultaneous appearance of these two types of spiral spin
orders. Around the third transition point, ha�T� suddenly
drops to nearly zero, indicating the disappearance of the
bc-CS order. As Bb increases up to 12 T, the system exhibits
only two transitions, as shown in Fig. 3�d�. The former is a
transition from the PM phase into the sc-AFM phase, and the
latter is a transition into a magnetic phase in which the
ab-CS order and the bc-CS order coexist. According to the
spin-current model, both Pa and Pc will be observed in the
state with the coexisting ab-CS and bc-CS orders.

The Mochizuki–Furukawa model, proposed in the clas-
sical Heisenberg spin framework, shows surprisingly good
consistency with experiments. In particular, our simulations
reveal the coexistence of the ab-CS and bc-CS orders under
high magnetic field along the b-axis, implying the coexist-
ence of the a-axis and c-axis polarization components. In
fact, the corresponding magnetic structures are also con-
firmed in our calculated spin-helicity correlations 

. Fig-
ures 4�a� and 4�b� show the simulated 

�
=a ,c� under
Bb=15 T at T=5 K. Both 
a and 
c have their peak loca-
tions at k= �0,0 ,0�, indicating the coexistence of the ab-CS
and bc-CS orders. The simulated �
 also characterize this
spin structures. However, the predicted phase was not ob-
served in earlier experiments in which the high field phase
diagrams of Eu1−xYxMnO3�x=0 and 0.4� under Bb were stud-
ied in pulsed magnetic fields. This inconsistence between the
theory and experiment may be due to the fact that the actual

system is hard to be relaxed toward the equilibrium state at
low T because of the high potential barrier between the equi-
librium state and the quasi-static state under high B. Of
course, this issue remains to be checked further.
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We study the magnetic phase diagram of a classical Heisenberg spin model on the Shastry–Sutherland

lattice using the Monte Carlo method. The simulated results indicate that the particular collinear phase

region can be enlarged due to the implementation of easy-axis anisotropy, leading to the broadening

of the magnetization plateau in the classical Heisenberg model. Also, the random exchange term is

taken into account to study the effect of inhomogeneity on the steplike magnetization feature. It is

indicated that the multi-step magnetic behaviors in the low temperature range remain observable

when the inhomogeneity is in the appropriate range. VC 2011 American Institute of Physics.

[doi:10.1063/1.3536664]

The so-called “frustrated” spin system is a system in

which a spin configuration to fully satisfy the interactions

between every pair of spins cannot be found.1 During the

last decades, frustrated spin systems have attracted wide-

spread interest because very rich physics can appear in

these systems. For example, amusing magnetization pla-

teaus in the triangular spin-chain system Ca3Co2O6
2,3 and

Shastry–Sutherland (S–S) magnets have been observed.4,5

The S–S lattice, shown in Fig. 1, was introduced by

Shastry and Sutherland as an example of a frustrated quan-

tum mechanical antiferromagnetic (AFM) model with an

exact ground state in as early as 1981.6 Its experimental real-

ization in SrCu2(BO3)2 with Cu2þ ions carrying a quantum

spin 1/2 and located on a two dimensional S–S lattice was

identified in 1991.7 The fascinating sequence of magnetiza-

tion (M) plateaus at fractional values of the saturated mag-

netization (M0) in SrCu2(BO3)2 has been widely studied,

both experimentally and theoretically.8–12 On the other hand,

rare earth tetraborides RB4 with R¼Tb, Dy, Ho, Tm, etc., as

another representative of S–S magnets, are drawing more

attention.13–17 The rare earth moments in these compounds

are located on a lattice, which is topologically equivalent to

the S–S lattice. In contrast to SrCu2(BO3)2, RB4 presents a

large total magnetic moment; thus, it can be considered a

classical spin system. Similarly, RB4 has a complex mag-

netic structure and exhibits puzzling magnetization plateaus

at a low temperature. For example, magnetization plateaus at

M/M0¼ 1/7, 1/8, 1/9, etc., have been reported at temperatures

(T) below �4K in TmB4
16 and several theoretical works that

explain this interesting phenomenon are available.

Experimental results indicate that TmB4 is of strong

easy-axis anisotropy caused by crystal field effects. Based on

this property, the magnetization of the classical AFM Ising

model on the S–S lattice was studied by Chang and Yang

using the tensor renormalization-group approach.18 A single

magnetization plateau at M/M0¼ 1/3 is predicted in certain

temperature range and coupling constant. Moliner et al
investigated the magnetic properties of the classical Heisen-

berg model on the S–S lattice by using Monte Carlo simula-

tions.19 Magnetization pseudoplateaus around M/M0¼ 1/3

were observed for a range of magnetic coupling. However,

the magnetization process for TmB4 has not been completely

understood until now. In the Heisenberg model, the easy-axis

anisotropy is ignored while in the Ising limit, the anisotropy

is emphasized. To some extent, the uniaxially anisotropic

Heisenberg model seems to be a sound choice for the

description of TmB4. A systemic study of the impact of the

anisotropy on the magnetic structure may be helpful to

understand the experimental results. On the other hand, the

inhomogeneity of frustrated spin systems may have a notable

effect on the magnetic behaviors, as stated in earlier experi-

mental and theoretical works.20–22 For example, it has been

FIG. 1. (Color online) The Shastry–Sutherland lattice. J0 bonds (black

dashed line) are the exchange coupling along the edges of the squares, and J
bonds (red solid lines) are the diagonal dimer couplings.

a)Author to whom correspondence should be addressed. Electronic mail:

liujm@nju.edu.cn.
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proved in our earlier work that the distinct steplike magnet-

ization behavior in Ca3Co2O6 at low T range can be observed

only when the inhomogeneity is in an appropriate range.

This argument may also apply to S–S magnets.

In this work, the influence of the easy-axis anisotropy

on the magnetization process in the classical Heisenberg

model on the S–S lattice is investigated with the Monte

Carlo method. It is indicated that the magnetization-step at

M/M0¼ 1/3 is broadened due to the implementation of easy-

axis anisotropy. The simulated results indicate that the multi-

step magnetic behaviors at low T can be observed in a proper

range of the inhomogeneity.

First, we study a classical Heisenberg model with easy-

axis anisotropy on the S–S lattice. The Hamiltonian can be

written as follows:

H¼ J0
X

edges

Si �Sjþ J
X

diagonal

Si �Sj�h
X

i

Sz
i �D

X

i

ðSz
i Þ

2; (1)

where the exchange coupling J0 ¼ 1/2, J¼ 1, Si represents

the Heisenberg spin with unit length on site i, h is the exter-

nal magnetic field applied along the þz axis, Si
z denotes the z

component of Si, D is the uniaxial anisotropy constant (z axis

as the easy axis), and the Boltzmann constant is set to unity.

Here J0/J¼ 1/2 is chosen for comparison with the earlier

work.18 It is noted that for D¼ 0, the system is reduced to

the isotropic Heisenberg model. For D!1, it is the Ising

model. The simulation is performed on an L�L (L¼ 24)

S–S lattice with period boundary conditions using the stand-

ard Metropolis algorithm.23

In Fig. 2(a), the simulated M(h) curves at T¼ 0.01 for-

different D are presented. The result of the Ising limit is also

given for comparison. At D¼ 0, the M(h) curve exhibits a

vague plateau at M/M0¼ 1/3, which is caused by the entropic

selection of a particular collinear state in which each triangle

contains two up-spins and one down-spin (UUD), as shown

in Fig. 3(a). When D is increased, the magnetization step at

M/M0¼ 1/3 is gradually broadened. When D increases to the

value of 0.8, the system exhibits the magnetic behavior of

the Ising model, as shown in Fig. 2(a). The phase diagram in

the h-D plane at T¼ 0.01 is shown in Fig. 2(b). The transi-

tion points in the diagram are estimated from the positions of

the peaks in the susceptibility v¼ dM/dh, following the ear-

lier work.19 It is clearly shown that as D increases, both the Y
state in the low-h region and the canted state in the high-h
region gradually translate to the collinear UUD state. The

enlargement of the range of the UUD state leads to the broad-

ening of the magnetizationstep at M/M0¼ 1/3. In the Ising

limit, the transition from the plateau at M/M0¼ 1/3 to the

plateau at M/M0¼ 1 corresponds with the transition from the

collinear UUD state to the ferromagnetic state. The down-spin

may flip as the static magnetic energy increases to be compa-

rable with the interaction energy. The critical field can be esti-

mated to be h¼ 4J0 þ J¼ 3. This argument is verified in our

simulated results.

The simulated M(h) curves at different T under D¼ 0.3

are shown in Fig. 3(b). The collinear UUD state is gradually

destroyed due to the thermal fluctuations as the increase

of T, leading to the melting of the magnetization-step at

M/M0¼ 1/3. When T is raised to about 0.2, the M0/3 plateau

FIG. 2. (Color online) At T¼ 0.01, (a) magnetiza-

tion curves for different D and the Ising limit, (b)

phase diagram of the classical Heisenberg model in

the h-D plane.

FIG. 3. (Color online) (a) Spin configuration for

the UUD state. Each triangle contains two up-spins

and one down-spin. One example of the triangle is

shown with blue solid lines. The black solid circles

represent up-spins and the white solid circles repre-

sent down-spins. (b) Magnetization curves for dif-

ferent T at D¼ 0.3.
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completely disappears and the system exhibits the paramag-

netic behavior that M linearly increases with h.

In the Ising limit, the inhomogeneity of frustrated sys-

tems may have a notable effect on the magnetic behaviors.

In this section, we study the role of the inhomogeneity of the

classical Ising system on the S–S lattice with a random field

method. The Hamiltonian can be expressed as

H ¼ J0
X

edges

ð1þ Di; jÞSi � Sj þ J
X

diagonal

ð1þ Di; jÞSi � Sj

� h
X

i

Si; (2)

with

Di; j ¼ span � RAMi; j
;

where Si is the Ising spin with the value 61, RAMi,j is the ran-

dom number in [�1, 1], and span represents the magnitude of

random exchange term, the values of J0 and J are the same as

those in Sec. II. The Monte Carlo simulation is performed on

a 60 � 60 S–S lattice with period boundary conditions.

Figures 4(a) and 4(b), respectively, show the simulated

M(h) curves under different spans at T¼ 0.12 and T¼ 0.02.

At T¼ 0.12, the system without any random exchange term

(span¼ 0) exhibits the perfect M0/3 plateau. The plateau

gradually melts when the span is increased. When the span
is increased to 0.3, the plateau disappears and a progressive-

growth of M with increasing h is observed, as shown in Fig.

4(a). The single M0/3 plateau under span¼ 0 is stable even

at T¼ 0.02. However, the system with a small span (0.05)

can exhibit an evident multi-step magnetic behavior. As the

span increases, the M gaps between neighboring steps can be

enhanced while the borders of the substeps are smoothed

down. Below h � 3, the M(h) curve shows three substeps

occurring at about a regular field interval Dh� 1 under

span¼ 0.15. Similar behavior has been observed in the trian-

gular Ising spin-chain system, as stated in our earlier

work.21,22 Eventually, these substeps are smeared out when

the random exchange is very large (span¼ 0.5).

The simulated results can be qualitatively explained

from the point of spin configurations. At span¼ 0, the UUD

ordering is dominant below h� 3, leading to the single M0/3

plateau. However, the random term enhances the fluctuations

of the spin alignment, destroying the perfect UUD order and

resulting in the local disordering. The existence of these spin

patterns leads to the generation of the obvious substeps in

the low T range. Finally, the disordering effect is prominent

at span¼ 0.5, leading to the disappearance of the substeps.

It is noted that the inhomogeneity of the S–S system has

an important effect on the steplike magnetization feature in

this work. However, a complete understanding of the mag-

netization process for S–S magnets remains to be an issue.
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FIG. 4. (Color online) Magnetization curves for

different span values at (a) T¼ 0.12 and (b)

T¼ 0.02.
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Based on the Mochizuki-Furukawa model, the cycloidal spin structures of orthorhombic RMnO3

manganite thin films on various magnetic substrates are simulated using Monte Carlo method. It is

revealed that the long range cycloidal spin order can be modulated by the film thickness and

substrate spin structure. In particular, the ferromagnetic and antiferromagnetic spin orders of the

substrate in different orientations have different pinning effects on the cycloidal spin order of the

thin film. The simulated results are discussed in terms of the competition between the single-ion

anisotropy and spin-orbit coupling. VC 2012 American Institute of Physics. [doi:10.1063/1.3682079]

Multiferroicity is attracting continuous attentions due to

the interesting physics and potential applications.1–4 Espe-

cially, type-II multiferroics, such as cycloidal magnets,

orthorhombic manganites RMnO3 (R¼Tb, Dy, Eu1�xYx,

etc.),5–7 Ni3V2O8,8 and MnWO4,9 have been addressed due

to the unusual fact that the ferroelectricity is generated by

frustrated spin orders. The spin current theory and the

inverse Dzyaloshinskii-Moriya (DM) interaction model were

proposed in order to understand the underlying microscopic

mechanism.10–12 It is believed that the spin-orbit coupling

for two adjacent spins Si and Sj separated by vector rij can

generate a local polarization Pij ! �rij� (Si� Sj). Thus, a

macroscopic ferroelectric (FE) polarization P can be induced

because spin-helicity vector h defined as Si� Sj is associated

with a ferroic alignment. Taking orthorhombic manganites

RMnO3 as examples, polarization P along the a-axis is

induced in the ab-plane cycloidal spin (ab-CS) phase with

propagation vector Q along the b-axis, while it is induced

along the c-axis in the bc-plane cycloidal spin (bc-CS) phase,

as illustrated in Figs. 1(a) and 1(b). In addition, several theo-

retical works on the origin for the CS order and magnetoelec-

tric (ME) coupling in RMnO3 are available.13,14

Recently, Mochizuki and Furukawa proposed a classical

Heisenberg spin model (M-F model) which includes the

superexchange interaction, the single-ion anisotropy (SIA),

the DM interaction, and the cubic anisotropy, to study the

phase diagrams of RMnO3.14 The ab-CS state is stabilized

by the SIA and the DM interaction with vectors on the in-

plane Mn-O-Mn bonds, while the bc-CS state is stabilized by

the DM interaction with vectors on the out-of-plane Mn-O-

Mn bonds. The R-site ionic radius mainly controls the lattice

distortion which tunes the SIA and the DM interaction, thus

in turn determines the competition between the ab-CS phase

and bc-CS phase. This leads to the flop of the cycloidal plane

from the ab-plane to the bc-plane with decreasing R-ion ra-

dius. It has been demonstrated that this model can explain

the complicated multiferroic behaviors.15–20

While the physics of multiferroics is being progressively

understood, researches proceed in related device designs

where multiferroic thin films are expected to play an impor-

tant role.21,22 Understanding of the phase competitions in

multiferroic thin films certainly becomes interested not only

from the point of view of the physics responsible for multi-

ferroic spin orders in this specific geometry, but more for

insight in the design of advanced devices. However, so far

rare work along this line is available and one of the main

issues is that measurement of polarization in those type-II

multiferroic thin films remains unsuccessful, while relevant

theoretical progress is under the way. In this work, we

address the multiferroic behaviors of a model orthorhombic

RMnO3 thin film deposited epitaxially on a substrate by the-

oretical simulation. For simplicity, we focus on the impact of

FIG. 1. (Color online) Induced electric polarization P and spin-helicity vec-

tor h¼RijSi
� Sj in (a) the ab-CS and (b) bc-CS states. (c) Crystal structure

(ab-plane) of orthorhombically distorted RMnO3. Sketch of thin film (top

turquoise layer) grown on the magnetic substrate (bottom grey layer) in

which all spins are fixed to the FM pattern with (d) Ss//a and (e) Ss//c, and to

the AFM pattern with (f) Ss//a and (g) Ss//c.

a)Author to whom correspondence should be addressed. Electronic mail:

liujm@nju.edu.cn.
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thin film thickness and substrate magnetic structure, while

the lattice mismatch between the substrate and thin films is

ignored at this stage. For the magnetic structure of the sub-

strate, we limit our discussion on three types of substrates:

(1) without magnetism, (2) of simple ferromagnetic (FM)

order, and (3) of antiferromagnetic (AFM) order. In the latter

two cases, the spin alignments of the substrate along various

orientations (spin moment Ss¼ 2) are fixed as shown in Figs.

1(d)–1(g), implying that the spin interaction in the substrate

is no exception much stronger than that in the thin film so

that the bottom layer of the thin film is pinned off.

In our simulation, the M-F model with Mn spin S¼ 2 on

a cuboidal lattice is used.14 The Hamiltonian can be written as

H¼HexþHsiaþHDMþHcub. The first term Hex¼Rhi,jiJij

�(Si�Sj) is the spin exchange interactions with Jab¼�0.8 and

Jb¼ 0.8 the coupling constants in the Mn-Mn bonds on the

ab-plane (Fig. 1(c)), Jc¼ 1.25 the AFM exchange in the bonds

along the c-(z-) axis. Here, the energy unit is meV. The sec-

ond term is the SIA term Hsia¼D�RiS
i
1iþE�Ri(�1)ixþiy

�(Si
1i� Si

gi) with D¼ 0.25, E¼ 0.30, here, ni, gi, fi are the

tilted local axes attached to the i-th MnO6 octahedron.14 For

their direction vectors, we use experimental data of EuMnO3

for simplicity.23 The third term HDM denotes the DM interac-

tions HDM¼Rhi,jidi,j�(Si� Sj), where factors di,j are determined

by five DM parameters, (aab, bab, cab)¼ (0.10, 0.10, 0.14) and

(ac, bc)¼ (0.30, 0.30). The last term Hcub¼A�Ri(S
4
xiþ S4

yi

þ S4
zi)/S(Sþ 1) represents the cubic anisotropy with coupling

constant A¼ 0.0162.

The thin film is considered to be a three-dimensional

(3D) half-infinite cuboidal lattice, e.g., infinite in the x and y
directions, but finite in the z direction. The periodic boundary

conditions are applied in the x- and y-axis directions, and the

free boundary condition is applied onto the top layer along the

z direction. The spins in the bottom layer are coupled with the

spins of the substrate. Our simulation is performed on a

36� 36�Lz (unless stated elsewhere, Lz¼ 6 is chosen, and in

fact the results for Lz> 6 show no much difference) cuboidal

lattice using standard Metropolis algorithm and temperature

exchange method.24,25 Specific heat C(T)¼ (hH2i� hHi2)/

NkBT2 and spin-helicity vector hc(T)¼hjRiSi� Siþbji/NS2

(c¼ a, b, c) as a function of temperature (T) are calculated to

determine the transition points and spin structure, here N is

the number of Mn ions, kB is the Boltzmann constant, and the

brackets denote thermal and configuration averaging. It is

expected that hc(ha) has a large value for the ab-CS (bc-CS)

order, while all of these three components of hc should be

zero in the paramagnetic (PM) phase and sinusoidal collinear

antiferromagnetic (sc-AFM) phase.

As a comparison, Fig. 2(a) shows the simulated C(T)

and hc(T) for bulk case. The C(T) curve shows three peaks,

indicating successive three phase transitions with decreasing

T. The first one is the transition from the PM phase to the sc-

AFM phase at TN. At the second transition point Tbc, ha(T)

increases, indicating a transition of the sc-AFM phase to the

bc-CS phase. When T falls down to the third transition point

Tab, ha(T) suddenly drops, accompanied with a steep increase

of hc(T), indicating a transition from the bc-CS order to the

ab-CS order.

Looking at the simulated data for the thin film on a non-

magnetic substrate (Ss¼ 0) allows an investigation of the

effect of the thin film thickness. The simulated results with

Lz¼ 6 are shown in Fig. 2(b). Point TN is slightly lower than

that for the bulk case. What is interested is the enhanced Tab,

implying that the bc-CS order is suppressed in compensation

with the promoted stability of the ab-CS order. This tend-

ency continues upon further decreasing of Lz till the bc-CS

phase is completely suppressed, leaving the ab-CS phase at

low T side.

The disappearance of the bc-CS phase with decreasing

thin film thickness is easily understood at the first glance.

The DM interaction with vectors on the out-of-plane Mn-O-

Mn bonds stabilizes the bc-CS order. In case of no DM inter-

action, the angles between the nearest two spins along

the c-axis are /c¼p, due to the strong AFM coupling

Jc. Inclusion of the DM interaction allows the angles to be

alternatively modulated as (p�D/c) and (pþD/c) with

D/c> 0. The energy gain from the DM interaction, due to

FIG. 2. (Color online) Specific heat C(T) and spin-helicity vector hc(T)

(c¼ a, b, c) as a function of T in (a) the bulk system, and in thin films with

(b) Lz¼ 6, (c) Lz¼ 2. (d) The phase diagram in the (Lz, T) plane.
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this modulation, is DEDM/N¼�acS
2jcos/cjD/c¼�acS

2D/c

with ac the magnitude of the a-component of the DM vectors

on the out-of-plane bonds. This energy gain is reduced with

the film thickness since the spins on the up and bottom layers

lack of this contribution, leading to the destabilization of the

bc-CS phase.

On the other hand, the ab-CS order which is mainly sta-

bilized by the SIA, less relevant with the DM interaction

with vectors on the in-plane Mn-O-Mn bonds. As a result,

the ab-CS phase is enhanced in energy with respect to the

bc-CS phase. Both TN and Tbc shift seriously downward with

decreasing film thickness and as an extreme case with Lz¼ 2,

shown in Fig. 2(c), Tbc disappears, leaving only the ab-CS

phase at low-T side. What should be mentioned is that upon

decreasing film thickness, Tab first increases from the value

(Tab0) for the bulk case, and then decreases down to Tab0 at

Lz¼ 2. This indicates that the sc-AFM order and bc-CS order

are strongly suppressed, while the ab-CS order at low T
remains quite robust. Because the ab-CS order is mainly

determined by the ab-plane spin interaction, the present

results are easily understood.

As a summary, we present the simulated phase diagram

in the (Lz, T) plane of the spin structure in Fig. 2(d), from

which the remarkable film-thickness dependence of the spin

structure including the ferroelectric CS order is clearly

shown. In fact, similar phenomenon was observed in earlier

work in which the spiral spin structure in bulk TbMnO3 can

be intensively suppressed in epitaxially strained thin film

form.26

Subsequently, one comes to look at the impact of the

spin structure from the substrate. For a FM substrate with the

spins aligning along either the a-axis or c-axis (in-plane or

out-of-plane), Figs. 3(a) and 3(b) show the simulated results.

It is clearly shown that the ab-CS order and bc-CS order are

suppressed completely respectively for the in-plane and out-

of-plane cases, while the sc-AFM order remains nearly

unaffected.

To some extent, the effect of the FM substrate with

Ss//a (Ss//c) is similar to that of the applied magnetic filed

B//a (B//c) onto the bottom layer because of the strong AFM

coupling Jc. Meanwhile, B tends to align the spins in perpen-

dicular to B for a cycloidal spin system. As a result, the bc-CS

(ab-CS) order is stabilized in the bottom layer, and in turn be

extended to the whole film system to satisfy the energy relation

for the case of the FM substrate with Ss//a (Ss//c). In addition,

it is noted that TN for the two cases are almost identical, indi-

cating that the transition from the PM phase to the sc-AFM

order is mainly determined by the lattice size of the film.

At last, the effect of the AFM substrate on multiferroic

properties is studied. It is indicated that the ab-CS order is

enhanced for the case of the AFM substrate with Ss//a, as

shown in Fig. 3(c). Being different from the FM substrate,

the AFM one with Ss//a tends to align the spins of the bottom

layer in the ab-plane to satisfy the AFM coupling Jc. At the

same time, the DM interaction with vectors on the in-plane

bonds and the SIA stabilize the ab-CS order. This leads to

the flop of the cycloidal plane from the bc-plane to the ab-

plane. On the other hand, the AFM substrate with Ss//c may

enlarge the T region with the bc-CS order. This argument

has been proved in our simulated results, as shown in

Fig. 3(d). The transition from the bc-CS order to the ab-CS

order in the pinning system occurs at a much lower T than

that in non-pinning system (Fig. 2(b)), demonstrating that

the ab-CS order is extensively suppressed for this case.

Up to now, there is an urgent need in studying multifer-

roic film to develop a better understanding of the evolution

of ME properties in the special geometries. In this work, the

multiferroic properties in orthorhombic manganites film are

studied based on the M-F model. It is demonstrated that the

long range cycloidal orders can be significantly modulated

by the film thickness and substrate spin structure. In addition,

our simulation indicates that the magnetic substrate may

have a significantly pinning effect on the multiferroic behav-

iors in film systems. The simulated results are discussed

from the energy landscape in details. Our simulation is help-

ful to understand the phase competitions, and provides useful

information for practical applications of RMnO3 film. Of

course, the prediction given here deserves to be checked in

further experiments.

FIG. 3. (Color online) Specific heat C(T) and spin-helicity vector hc(T)

(c¼ a, b, c) as a function of T in thin film grown on the FM pinning substrate

(a) with Ss//a, and (b) with Ss//c, and the AFM pinning substrate (a) with

Ss//a, and (b) with Ss//c.
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In this work, a random field method (based on Mochizuki-Furukawa model) is used to study the

effect of the R-site ionic disorder and inhomogeneity on the multiferroic behavior in orthorhombic

manganites. It is shown that both the R-site ionic disorder and inhomogeneity can drive the

reorientation of the plane in which cycloidal spin order takes place and actually lead to the flop of

the spins from the ab-plane to the bc-plane. The simulated results can be understood as the

consequence of the competition between exchange interactions and spin-orbit coupling. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.3689162]

I. INTRODUCTION

In the past few years, multiferroics have been attracting

continuous attentions due to their interesting physics and

potential applications for new spintronic devices.1–4 Espe-

cially, multiferroicity has been found in a series of cycloidal

magnets such as RMnO3 (R¼Tb, Dy, Eu1-xYx, etc.),5–7

Ni3V2O8,8 and MnWO4.9 It is well established that the ferro-

electric polarization (P) in these materials is induced by cy-

cloidal magnetic orders through the inverse Dzyaloshinskii-

Moriya (DM) interaction (alternatively the spin current

model).10–12 Based on the spin current scenario, adjacent

two spins (Si, Sj) can generate a local polarization as:

Pij / �eij � Si � Sj

� �
; (1)

with eij being the vector connecting the two sites. With

decreasing R-site ionic radius in RMnO3, for instance, a tran-

sition from the ab-plane cycloidal spin (ab-CS) phase with

the propagation vector Q along the b-axis to the bc-plane cy-

cloidal spin (bc-CS) phase was observed at low temperature

(T).13 Thus, P is induced along the a-axis in the ab-CS phase,

while it is along the c-axis in the bc-CS phase, as illustrated

in Figs. 1(a) and 1(b).

In addition, the origin of multiferroic CS orders in

RMnO3 has also been studied recently.14,15 A microscopic

spin model (Mochizuki-Furukawa model) which included

the superexchange interaction, the single-ion anisotropy

(SIA), the DM interaction, and the cubic anisotropy, was

proposed and this model well reproduced the experimental

phase diagrams of RMnO3.15 It has been demonstrated that

the ab-CS state is stabilized by the SIA and the DM interac-

tion with vectors on the in-plane Mn-O-Mn bonds, while the

bc-CS state is stabilized by the DM interaction with vectors

on the out-of-plane Mn-O-Mn bonds. Moreover, several other

experimental phenomena in RMnO3 have been successfully

explained based on the same or similar models.16–20 For

example, the phase diagrams of Eu1-xYxMnO3 under applied

magnetic field B have been reproduced by Monte Carlo simu-

lations of this model.20

Very recently, it has been experimentally demonstrated

that the R-site substitution may have a significant impact on

the multiferroic behaviors in RMnO3.7 It is expected that the

cation disorder may give rise to the spatially local fluctua-

tions of the specific spin orders, thus probably lead to phase

competitions among them. However, earlier models mainly

focus on the effect of the average R-site ionic size, while the

FIG. 1. (Color online) The induced electric polarization P and the spin-

helicity vector h¼RijSi � Sj in the (a) ab-cycloidal and (b) bc-cycloidal

spin states.

a)Authors to whom correspondence should be addressed. Electronic mail:
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disorder effect caused by the substitution is usually ignored.

Thus, a systematic study of the impact of local disorder on

the multiferroic phase competitions in RMnO3 may be help-

ful to clarify the inherent physics. However, as far as we

know, few works on this subject have been reported. In this

work, a random field method based on the Mochizuki-

Furukawa model will be used to study the impact of the

R-site substitution on the multiferroic behaviors in RMnO3.

The phase diagram obtained by Monte Carlo simulations

shows that the long range cycloidal spin orders can be modu-

lated by the R-site substitution. We also discuss the influence

of the inhomogeneity in realistic materials.

The remainder of this paper is organized as follows: In

Sec. II, the model and the simulation method will be

described. Section III is attributed to the simulation results

and discussion. At last, the conclusion is presented in Sec. IV.

II. MODEL AND METHOD

Following earlier works,15 we study a classical Heisen-

berg model with Mn S¼ 2 spins on a cuboidal lattice. The

Hamiltonian can be written as:

H ¼ Hex þ Hsia þ HDM þ Hcub: (2)

Here the first term Hex denotes the spin exchange interactions

which can be given by:

Hex ¼ Jab

Xx;y

i;jh i
Si � Sj þ Jb

Xb

i;jh i
Si � Sj þ Jc

Xc

i;jh i
Si � Sj; (3)

where Jab is the ferromagnetic (FM) coupling between the

nearest-neighbor (NN) Mn-Mn pairs along the x- and y-axes

(pseudo-cubic notation), Jb is the antiferromagnetic (AFM)

coupling between the next-nearest-neighbor Mn-Mn pairs along

the b-axis (Pbnm notation), Jc is the AFM exchange between

the NN Mn-Mn pairs along the c-axis. It is indicated that Jb is

mainly controlled by the R-ionic radius and Jc is extensively

affected by the nearest Mn-Mn bond length along the c-axis,

while the SIA and DM interaction can hardly be affected by the

cation disorder.15 In our model, random exchanges are imposed

to the Mn-Mn bonds along both the b axis and the c axis.

In detail, the coupling between the nearest-neighbor

spins (Si, Sj) along the b-axis (c-axis) is changed to

Jb
ij ¼ Jbð1þ span � RAMi;jÞ (Jc

ij ¼ Jcð1þ span � RAMi;jÞÞ with

RAMi,j is the random number within [� 1, 1], and span is the

magnitude of the random exchange term which represents the

intensity of the isovalent cation disorder (the intra-chain inho-

mogeneity) in RMnO3. Such an approach has been extensively

accepted for random fields.21,22 The second term is the SIA,

which consists two parts as

Hsia ¼ HD
sia þ HE

sia ¼ D
X

i

S2
fi þ E

X

i

�1ð Þixþiy S2
ni � S2

gi

� �
;

(4)

where ni, gi, 1i are the tilted local axes attached to the i-th
MnO6 octahedron. For their direction vectors, we use the ex-

perimental data of EuMnO3.23 The third term HDM repre-

sents the DM interactions which can be expressed as:

HDM ¼
X

i;jh i
di;j � Si � Sj

� �
; (5)

where the DM vectors di,j are determined by five DM param-

eters, aab, bab, cab, ac, and bc. The fourth term Hcub repre-

sents the cubic anisotropy and is given by:

Hcub ¼
A

S Sþ 1ð Þ
X

i

S4
xi þ S4

yi þ S4
zi

� �
; (6)

where A is the coupling constant in the Mn ion and was eval-

uated to be 0.0162 meV in the electron-spin resonance

measurement.24

Our simulation is performed on a 36� 36� 6 cuboidal

lattice with periodic boundary conditions using the standard

Metropolis algorithm and temperature exchange method.25,26

The initial spin configuration is totally disordered. The tem-

perature exchange method is performed after every 200 stand-

ard Monte Carlo steps. Typically, the initial 2� 105 Monte

Carlo steps are discarded for equilibrium consideration and

another 2� 105 Monte Carlo steps are retained for statistic

averaging of the simulation. The values of these parameters

for the simulation are listed in Table I. Rich spin ordered

phases were identified in the homogenous system with the

selected parameters, which may be helpful to develop a better

understanding of the multiferroic phase competition in

RMnO3. We calculate the specific heat C(T) and spin-helicity

vector hc(T) (c¼ a, b, c) to determine the transition points and

the spin structures. C(T) and hc(T) are calculated by:

CðTÞ ¼ 1

NkBT2
H2
� �

� Hh i2
� �

; (7)

hcðTÞ ¼
1

N

X

i

Si � Siþb

�����

�����

* +,
S2; (8)

where N is the number of Mn ions, kB is the Boltzmann con-

stant, the brackets denote thermal and configuration averaging.

It is expected that hc has a large value for the ab-CS order,

while ha is an index for the bc-CS order, as shown in Figs.

1(a) and 1(b). All these three components of spin-helicity vec-

tor are strongly suppressed in the paramagnetic (PM) and sinu-

soidal collinear antiferromagnetic (sc-AFM) phases.

III. SIMULATION RESULTS AND DISCUSSION

With the random exchange field applied to Jb, the calcu-

lated phase diagram in the span-T parameter space is shown

in Fig. 2(a). It is clearly shown that the ab-CS state is gradu-

ally suppressed with increasing span. For moderate spans

TABLE I. Parameters chosen for the simulation.

Parameter Value Parameter Value

Jab (meV) � 0.80 aab 0.10

Jb (meV) 0.80 bab 0.10

Jc (meV) 1.25 cab 0.14

D (meV) 0.25 ac 0.30

E (meV) 0.30 bc 0.30

A (meV) 0.0162
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(e.g., span¼ 0.3, 0.5, 0.7), three specific-heat peaks are

observed in the calculated C(T) curves, indicating three suc-

cessive phase transitions with decreasing temperature, as

clearly shown in Fig. 2(b)–2(d). The first one is a transition

from the PM phase to the sc-AFM phase. No P is observed

in these two phases. When T falls down to the second transi-

tion point, ha(T) increases, while hb(T) and hc(T) remain

small, indicating a phase transition into the bc-CS order.

Below the third transition point, hc(T) increases fast, accom-

panied with a sudden drop of ha(T), clearly indicating a flop

of the spin cycloidal-plane from the bc-plane to the ab-plane.

The first and second transition points are almost independent

on span, demonstrating that the fluctuation of the local R-site

ionic size can hardly affect PM and sc-AFM phases. How-

ever, the third transition point shifts toward the low-T side as

span increases, indicating a gradually suppression of the ab-

CS order at low T.

In order to reveal the physics underlying our simula-

tions, one may give a qualitative discussion from the energy

landscape. It was indicated that the ab-CS state is stabilized

by the SIA and the DM interaction with its vectors on the in-

plane Mn-O-Mn bonds. Without the DM interaction, the

spins along the x-axis and y-axis would rotate at uniform

angles of /ab satisfies relation cos/ab¼ Jab/(2Jb) in the

ground state. When the DM interaction is introduced, these

angles are alternately modulated into /abþD/ab and

/ab�D/ab with D/ab>0, in order to get an energy gain

from the DM interaction. In this case, the ab-CS phase with

propagation vector jQj ¼//p along the b-axis is stabilized at

low T. However, when the random field is applied along the

b-axis, there are competitions among local ab-CS orders

with different rotation angles. Thus, the energy of the ab-CS

phase is increased due to the competitions, leading to the

destabilization of the ab-CS phase.

On the other hand, the energy of the bc-CS phase is irre-

spective of the value of Jb, as will be stated below. Without

the DM interaction, the angles between the nearest two spins

along the c-axis are /c¼p due to the strong AFM coupling

Jc. An inclusion of the DM interaction allows the angles to

be alternatively modulated into p-D/c and pþD/c with

D/c>0. The energy gain from the DM interaction due to this

modulation can be written as:

DEbc
DM=N ¼ �acS2 cos /cj jD/c ¼ �acS2D/c; (9)

where ac is the a component of DM vectors of the Mn-O-Mn

bonds along the c-axis. Thus, it is demonstrated that the

energy gain for the bc-CS phase is irrelevant of Jb. As a

result, the ab-CS phase is suppressed while the bc-CS phase

is enhanced when the random exchange field is applied to Jb,

as clearly shown in our simulation results.

In addition, similar phenomenon has been observed

when the random exchange field is applied along the c-axis.

The calculated phase diagram in the span-T parameter space

is shown in Fig. 3(a). The first and second transition points

are almost unaffected by the consideration of the random

exchange term, while the third transition point also shifts to-

ward the low-T side as span increases [Fig. 3(b)–3(d)]. The

simulation results may be understood from two different

aspects. On one hand, from Eq. (9), one may note that the

energy gain from the DM interaction DEbc
DM in the bc-CS

order is almost in proportion to Duc which is also influenced

by Jc. When Jc is relatively weak, the state with uc¼p can

be easily modulated by the DM interaction, leading to large

Duc and DEbc
DM. As a result, the bc-CS state is expected to be

stabilized as Jc decreases. Our simulation result has also

proved this point, which will be reported elsewhere. When

the random exchange term on the Mn-Mn bonds along the c-

axis is considered, the energy gain DEbc
DM from the region

with weak Jc is increased as span increases. On the other

hand, the energy gain from the DM interaction in the ab-CS

state is irrespective of Jc. Therefore, the bc-CS phase is

FIG. 2. (Color online) (a) Calculated span-T
phase diagram with the random filed applied

along the b-axis. The high-temperature para-

magnetic phase is denoted by PM, which

accompanied by the paraelectric phase PE. Spe-

cific heat C(T) and spin-helicity vector hc(T)

(c¼ a, b, c) as a function of T under various

span: (b) span¼ 0.3, (c) span¼ 0.5, and (d)

span¼ 0.7.
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enhanced while the ab-CS one is suppressed at low T with

increasing span.

It was reported in earlier work that the multiferroic

behaviors in orthorhombic manganites RMnO3 are mainly

determined by the average R-site ionic size.27 However, our

simulations reveal that a flop of the spin-cycloid plane from

the ab-plane to the bc-plane may be observed at low T in sys-

tems with the R-site ionic disorder or the intra-chain inhomo-

geneity. This issue remains to be checked further.

IV. CONCLUSION

So far, it is generally believed that the multiferroic

behaviors are mainly determined by the average R-site ionic

size in RMnO3. However, our results of Monte Carlo simula-

tion clearly demonstrate that both the R-site ionic disorder

and the inhomogeneity can drive the reorientation of the

spin-cycloid plane. Namely, the bc-plane cycloidal spin

phase is enhanced in energy with respect to the ab-plane cy-

cloidal spin phase, leading to the flop of the spins from the

ab-plane to the bc-plane. The simulated results can be under-

stood as the consequence of the competition between the

exchange interactions and spin-orbit coupling, and may be

helpful to clarify the flop of the spin-cycloid plane observed

in the perovskite manganites and other related systems.
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Abstract
The magnetization behaviors and spin configurations of the classical Ising model on a
Shastry–Sutherland lattice are investigated using Monte Carlo simulations, in order to
understand the fascinating magnetization plateaus observed in TmB4 and other rare-earth
tetraborides. The simulations reproduce the 1/2 magnetization plateau by taking into account
the dipole–dipole interaction. In addition, a narrow 2/3 magnetization step at low temperature
is predicted in our simulation. The multi-step magnetization can be understood as the
consequence of the competitions among the spin-exchange interaction, the dipole–dipole
interaction, and the static magnetic energy.

(Some figures may appear in colour only in the online journal)

1. Introduction

Over the past decades, frustrated spin systems in which all
local interactions between every spin pair cannot be satisfied
simultaneously have attracted widespread interest because
very rich physics can appear in these systems [1]. For instance,
multi-step magnetization behaviors have been experimentally
observed in quite a number of frustrated spin systems,
such as triangular spin-chain system Ca3Co2O6 [2, 3] and
Shastry–Sutherland (S–S) magnets [4–7]. Various theoretical
and experimental explorations have been devoted to these
interesting phenomena [8–11]. So far, it is generally believed
that the multi-step magnetization behaviors in Ca3Co2O6 are
caused by non-equilibrium magnetization dynamics [12, 13],
while those in S–S magnets are far from well understood. We
address such phenomena in S–S magnets in this work.

The S–S lattice as a frustrated quantum antiferromagnetic
(AFM) model with an exact ground state was first introduced
by Shastry and Sutherland in the 1980s [14]. The lattice

can be described as a square lattice with AFM couplings J′

between the nearest neighbors and additional AFM couplings
J between the next-nearest neighbors in every second square,
as clearly shown in figure 1. As early as 1991, SrCu2(BO3)2
with Cu2+ ions carrying a quantum spin S = 1/2 and located
in a two-dimensional (2d) S–S lattice was investigated [15],
triggering an extensive exploration of quantum S–S magnets
which exhibit a fascinating sequence of magnetization (M)
plateaus at fractional values of the saturated magnetization
(Ms) [16, 17]. On the other hand, quite a few rare-earth
tetraborides RB4 (R= Tb, Dy, Ho, Tm, etc) with the magnetic
moments located on a lattice that is topologically equivalent
to the S–S lattice have attracted various interests [6, 7, 18,
19]. Similar to SrCu2(BO3)2, complex magnetic structures
and associated physical phenomena in these RB4 compounds
in response to magnetic field (h) at low temperature (T) were
identified. In particular, magnetization multi-plateaus at the
fractional values of Ms such as M/Ms = 1/2, 1/7, 1/9, etc,
were observed in TmB4 [7].

10953-8984/12/386003+06$33.00 c© 2012 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0953-8984/24/38/386003
mailto:qinmh@scnu.edu.cn
mailto:liujm@nju.edu.cn
http://stacks.iop.org/JPhysCM/24/386003


J. Phys.: Condens. Matter 24 (2012) 386003 W C Huang et al

Figure 1. The Shastry–Sutherland lattice. J′ bonds (dashed lines)
are the exchange couplings along the edges of the squares and J
bonds (solid lines) are the diagonal dimer couplings.

While a comprehensive understanding of the multi-step
magnetization in SrCu2(BO3)2 as a quantum magnet becomes
challenging, TmB4 presents a large total magnetic moment

(the magnetic moment of Tm3+ is ∼6.0 µB), and thus can
be considered as a classical spin system, making a theoretical
approach easier. In addition, subjected to strong crystal
field effects, TmB4 exhibits strong easy-axis anisotropy
and can be reasonably described by the classical Ising
model rather than the Heisenberg one. Based on this fact,
Cheng and Yang studied the magnetization process of the
classical AFM Ising model on the S–S lattice using the
tensor renormalization-group approach [20]. For a certain T
range and coupling constants, only a single magnetization
plateau at M/Ms = 1/3 resulting from a particular spin
state in which each triangle contains two up-spins and
one down-spin (UUD, see figure 2(a)) was predicted.
Moreover, the spin-1/2 Ising-like XXZ model on the S–S
lattice was also visited using the quantum Monte Carlo
method, and the magnetization plateau at M/Ms = 1/2 was
identified [21–23]. It was argued that quantum fluctuations
and long-range interactions which may be considered to be
the Ruderman–Kittel–Kasuya–Yosida (RKKY) interactions
play an important role in the emergence of the M/Ms =

1/2 plateau, and a ferrimagnetic (FI) ground-state spin
arrangement consisting of alternating AFM and ferromagnetic
(FM) stripes was recognized, as depicted in figure 2(b).
In addition, a model based on the coexistence of spin
and electron subsystems was investigated to describe the
magnetization processes in RB4, and magnetization plateaus
at M/Ms = 1/2, 1/3, 1/5, and 1/7 were found [24]. It is

Figure 2. Spin configurations in the (a) UUD state, (b) FI state, (c) possible 2/3 plateau state, and (d) FM state. Solid and empty circles
represent the up-spins and the down-spins, respectively.
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believed that the interaction between the electron and spin
subsystems may be responsible for the plateaus. This hints the
substantial role of long-range interactions in determining the
magnetization behaviors in these systems.

So far a complete understanding of the multi-step
magnetization in TmB4 remains open [25, 26]. For example,
arguments concerning the origin of the experimentally
observed 1/2 plateau in the high-h range have not yet reached
an agreement. To some extent, an effective reduction of the
neighboring spin interactions due to the spin frustration may
enhance the relative importance of weak interactions. Besides
the RKKY interaction, one such interaction is the long-range
dipole–dipole (D–D) interaction, which is estimated to be on
the same order of magnitude as the exchange coupling for
rare-earth cations with considerable magnetic moments [27,
28]. When the D–D interaction is taken into account, spins in
the system tend to be anti-parallel with each other, as will be
stated later. Compared with the FM state (spin configuration is
shown in figure 2(d)), the FI state with the plateau at M/Ms =

1/2 may be stabilized by the D–D interaction in a certain h
region. In addition, a possible spin configuration with every
AFM band separated by two FM stripes (figure 2(c)) may be
stable when h is further increased, resulting in a magnetization
plateau at M/Ms = 2/3.

Based on the above discussion on the possible spin
configurations for the 1/2 and 2/3 magnetization plateaus,
one may argue that the D–D interaction in the S–S magnets
plays an important role in modulating the spin configuration.
However, so far no work on this role of the D–D interaction
has been available. In order to clarify this issue, we start with
a classical Ising model on the 2d S–S lattice by including
the D–D interaction, and then extensive simulations on the
magnetization behavior are performed. The 1/2 plateau is
indeed reproducible by including the D–D interaction, and the
region for the FI state (M/Ms = 1/2) in the phase diagram can
be significantly enlarged. Furthermore, the D–D interaction
can also lead to a relatively narrow 2/3 plateau at low T .

2. Model and method

In the presence of a finite h, the Hamiltonian can be written
as:

H = J′
∑
edges

Si · Sj + J
∑

diagnol

Si · Sj

+ g
∑
〈i,j〉

Si · Sj∣∣∣R3
ij

∣∣∣ − 3

(
Si · Rij

) (
Sj · Rij

)∣∣∣R5
ij

∣∣∣
− h

∑
i

Si,

(1)

where the spin-exchange coupling J′ = 1/2, J = 1, Si is the
Ising spin with unit length on site i, g is the dipolar factor, Rij
is the separation between sites i and j, and h is applied along
the direction of up-spins (+c axis). Since each Ising spin is
along the c-axis, the second term in the D–D interaction can be
safely ignored. In addition, a cut-off radius Rij = 6 is chosen
to save the CPU time, and it will be checked later that the
choice of Rij never affects our conclusion.

Our simulation is performed on an L × L (unless
stated elsewhere, L = 24 is chosen) lattice with periodic
boundary conditions using the standard Metropolis algorithm
and the parallel tempering algorithm [29, 30]. Here, the
parallel tempering algorithm is utilized in order to prevent
the system from trapping in metastable free-energy minima
caused by the frustration. We take an exchange sampling after
every 10 standard Monte Carlo steps. Typically, the initial
2 × 104 Monte Carlo steps are discarded for equilibrium
considerations and another 2 × 104 Monte Carlo steps are
retained for statistic averaging of the simulation.

3. Simulation results and discussion

Figure 3(a) shows the calculated M as a function of g and
h at T = 0.02. The magnetization curve for g = 0 clearly
shows two steps. When h increases from zero, M rapidly
reaches the first plateau at M = Ms/3 resulting from the
UUD state, and then switches to Ms above h ∼ 3. When g
increases (0 < g < 0.08), a magnetization step at M = 0 is
exhibited and gradually broadened. This plateau at M = 0 is
caused by the collinear state (figure 3(c)), which is the same
as the earlier report [20]. At the same time, the transition
from the UUD state to the FM state shifts toward the high-h
side, leading to the invariance of the plateau width at M =
Ms/3 for g < 0.08. More interestingly, when g increases
up to 0.08, a magnetization step at M = Ms/2 with the FI
state is observed at a high-h range, which is consistent with
experimental observation [7]. When g is further increased, the
magnetization steps at M = 0 and M = Ms/2 are gradually
broadened, while the step at M = Ms/3 is narrowed.

Figure 3(b) shows the simulated phase diagram in the g–h
plane at T = 0.02, in which the transition points are estimated
from the positions of the peaks in the susceptibility χ =

dM/dh, following earlier work [25]. In order to uncover the
physics underlying our simulation, one may give a qualitative
discussion from the energy landscape. At g = 0, the UUD
state is stabilized by the magnetic energy when h is applied.
As h further increases, the down-spins may flip as the
static magnetic energy increases to be comparable with the
interaction energy. The critical field can be estimated to be
h = 4J′ + J = 3, which is verified in our simulation. As
stated earlier, spins in the system tend to be anti-parallel with
each other when the D–D interaction is taken into account.
Compared with the UUD state, the collinear state is stabilized
by the D–D interaction. Thus, a higher h should be applied to
convert the system from the collinear state to the UUD state
as g increases, leading to the broadening of the magnetization
step at M = 0. A similar behavior in the phase transition from
the UUD state to the FM state can also be noticed, i.e. the
transition shifts toward the high-h side as g increases (0 < g <
0.08), as clearly shown in figure 3(b). However, in the small
g region (g < 0.08), the magnetic energy plays a significant
role in modulating the step-M behavior, and the intermediate
magnetization step at M = Ms/2 cannot be stabilized. On
the other hand, in the large-g region (g > 0.08) in which the
D–D interaction becomes more dominant, the magnetization
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Figure 3. (a) Magnetization M versus dipolar factor g and magnetic field h. The parameters are L = 24, T = 0.02 and Rij = 6. (b) Phase
diagram of the magnetization plateau in the h–g plane. (c) Spin configuration for the collinear state with the plateau at M = 0. Solid and
empty circles represent the up-spins and the down-spins, respectively.

step at M = Ms/2 is observed and is gradually enlarged with
increasing g.

To identify the origin of the FI state with the 1/2 plateau,
we respectively calculate the h-dependence of spin-exchange
energy Hex, D–D interaction HDD, Zeeman energy Hzee,
and the total energy H at T = 0.02 for g = 0.2 (see
figure 4(a)). In order to help one to understand the results,
the corresponding magnetization curve is also shown in
figure 4(b). The enhancement of the FI state with increasing
g may be understood from two different aspects. On one
hand, within a certain h range, the energy loss from the
D–D interaction and spin-exchange interaction due to the
phase transition from the UUD state to the FI state is smaller
than the energy gain from the Zeeman energy, leading to the
stabilization of the FI state. In addition, the energy loss from
the D–D interaction due to this transition is very small and
increases slowly with increasing g, thus the transition from
the UUD state to the FI state occurs at a relatively stable h,
as shown with the red circles in figure 3(b). On the other
hand, the energy loss from the D–D interaction due to the
phase transition from the FI state to the FM state is large and
increases quickly as g increases. So, a larger h will be needed
to flip down-spins in the FI state with increasing g. As a result,
when g is further increased from g = 0.08, the region of the

FI state with the plateau at M = Ms/2 is enlarged, while that
of the FM state with the plateau at M = Ms is narrowed.

In addition, the effect of T is also studied in our
simulation, and the corresponding results are shown in
figure 5. Figure 5(a) shows the calculated M as a function
of T and h for g = 0.2. At low T (T < 0.02), a narrow
magnetization plateau at M = 2Ms/3 is observed in addition
to the previously discussed plateaus at M = 0,Ms/3,Ms/2
and Ms. The spin configuration with the plateau at M = 2Ms/3
is confirmed in our work to be the same as that shown in
figure 2(c). The related physical mechanism responsible for
this phenomenon may be similar to that for the emergence of
the plateau at M = Ms/2 in a certain h range. However, the
2Ms/3 plateau is so unstable that it quickly disappears when
T increases slightly, as shown in figure 5(b). In addition, the
FI state is gradually destroyed due to the thermal fluctuations,
leading to the melting of the magnetization step at M =
Ms/2. When T is raised to about 0.15, the Ms/2 plateau
completely disappears. On the other hand, the steps at M = 0
and Ms/3 are relatively stable, and are clearly visible even
at T = 0.4. However, when T rises from 0.15, the borders
between the steps become more and more indistinct, as shown
in figure 5(a). One may note that the perfect collinear state
and UUD state may be partially destroyed near the critical
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Figure 4. The calculated (a) Hex,HDD, Hzee, H, and
(b) magnetization M/Ms as a function of h at T = 0.02 for g = 0.2.

field at high T (T > 0.15), leading to the smoothness of the
magnetization curves.

Up to now, the present work reveals that frustrated
spin systems such as TmB4 offer a very complicated spin
configuration which is very sensitive to weak interactions,
including the D–D interaction which is usually ignored in
earlier work. The magnetization plateau at M = Ms/2 at low
T as reported in experiments is reproduced in our simulation
when the D–D interaction is taken into account. In addition,
a narrow step at M = 2Ms/3 is predicted in our simulation,
which remains to be checked further. Although not all the
experimental results in TmB4 can be explained based on the
classical Ising model, the present study has taken an important
step toward a complete understanding of the magnetization
process of this system.

In order to verify the reliability of our simulation,
the dependence of the step-like magnetization feature on
the cut-off radius Rij and the lattice size L has also been
investigated, and the simulated results are presented in
figure 6. Figure 6(a) shows the simulated magnetization
curves for various Rij (Rij = 4, 6 and 8) at T = 0.02 for
g = 0.2. The magnetization curve for Rij = 6 perfectly
coincides with that for Rij = 8, indicating that the choice of
Rij in this work is reasonable enough. Finally, we check the
finite-lattice-size effect in order to exclude the artificial facts
due to the finite lattice size in our simulation. The simulated
magnetization curves for different L (L = 12, 18, 24 and 30)

Figure 5. (a) Magnetization M/Ms versus temperature T and
magnetic field h for g = 0.2. (b) Magnetization curves for different
T for g = 0.2.

are shown in figure 6(b). The simulated curves for various L
are almost merged into one, demonstrating that the finite-size
effect on the magnetization of the system is negligible and
never affects our conclusion.

4. Conclusion

In conclusion, we have studied the magnetic behavior of
the classical Ising model on the Shastry–Sutherland lattice
by means of Monte Carlo simulation in order to understand
the magnetic process in TmB4. Our simulation successfully
reproduces the magnetization plateau at M = Ms/2 observed
in experiments when the D–D interaction is taken into
account. In addition, a tiny plateau at M = 2Ms/3 is
predicted in our work, which deserves to be checked further.
The magnetic phase diagram can be understood from the
competitions among the spin-exchange interaction, the D–D
interaction and the static magnetic energy. It is indicated
that even weak interactions available in realistic systems,
such as the D–D interaction, may have a significant effect
on the step-like magnetization feature. The present work
may provide new insights into the understanding of the
magnetization process for frustrated S–S magnets.
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Figure 6. Magnetization curves for (a) different cut-off radius Rij and (b) different lattice sizes L. The parameters are T = 0.02 and g = 0.2.
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The competing spin orders and fractional magnetization plateaus of the classical Heisenberg model

with long-range interactions on a Shastry-Sutherland lattice are investigated using Monte Carlo

simulations, in order to understand the fascinating spin ordering sequence observed in TmB4 and

other rare-earth tetraborides. The simulation reproduces the experimental 1/2 magnetization plateau

at low temperature by considering multifold long range interactions. It is found that more local long

range interactions can be satisfied in the 1/2 plateau state than those in the 1/3 plateau state, leading

to the stabilization of the extended 1/2 plateau. The phase boundaries in the magnetic field at zero

temperature are determined, demonstrating the simulation results. When the energies of the Neel

state and the collinear state are degenerated, the former state is more likely to be stabilized due to

the competitions among the local collinear spin orders. The present work provides a comprehensive

proof of the phase transitions to the Neel state at nonzero temperature, in complimentary to the

earlier predictions for the Fe-based superconductors. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4792504]

I. INTRODUCTION

During the past decades, frustrated spin systems such

as triangular spin-chain system Ca3Co2O6 and Shastry-

Sutherland (S-S) magnets have attracted widespread interest

from both theoretical and experimental approaches due to

the fact that fascinating multi-step magnetization behaviors

can appear in these systems.1–6 Up to now, the magnetization

plateaus in the former system are generally believed to be

caused by non-equilibrium dynamics,7–9 while those in the

latter systems are still under controversy.

The S-S lattice which was first introduced as an interest-

ing example of a frustrated quantum spin system with an

exact ground state as early as 1981, can be described as a

square lattice with diagonal antiferromagnetic (AFM) cou-

pling J1 in every second square and AFM coupling J2 along

the edges of the squares, as depicted in Fig. 1(a).10 Experi-

mentally, SrCu2(BO3)2 with Cu2þ ions carrying a quantum

spin S¼ 1/2 and arranged in a two-dimensional (2d) S-S lat-

tice has triggered an extensive exploration of quantum S-S

magnets which exhibit an amazing sequence of magnetiza-

tion (M) plateaus at fractional values of the saturated mag-

netization (Ms).
11 On the other hand, quite a few rare-earth

tetraborides RB4 (R¼Tb, Dy, Ho, Tm, etc.) as another repre-

sentative of the S-S magnets have been accorded more and

more attentions.5,6,12,13 Similar to SrCu2(BO3)2, the complex

magnetic structures and their associated physical phenomena

in these RB4 compounds under various magnetic fields (h)

at low temperatures (T) were identified. For example, the

magnetization plateaus at the fractional values of Ms such as

M/Ms¼ 1/2, 1/7, and 1/9, were experimentally observed in

TmB4 and several theoretical attempts to understand this

interesting phenomenon are available as well.

Unlike Cu2þ, Tm3þ presents a large total magnetic

moment �6.0 lB, and can be considered as a classical spin

system. In addition, TmB4 is of strong easy-axis anisotropy

caused by strong crystal field effects. Based on this fact, the

magnetization process of the classical AFM Ising model on

the S-S lattice was studied using the tensor renormalization-

group approach.14 Under low h, either the collinear state

[Fig. 2(a)] or the Neel state [Fig. 2(b)] is stabilized depend-

ing on the value of J1/J2. For a certain T range and coupling

constants, only a single magnetization plateau at M/Ms¼ 1/3

resulting from a particular spin state in which each triangle

contains two up-spins and one down-spin [the UUD state,

see Fig. 2(c)] was predicted in an intermediate h range. At

almost the same time, magnetization pseudoplateaus around

M/Ms¼ 1/3 were predicted in a classical Heisenberg model

on the S-S lattice.15 Most recently, the ground states of the

Ising model on the S-S lattice are investigated and the exis-

tence of a single 1/3 plateau has been rigorously proved.16

Three different ground states with M/Ms¼ 1/2 have been

found when the additional third-neighbor interaction is

considered.

On the other hand, the quantum spin-1/2 Ising-like XXZ

model with additional interactions [Fig. 1(b)] on the S-S

lattice was visited using the quantum Monte Carlo method,

and the experimentally observed magnetization plateau at

M/Ms¼ 1/2 in the absence of the M/Ms¼ 1/3 plateau was

reproduced.17–19 It was indicated that quantum spin fluctua-

tions and long-range interactions may play an important role
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in the emergence of the M/Ms¼ 1/2 plateau, and a ferrimag-

netic (FI) state spin arrangement consisting of alternative

AFM and ferromagnetic (FM) stripes was recognized [Fig.

2(d)]. In our earlier work, the presence of the M/Ms¼ 1/2

plateau was also confirmed when the dipole-dipole interac-

tion is taken into account in the classical Ising model on the

S-S lattice.20,21 Otherwise, a model based on the coexistence

of the spin and the electron subsystems was investigated, and

the latter subsystem and its interaction with the spin one

were believed to be responsible for the plateaus in S-S

magnets.22

So far, arguments concerning the origin of experimental

M/Ms¼ 1/2 plateau have not yet reached a consensus. For

frustrated spin systems, an effective reduction of the neigh-

boring spin interactions due to the spin frustration may

enhance the relative importance of weak interactions. This

hints the substantial role of long-range interactions in deter-

mining the magnetization behaviors in these frustrated spin

systems. For example, a weak FM coupling J4 bond tends to

align the connected spin pair parallel with each other, and

may stabilize the M/Ms¼ 1/2 plateau. Similarly, more local

AFM J3 interactions are satisfied in the FI state than those in

the UUD state, resulting in the stabilization of the M/Ms¼ 1/2

plateau with the increasing J3. In fact, for a quantum spin sys-

tem, it is confirmed that the FM J4 and AFM J3 couplings are

essential to the stabilization of the M/Ms¼ 1/2 plateau.18

Naturally, one may question whether the same mecha-

nism still holds true for classical spin systems such as TmB4.

As a matter of fact, the investigation of the effect of further-

neighbor interactions is suggested to eventually explain the

plateaus in TmB4 in earlier work.16 On the other hand, the

study of the nontrivial magnetic orders in these systems also

plays an essential role in the sense of basic physical research.

Most recently, the phase transition from the collinear state to

the Neel state at finite T was reported in a frustrated AFM

model on a square lattice, which is interested in explaining

the antiferromagnetic behaviors associated with the Fe-based

superconductors.23 To some extent, this interesting phenom-

enon probably is observable for S-S magnets. However, as far

as we know, few works on this subject have been reported.

In order to clarify this critical issue, we investigate the

classical Heisenberg model with the easy-axis anisotropy

and the long-range interactions on the S-S lattice. The main

M/Ms¼ 1/2 plateau can be reproduced when the long-range

interactions are included. The phase diagrams obtained by

means of the Monte Carlo simulation indicate that both the

J3 and J4 interactions have a significant effect on the modula-

tion of the spin configurations. The simulated results at low

T can be qualitatively interpreted from the spin structures of

the ground states for the Ising limit. In addition, the Neel

state is verified to be stable at low temperatures due to the

competitions among the local collinear states, which

strengthens the conclusion of Wang that the phase transition

from the collinear state to the Neel state may occur at finite

temperature in the Fe-based superconductors such as

P-substituted LaFeAsO.23

The remainder of this paper is organized as follows: In

Sec. II, the model and the simulation method will be

presented and described. Section III is attributed to the simu-

lation results and discussion of the simulation. The spin

structures for the Ising limit at zero temperature will be dis-

cussed in Sec. IV, and the conclusion is presented in Sec. V.

II. MODEL AND METHOD

The easy-axis anisotropy is ignored in the Heisenberg

model, which, on the other hand, is too much emphasized in

the Ising limit. The uniaxially anisotropic Heisenberg model

seems to be a sound choice for the description of TmB4, as

discussed earlier. In the presence of the long-range interac-

tions and h, the Hamiltonian can be described as follows:

H ¼ J1

X

diagonal

Si � Sj þ J2

X

edges

Si � Sj þ J3

X

hi;ji
Si � Sj

þ J4

X

hi;ji’

Si � Sj � h
X

i

Sz
i � D

X

i

ðSz
i Þ

2;
(1)

where the exchange couplings J1¼ 1, J2¼ 1/2, Si represents

the Heisenberg spin with unit length on site i, hi, ji and hi, ji0,
respectively, denote the summations over all pairs on the

bonds with J3 and J4 couplings as shown in Fig. 1(b), h is

FIG. 2. Spin configurations in (a) the collinear state, (b) the Neel state, (c)

the UUD state, and (d) the FI state. Solid and empty circles represent the

up-spins and the down-spins, respectively.

FIG. 1. Effective models on the Shastry-Sutherland lattice with (a) the diag-

onal coupling of J1, and J2 along the edges of the squares, (b) the additional

interactions J3 and J4.
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applied along the þz axis, and Sz
i denotes the z component of

Si. Typically, the easy-axis anisotropy constant D¼ 0.4 is cho-

sen in our simulation. In addition, J1/J2¼ 2 is taken so that

the collinear state and the Neel state are degenerated for zero

J3 which may help one to understand the phase competition

between these two phases better.

Our simulation is performed on an L�L (L¼ 24) S-S

lattice with period boundary conditions using the standard

Metropolis algorithm and the parallel tempering algo-

rithm.24,25 Here, the parallel tempering algorithm is utilized

in order to prevent the system from being trapped in the met-

astable free-energy minima caused by the frustration. We

take an exchange sampling after every 10 standard Monte

Carlo steps (MCs). The simulation is started from the FM

state under high h, and the M(h) curves are calculated upon h
decreasing. Typically, the initial 2� 105 MCs are discarded

for equilibrium consideration and another 1� 105 MCs are

retained for statistic averaging of the simulation.

III. SIMULATION RESULTS AND DISCUSSION

In this study, we mainly concern the effect of the long-

range interactions on the low-temperature magnetic behav-

iors of S-S magnets. The calculated M as a function of J3 and

h at T¼ 0.01 for J4¼ 0 is shown in Fig. 3(a). For small J3

(J3< 0.1), M rapidly reaches the first plateau at M¼Ms/3

resulting from the UUD state when h increases from zero,

and then switches to Ms above h � 3. When J3 further

increases (J3> 0.1), the M¼Ms/3 step splits into three steps,

the M¼ 0 step, the M¼Ms/3 step, and the M¼Ms/2 step.

The plateau at M¼ 0 is caused by the collinear state, and

that at M¼Ms/2 is caused by the FI state, as reported earlier.

The magnetization steps at M¼ 0 and M¼Ms/2 are gradu-

ally broadened, while the step at M¼Ms/3 is narrowed with

increasing J3.

Fig. 3(b) shows the simulated phase diagram in the J3-h
plane at T¼ 0.01, in which the transition points are estimated

from the positions of the peaks in the susceptibility

v¼ dM/dh, following earlier work.15 At J3¼ 0, the UUD

state is stabilized by the magnetic energy when h is applied.

The down-spins may flip when h is further increased to the

critical field which can be estimated to be h¼ 3 for the Ising

limit, as verified in our simulation. One may note that the

spin pairs on the diagonal J3 bonds tend to be anti-parallel

with each other when AFM J3 coupling is taken into account.

Compared with the UUD state, the collinear state is stabi-

lized by J3 interaction. Thus, a higher h should be applied to

convert the system from the collinear state to the UUD state

as J3 increases, leading to the broadening of the magnetiza-

tion step at M¼ 0. To clearly identify the origins of the phase

diagram, we, respectively, calculate the h-dependence of the

spin-exchange energy H1 from the J1 coupling, H2 from the

J2 coupling, H3 from the J3 coupling, the uniaxial anisotropy

Han, and the Zeeman energy Hzee at T¼ 0.01 for J3¼ 0.3

[see Fig. 3(c)]. The corresponding magnetization curve is

also presented in Fig. 3(d) to help one to understand the

results better. The enhancement of the FI state with the

increasing J3 can be understood from two parts. On one

hand, within certain h range, the energy loss from H1 and H2

due to the phase transition from the UUD state to the FI state

is smaller than the energy gain from H3 and Hzee, leading to

the stabilization of the FI state. In addition, the energy gain

from H3 due to this transition is increased with the increasing

J3, thus the transition shifts toward the small-h side as shown

with the red circles in Fig. 3(b), leading to the gradually

replacement of the 1/3 plateau by the 1/2 one. On the other

hand, the energy loss from H3 due to the phase transition

from the FI state to the FM state increases as J3 is increased.

So, a larger h will be needed to flip down-spins in the FI

state. As a result, when J3 is increased from J3¼ 0.1, the

regions of the FI state with the M¼Ms/2 plateau and the col-

linear state with the M¼ 0 plateau are, respectively,

enlarged, while that of the UUD state with the plateau at

M¼Ms/3 is narrowed.

Similar phenomena can also be observed when a FM J4

coupling is included in this system. Fig. 4(a) shows the cal-

culated M as a function of J4 and h at T¼ 0.01 for J3¼ 0.

The M¼Ms/3 step splits into three steps when J4 is increased

above �0.05. It is verified that the plateau at M¼ 0 is caused

by the Neel state which will be discussed in detail in the next

section. When J4 is further increased to ��0.25, the 1/3 step

is completely replaced by the M¼ 0 step and the M¼Ms/2

step. In addition, the M(h) curves for larger J4 remain almost

the same as that for J4¼�0.25. The corresponding phase

diagram is shown in Fig. 4(b), and can be clearly understood

from the competitions among different energy terms. The

energy H4 from the J4 coupling is significantly lost due to

the transition from the Neel state to the UUD state as shown

in Fig. 4(c), leading to the fact that the transition shifts to-

ward the high-h side with the increasing J4. At the same

time, the energy gain from H4 due to the transition from the

UUD state to the FI state is increased, resulting in the

enhancement of the FI state accompanied by the destabiliza-

tion of the UUD state. When J4 is increased to �0.25, the

UUD state has been completely suppressed, leaving the sta-

bilization of an extended M¼Ms/2 plateau in the absence of

FIG. 3. (a) Magnetization M versus J3 and magnetic field h. The parameters

are L¼ 24, T¼ 0.01, and J4¼ 0. (b) Phase diagram of the magnetization

plateau in the h-J3 plane. The calculated (c) H1, H2, H3, Han, Hzee and

(d) magnetization M/Ms as a function of h at T¼ 0.01 for J3¼ 0.3.
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the M¼Ms/3 plateau. On the other hand, it is shown in

Figs. 4(c) and 4(d) that H4 maintains the same value for the

Neel state, the FI state, and the FM state in which all local J4

interactions are satisfied. So, the transition from the Neel

state to the FI state and that from the FI state to the FM state,

respectively, occur at stable h irrespective of J4, as clearly

shown in Fig. 4(b).

One may note that the perfect collinear state, the Neel

state, the UUD state, and the FI state may be partially

destroyed near the critical fields for the Heisenberg spin

model even at T as low as 0.01, leading to the smoothness of

the magnetization curves in our simulation. However, the

present work reveals that classical S-S magnets such as

TmB4 exhibit complex spin structures which are very sensi-

tive to weak long-range interactions. The experimentally

observed magnetization plateau at M¼Ms/2 can be repro-

duced when the AFM J3 coupling or/and the FM J4 coupling

are taken into consideration. The plateau at M¼ 0 stems

from either the Neel state or the collinear state, depending on

the choice of the exchange interaction coupling constants.

To better understand the simulated results, the ground states

at zero T for the Ising limit are also discussed based on a

mean-field method, as will be found in Sec. IV.

IV. MAGNETIC ORDERS AT ZERO TEMPERATURE

In fact, the ground-state and the phase boundaries can

be qualitatively determined by comparing the Ising energies

at different spin configurations which are confirmed from the

snapshot of spin configuration in Monte Carlo simulations.

Excluding the anisotropy energy (constant here), the energy

per site of the Neel state, the collinear state, the UUD state,

the FI state, and the FM state can be, respectively, calculated

as follows:

ENeel ¼ J1=2� 2� J2 þ J3 þ 2� J4; (2)

Ecol ¼ �J1=2� J3 þ 2� J4; (3)

EUUD ¼ �J1=6� 2J2=3þ J3=3þ 2J4=3� h=3; (4)

EFI ¼ 2� J4 � h=2; (5)

EFM ¼ J1=2þ 2� J2 þ J3 þ 2� J4 � h: (6)

Fig. 5(a) shows the calculated local energies as a func-

tion of h for these five states for the Ising limit under J3¼ 0

and J4¼ 0. It is clearly demonstrated that the energies of the

UUD state, the FI state, and the FM state are degenerated at

the saturation field which can be determined to be

hc¼ 4J2þ J1¼ 3 by comparing EUUD and EFM. As a result,

only the M¼Ms/3 plateau is stabilized in certain h range

(0< h< 3) as shown in Fig. 5(b) in which the corresponding

magnetization curves for D¼ 0.2, 0.4, 0.6 and the Ising limit

at T¼ 0.01 obtained from Monte Carlo simulation are pre-

sented. Most recently, it has been exactly proved that the

UUD structure can be realized at a single point (T, h)¼ (0, 3)

for D¼ 0.26 The single UUD point is expanded into a finite

region of the UUD phase when the anisotropy D is taken into

account, leading to the broadening of the magnetization pla-

teau at M¼Ms/3. When D increases to the value of 0.6, the

system exhibits the magnetic behavior of the Ising model, as

shown in our simulation. The local energies for these

five states under J3¼ 0.1 and J4¼�0.1 are presented in

Fig. 5(c). The energy of the collinear state is lower than that

of the Neel state when J3 is included, which may be also

noted from Eqs. (2) and (3). By comparing Ecol and EUUD,

one can determine the boundary between the collinear state

and the 1/3 plateau state, and the first critical field can be

estimated to be hc,1¼ 4J3/3 � 4J4/3. The transition shifts to-

ward the high-h side with increasing AFM J3 or/and FM J4.

On the other hand, the degeneracy between the UUD state,

the FI state, and the FM state can be significantly lifted when

J3 and J4 are taken into account. When h is further increased,

the FI state is stabilized and the second critical field can be

estimated to be hc,2¼�2J3 þ 8J4 þ 3 by comparing the

FIG. 5. The local energies as a function of h for the Ising limit for (a) J3¼ 0

and J4¼ 0 and (c) J3¼ 0.1 and J4¼�0.1. (b) and (d) are the correspond-

ingly simulated magnetization curves at T¼ 0.01.
FIG. 4. (a) Magnetization M versus J4 and magnetic field h. The parameters

are L¼ 24, T¼ 0.01, and J3¼ 0. (b) Phase diagram of the magnetization

plateau in the h-J4 plane. The calculated (c) H1, H2, H4, Han, Hzee and (d)

magnetization M/Ms as a function of h at T¼ 0.01 for J4¼�0.15.
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energies in Eqs. (4) and (5). hc,2 is intensively decreased

when the AFM J3 or/and the FM J4 is/are increased. As a

result, the main M¼Ms/3 plateau is gradually replaced by

the M¼ 0 plateau and the M¼Ms/2 one, as confirmed in our

simulation [Fig. 5(d)]. In addition, the FM J4 coupling is

proved to be one of the most efficient ways to stabilize the

M¼Ms/2 plateau, as reported earlier.18 When h is suffi-

ciently strong, the system should be fully magnetized. Simi-

larly, the upper critical field hc,3 is calculated to be hc,3¼ 2J3

þ 3 by comparing EFI and EFM. So, hc,3 is linearly increased

with increasing J3, which is irrelevant to J4.

At last, we draw our eyes on the competition between

the Neel state and the collinear state under small h. It is

noted from Eqs. (2) and (3) that these two states are degener-

ated for zero J3. However, only the perfect Neel state is sta-

bilized for small h at low T, as confirmed in our simulation

[Fig. 4(b)]. This phenomenon may be qualitatively under-

stood from the competition between two kinds of collinear

states with the spin configurations in which the same directed

spins are horizontally/vertically arranged. These two states

strongly compete with each other in the formation of the per-

fect collinear state. As a result, the Neel state in which the

planar symmetry is still maintained is more likely to be stabi-

lized. This argument is also verified in our simulation by the

tracking of the spin configurations at different MCs. The

simulation started from an arbitrary state is performed for

the Ising limit at J3¼ 0 and J4¼�0.15, under zero h. The

spin configuration at MCs¼ 5000 [Fig. 6(a)] indicates that

the local collinear states can be quickly formed. As MCs

increase, the competitions among these local collinear states

leading to the enlargement of the region with the local Neel

state, as shown in Figs. 6(b) and 6(c). Finally, the system

reaches the equilibrium state in which the perfect Neel state

dominates, as depicted in Fig. 6(d). Most recently, a possible

phase transition from the collinear state to the Neel state is

predicted in a 2d square lattice AFM spin model, which is

interested in explaining the magnetic behaviors in the Fe-

based superconductors.23 The conclusion may be strength-

ened by the present work more or less.

V. CONCLUSION

In this study, we have examined the low-temperature

magnetic properties of a classical spin model with additional

couplings on the Shastry-Sutherland lattice by means of

Monte Carlo simulation. The 1/2 magnetization plateau as

observed in TmB4 and ErB4 is successfully reproduced when

the long-range interactions are taken into account. It is dem-

onstrated that more local long-range interactions are satisfied

in the 1/2 plateau state than those in the 1/3 plateau one,

leading to the stabilization of the extended 1/2 plateau. The

origins of these interesting magnetic orders are discussed in

details, and are confirmed by the spin configuration of the

plateau state at zero temperature. It is indicated that even

weak long-range interactions may have a significant effect

on the step-like magnetization feature for the classical S-S

magnets. In addition, the competitions between the Neel

state and the collinear state are discussed, and the former one

is confirmed to be stabilized when the energies of these two

states are degenerated. This simulated result provides evi-

dence to the conclusion of the earlier work in which a phase

transition to the Neel state is predicted in the Fe-based super-

conductors such as P-substituted LaFeAsO.
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Abstract – The dynamic magnetization behaviors of the classical Ising model on the Shastry-
Sutherland lattice with additional long-range interactions are investigated by means of the Glauber
dynamics, in order to understand the fascinating magnetization plateaus and the hysteresis loop
observed in TmB4. With this algorithm, the experimental 1/n (n = 7, 9, 11) magnetization
plateaus as well as the main 1/2 one can be reproduced at low temperatures. Furthermore, the
hysteresis loop can also be well explained by the present theory. It is indicated that the formation
of domain walls due to the non-equilibrium magnetization process may be responsible for the
emergence of the fractional plateaus.

Copyright c© EPLA, 2013

Introduction. – Geometrically frustrated spin sys-
tems which exhibit very rich magnetic properties have
drawn considerable attentions during the last several
decades [1]. For example, various experimental and theo-
retical explorations have been devoted to the emergence of
multi-step magnetization (M) curves in frustrated systems
such as the triangular spin-chain system Ca3Co2O6 [2–5]
and the Shastry-Sutherland (S-S) magnets [6–11]. So far,
the step-like magnetization curves observed in Ca3Co2O6

are generally believed to be caused by the non-equilibrium
magnetization dynamics [12,13], while those in S-S sys-
tems are far from being fully understood and remains to
be checked.

The S-S lattice [14] has attracted special atten-
tions since its experimental realization in the compound
SrCu2(BO3)2 in which a fascinating sequence of mag-
netization plateaus at fractional values of the saturated
magnetization (MS) have been reported [15,16]. Most
recently, similar magnetic behaviors have been identified
in rare-earth tetraborides RB4 (R = Tb, Dy, Ho, Tm, etc.)
with the rare-earth moments located on a lattice which

(a)E-mail: qinmh@scnu.edu.cn
(b)E-mail: liujm@nju.edu.cn

is topologically equivalent to the S-S lattice [8,9,17–20].
For instance, the fractional magnetization plateaus at
M/MS = 1/2, 1/7, 1/9 and 1/11, . . . have been experimen-
tally observed at temperature (T ) below 4K in TmB4 [9].
In contrast to SrCu2(BO3)2 with Cu2+ ions carrying a
quantum spin 1/2, TmB4 presents a large total magnetic
moment (∼6.0µB) and can be considered as a classical
spin system, triggering an extensive theoretical investiga-
tion of classical spin models on the S-S lattice [21–28].

It is experimentally indicated that TmB4 is of strong
easy-axis anisotropy caused by crystal field effects. Based
on this point, the magnetization process of the classical
Ising model on the S-S lattice was investigated using
the tensor renormalization group approach, and a single
magnetization plateau at M/MS = 1/3 was predicted
at low T for certain coupling constants [21]. In fact,
the ground states of the Ising model on the S-S lattice
were investigated most recently and the existence of a
single 1/3 plateau was rigorously proved [22,23]. The
effect of further-neighbor interactions was suggested to
eventually explain the magnetization plateaus in TmB4,
and three different ground states with M/MS = 1/2 were
recognized when the additional third-neighbor interaction
was considered. On the other hand, the quantum spin-1/2
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Ising-like XXZ model with additional interactions on
the S-S lattice was studied using the quantum Monte
Carlo method, and the plateau at M/MS = 1/2 was
identified [29–31]. It was believed that the emergence of
the M/MS = 1/2 plateau may be due to the quantum
fluctuations and long-range interactions. In our earlier
work, the presence of the M/MS = 1/2 plateau was
also confirmed when the additional long-range interactions
were taken into account in the classical spin model [32].

So far, the main magnetization plateau at M/MS = 1/2
and some of other small fractional plateaus in TmB4

can be reproduced by the consideration of the long-range
interactions for certain coupling constants. However, the
origins of other small fractional plateaus are still under
debate. Generally speaking, a frustrated spin system
can be easily trapped into metastable states at low T
and is hard to relax to the equilibrium state. The time
available experimentally may not be sufficient for the spin
rearrangement, even though the energy difference between
plateaus may be very small. Thus, it is reasonable to
assume that the spins in TmB4 are easily trapped into a
metastable state rather than into the equilibrium one at
low T , which, to some extent, can be also favored by the
obvious hysteresis loop observed in earlier experiments.
Furthermore, the formation and the motion of domain
walls due to the non-equilibrium magnetization process
may play an important role in the emergence of the mag-
netization plateaus, which has been verified in the study of
the triangular spin-chain compound Ca3Co2O6 [13,33,34].
As a matter of fact, the M/MS = 1/8 plateau has been
predicted in the XXZ model on the S-S lattice for a short
relaxation time, indicating that this plateau may arise
from non-equilibrium state [31]. Thus, one may question
if the non-equilibrium magnetization dynamics is also
essential for the small fractional magnetization plateaus in
TmB4. A detailed discussion of this question is definitely
crucial for the understanding of the fascinating magnetic
properties in such a frustrated system. However, as far as
we know, few works on this subject have been reported.

In order to make clear this question, we will study the
magnetization dynamics of the classical Ising model on the
S-S lattice with additional long-range interactions with
the Glauber dynamics which has been successfully used
in the study of the magnetic properties of Ca3Co2O6 [13].
This algorithm allows us to investigate the dependence of
the magnetization curves on temperature and magnetic-
field (h) sweep rate. The experimental magnetization
plateaus at small fractional values of M/MS = 1/7, 1/9,
and 1/11 followed by the main magnetization plateau at
M/MS = 1/2 can be reproduced at low T for certain
magnetic-field sweep rates. In addition, the hysteresis
loop observed in experiments can also be qualitatively
explained in our simulation [9,19]. These results clearly
demonstrate that the fascinating plateaus in TmB4 mag-
netization curve may be closely related to the non-
equilibrium magnetization dynamics. Our work provides
a new insight into the study of the magnetization process

Fig. 1: (Color online) Effective model on the Shastry-
Sutherland lattice with the diagonal coupling J1 (black solid
lines), J2 along the edges of the squares (magenta dashed lines),
the additional interactions J3 (blue dashed lines) and J4 (red
dashed lines).

for S-S magnets and other similar frustrated spin systems.
The remainder of this paper is organized as follows: In

the second section, the model and the simulation method
will be presented and described. The third section is
attributed to the simulation results and discussion. At
last, the conclusion is presented in the fourth section.

Model and method. – In the presence of the long-
range interactions and h, the Hamiltonian can be de-
scribed as follows:

H = J1

∑

〈i,j〉
1

Si · Sj + J2

∑

〈i,j〉
2

Si · Sj + J3

∑

〈i,j〉
3

Si · Sj

+J4

∑

〈i,j〉
4

Si · Sj − h
∑

i

Sz
i , (1)

where 〈i, j〉1, 〈i, j〉2, 〈i, j〉3, and 〈i, j〉4 denote the summa-
tions over all pairs on the bonds with J1, J2, J3 and J4

couplings, respectively, as shown in fig. 1, Si represents
the Ising spin with unit length on site i, h is applied along
the +z axis and Sz

i denotes the z component of Si. J1 = 1
is the antiferromagnetic (AFM) coupling, the coupling
ratio J2/J1 = 1 is expected from the crystal structure
of TmB4, similar with earlier estimation [30,31], the AFM
J3 = 0.15J1 and the ferromagnetic (FM) J4 = −0.15J1

are estimated to qualitatively reproduce the experimental
results. To investigate the magnetization dynamics of the
spin system, the simulation is carried out by a single
spin-flip rate in the Glauber form [13,34]. The spins
are assumed to interact not only with the neighbors and
external magnetic field but also with a heat reservoir,
based on the Glauber theory [35]. The probability of a
spin flip of the i-th spin per Monte Carlo step (MCs) can
be described as

Wi =
α

2

[

1 − Si tanh

(

−
D

kBT
+

µh

kBT

)]

, (2)
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Fig. 2: (Color online) Magnetization curves for (a) different
magnetic-field sweep rates at T = 0.01, and (b) enlargements
of magnetization curves at different temperatures at a fixed
sweep rate of 1/60MCs−1.

with

D = J1

∑

〈i,j〉
1

Sj +J2

∑

〈i,j〉
2

Sj +J3

∑

〈i,j〉
3

Sj +J4

∑

〈i,j〉
4

Sj , (3)

where α = 0.5MCs−1 is the constant of the interaction of
a spin with the heat reservoir, kB = 1 is the Boltzmann
constant, µ = 1 is the magnetic moment of the Tm ion. In
earlier work, the Glauber-type form of the spin-flip proba-
bility has been discussed in detail and successfully used
in the frustrated spin-chain system Ca3Co2O6 [13,34].
Similarly, a reasonable value α = 0.5MCs−1 is used in our
simulation to qualitatively coincide with the experimental
results.

Our simulation is performed on an L × L (L = 96
is chosen unless stated otherwise) lattice with periodic
boundary conditions. The simulation is started from
the saturated magnetization state under high h, which
is in the best accordance with the real case. Then the
magnetization curves in the decreasing h at different sweep
rates for various temperatures are studied to investigate
the magnetization dynamics in detail. In addition, the
sweep rate is defined by 1/m MCs−1 which means that
the 1/m of h unit is updated per MCs.

Simulation results and discussion. – Figure 2(a)
shows the calculated M/MS as a function of h for different
magnetic-field sweep rates at a low temperature T = 0.01.
Three steps can be observed for the lowest sweep rate
of 1/6000MCs−1. When h decreases down to ∼4.75, M
reaches the plateau at M/MS = 1/2, and then falls down
to the step at M = 0 below h ∼ 2.2. More interestingly,
the step at M = 0 decomposes into two substeps (zero
and nonzero) separated at h ∼ 1 when the magnetic-field
sweep rate is increased. The height of the nonzero substep
increases with increasing sweep rate. When the magnetic-
field sweep rate increases up to 1/60MCs−1, the M/MS =
1/9 plateau reported in experiments can be well repro-
duced in addition to the major magnetization plateaus at
M = 0 and M/MS = 1/2. Furthermore, the dynamic
magnetization curves in response to T at the constant

Fig. 3: (Color online) Spin configurations during the simulation
at a magnetic-field sweep rate of 1/60 MCs−1 and T = 0.01
under (a) h = 3.5, (b) h = 2.5, (c) h = 2.0, (d) h = 0. The
solid and empty squares represent the up-spins and the down-
spins, respectively.

sweep rate of 1/60MCs−1 are also investigated, and the
simulated results are presented in fig. 2(b). It is clearly
demonstrated that the nonzero substep is heightened as T
decreases. When T falls down to 0.008, a magnetization
step at M/MS = 1/7 is observed at intermediate h range,
which is consistent with experimental observation [9]. In
addition, some additional narrow plateaus can also be
noticeable in our simulation, which deserves to be checked
in further experiments.

As stated earlier [32], the ferrimagnetic (FI) state
spin arrangement consisting of alternative AFM and FM
stripes is more favored than the FM state when h is
decreased down to the first critical field, while the Neel
state is likely stabilized below the following critical field.
For the extremely slow sweep rate (1/6000MCs−1), the
single-domain FI state with the plateau at M/MS = 1/2
and the Neel state with the M = 0 plateau are, respec-
tively, stabilized below these two critical fields, leading
to the three-step magnetization curve which is similar
to that obtained by the Monte Carlo simulation. To
uncover the origin of the nonzero substep, the specimens
of configurations for various plateaus under different h at
the magnetic-field sweep rate of 1/60MCs−1 are presented
in fig. 3. It is clearly shown that the Neel state grows at a
lot of nucleation centers when h falls down to the second
critical field, resulting in the domain formation. A mixed
state with the Neel order and domain walls constructed
of polarized spin chains is responsible for the emergence
of the M/MS = 1/9 plateau in the magnetization curve,
as shown in fig. 3(c). The domains become smaller
with increasing magnetic-field sweep rate, leading to the
heightening of the nonzero substep. When h is further
decreased, the domain walls almost disappear (fig. 3(d)),
and the magnetization plateau at M = 0 can be observed.
On the other hand, the domain boundary mobility may
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Fig. 4: (Color online) (a) Hysteresis loop at a sweep rate of
1/60 MCs−1 and T = 0.01. The red and the black symbols
are the field-increasing branch and the field-decreasing branch,
respectively. (b) Magnetization curves for different lattice sizes
L at a sweep rate of 1/60 MCs−1 and T = 0.01.

be greatly decreased as T decreases. Thus, the domains
become smaller with decreasing T , making the additional
magnetization steps more apparent, as confirmed in our
simulation (fig. 2(b)). It is noted that the temperature
at which the experimental M/MS = 1/7 plateau is
observed is higher than that of the M/MS = 1/9 one.
The inconsistency between the present theory and the
experiment may be due to the fact that the disorder
effect caused by the inhomogeneity in realistic materials is
completely ignored in our simulation. However, our work
clearly indicates that the non-equilibrium magnetization
dynamics may play an important role in the appearance
of the fractional magnetization steps in TmB4.

In addition, the hysteresis loop is also studied in
our work, and the results can qualitatively reproduce
the experimental observations [9,19]. Figure 4(a) shows
the hysteresis loop at the magnetic-field sweep rate of
1/60MCs−1 at T = 0.01. The nonzero substep emerges
in both field-decreasing and field-increasing branches of
the magnetization curve. The nonzero substep (M/MS =
1/9) in the field-decreasing branch is much higher than
that (M/MS = 1/11) in the field-increasing branch, in
a good agreement with the experimental report [9]. This
phenomenon demonstrates that the domain structures can
be strongly affected by the initial state at a high magnetic-
field sweep rate. In fact, the spin configurations of the
simulation reveal that the Neel domains for the nonzero
substep in the field-increasing branch are generally larger
than those in the field-decreasing branch, resulting in the
emergence of the hysteresis loop. More interestingly, it
is confirmed in our simulation that the value of plateau
magnetization varies between different runs, similar with
earlier experimental report [9]. The corresponding results
are not shown here for brevity. Furthermore, it has been
noticed in earlier experiment that the critical fields in
the field-decreasing branch of the magnetization curve
are respectively smaller than those in the field-increasing
branch [19]. This magnetic behavior can also be well
reproduced by the simulation.

As stated earlier, the time required for the spin rear-
rangement likely exceeds the time available experimen-
tally. Thus, the non-equilibrium magnetization dynamics
may be essential for the emergence of the fractional
magnetization plateaus in TmB4. This point has been
confirmed in this work in which the non-equilibrium
evolution is performed by means of the Glauber dynamics.
The fractional magnetization plateaus and the hysteresis
loop at low T reported in experiments can be reproduced
in our simulation. Thus, our work may provide a new
insight into the study of the magnetization process of
TmB4, although not all the experimental results can be
excellently explained based on the present theory.

At last, the dependence of the step-like magnetization
feature on the lattice size L has been investigated in order
to exclude the artificial facts caused by the finite lattice
size. Figure 4(b) shows the simulated magnetization
curves for different L (L = 60, 96, 120 and 150) at
T = 0.01 for the extremely fast magnetic-field sweep rate
of 1/60MCs−1. All the simulated curves for various L
are almost merged into one, indicating that the finite-
size effect on the magnetization of the system is almost
negligible and never affects our conclusion.

Conclusion. – In summary, we have investigated the
classical Shastry-Sutherland Ising model with long-range
interactions employing a Glauber-type form of the spin-
flip probability in order to understand the dynamic mag-
netization process in TmB4. Besides the main M/MS =
1/2 plateau, other fractional magnetization plateaus at
M/MS = 1/n (n = 7, 9, 11) observed in experiments
can be reproduced in our simulation of the model at low
temperatures for certain magnetic-field sweep rates. In
addition, the hysteresis loop can be also well explained in
the present theory. It is indicated that the magnetization
dynamics may be essential for the emergence of those
fractional magnetization plateaus. Thus, the present work
may provide a new insight into the understanding of
the magnetization process for frustrated S-S magnets and
other similar frustrated spin systems.
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The phase diagram of a ferromagnetic XY model with a nematic coupling (coupling strength x) on a
triangular lattice is studied by means of Monte Carlo simulation. The algebraic-magnetic order associated
with Kosterlitz–Thouless (KT) transition is observed over the whole x range. In the large x region, the
phase transition from the algebraic-magnetic order to the algebraic-nematic order occurs at TI.
In addition, this phase transition can be scaled with the two-dimensional Ising critical exponents,
demonstrating that the present system belongs to the universality class of Ising transition at TI.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The two dimensional (2D) XY model has been well investigated
for several decades due to its application in magnetic systems with
planar anisotropy, quantum liquids and superconductors. As early as
in 1966, it was proved that the 2D XY model cannot sustain long-
range order even with trivial thermal fluctuations [1]. Alternatively,
the so-called algebraic-magnetic (aM) order with Kosterlitz–
Thouless (KT) transition may ensue [2,3]. After that, lots of work
about the XY model have been reported [4–18].

On the other hand, nontrivial orders such as chiral order and
nematic order in magnets, are drawing more and more attentions
due to their relevancy with real magnetic materials as well as the
contribution to the development of statistical mechanics. For
example, a phase with coexisting nematic and vector spin chirality
orders has been observed in the antiferromagnetic XY model with
a nematic (biquadratic) coupling on the triangular lattice [7]. Later
on, the same phase is also reported in our earlier work where a
frustrated XY model on the square lattice has been studied with
the Monte Carlo method [8]. In fact, the ferromagnetic XY model
with a nematic coupling on square lattice has been studied as early
as in 1989 [5]. The variations of temperature and the nematic
coupling strength lead to three phases: a high-temperature dis-
ordered phase and two low temperature phases, namely, aM phase
and algebraic-nematic (aN) phase. At non-zero temperatures, spin
waves destroy the long-range order of the ground state, leaving
power-law decay of the spin correlations. The high-temperature
ll rights reserved.
phase is entered respectively via the transition associated with an
integer vortex pair excitation in the aM phase and an half-integer
vortex pairs one in the aN phase [9]. At the same time, it is stated
that the phase transition from disordered phase to aN phase is
driven by the domain wall in which the free energy is expected to
decrease with increasing temperature.

In fact, the consideration of the nematic coupling terms is
mostly due to the fact that they can be large for magnetic ions
with large spin [19]. For example, it is identified that the nematic
coupling and the ferromagnetic coupling between the nearest
neighbors may play an important role in triangular lattice system
NiGa2S4, as revealed most recently [20]. In this work, a ferromag-
netic XY model with a nematic coupling (coupling strength x) on a
triangular lattice is studied by means of Monte Carlo simulation.
Besides its contribution to the development of statistical
mechanics, the study may be helpful to understand the experi-
mental phenomena observed in NiGa2S4. As far as we know, few
works on such a system have been reported. It will be demon-
strated that a general KT transition from the algebraically corre-
lated phase to the paramagnetic phase occurs when temperature
raises up to a critical value. For the region in which the nematic
coupling is dominated, a transition from the aM phase to the aN
phase occurs at the critical temperature TI which is much lower
than TKT. In addition, the transition at TI has the same universality
of scaling as the two-dimensional (2D) Ising transition, which is
similar to earlier report [5].

For a classical XY spin model on a triangular lattice, we consider
the following Hamiltonian which includes the nematic coupling
interaction:

H¼ −J1∑
½i;j�
cosðθijÞ−J2∑

½i;j�
cosð2θijÞ; ð1Þ

www.elsevier.com/locate/jmmm
www.elsevier.com/locate/jmmm
http://dx.doi.org/10.1016/j.jmmm.2013.03.036
http://dx.doi.org/10.1016/j.jmmm.2013.03.036
http://dx.doi.org/10.1016/j.jmmm.2013.03.036
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where θij is the angle difference θi−θj between the nearest
neighbors [i,j]. J1¼1−x is the strength of the ferromagnetic
coupling, and J2¼x is the nematic coupling strength. For definition
of the energy parameters J1 and J2, the Boltzmann constant and the
lattice constant are set to unity.

Unlike the model studied in Ref. [7], our model does not
contain any chiral orders due to the lack of the frustration
ingredient. In the large J2/J1 region where the nematic interaction
is much stronger than the ferromagnetic one, the spins between
0.4 0.80.0 0.2 0.6 1.0
0.0

0.4
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T

x
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aN

Fig. 1. Calculated phase diagram for the model in Eq. (1). The high-temperature
paramagnetic phase is denoted by PM, the phases with algebraic correlations in
magnetic and nematic order by aM and aN respectively. The statistical errors of all
the symbols are given in the T direction.
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Fig. 2. Helicity modulus Y according to Eq. (2) for various sizes L (a) at x¼0.4 and (c) x¼
and Y for each L−1 are shown in (b) for x¼0.4 and (d) x¼0.9 with the extrapolation to
the nearest neighbors prefer either parallel or antiparallel with
each other at the equal probabilities at low temperature, forming
the possible nematic order, same as the earlier report [5].

The Monte Carlo simulation is performed on a 2D L� L (L¼18,
27, 36, 45, 54, and 72) triangular lattice with period boundary
conditions using the standard Metropolis algorithm [21]. The
initial spin configuration at high temperature (T) is totally dis-
ordered. Typically, the initial 3�105 Monte Carlo steps are
discarded for the equilibrium consideration and another 2�105

Monte Carlo steps are retained for statistic averaging of the
simulation.

The phase diagram in the x−T plane for the model stated in
Eq. (1) is shown in Fig. 1. The two curves mark the boundaries
between three different phases, which are the aM phase, aN phase
and paramagnetic (PM) phase. An integer vortex-mediated KT
transition marking the PM–aM boundary splits into a half-integer
vortex-mediated KT transition which marks the PM–aN boundary,
plus a transition which separates the aM order from the aN order.
It is noticed that in the most cases the critical temperatures of the
KT transition and Ising transition are relatively higher than the
corresponding ones [5]. This phenomenon can be easily under-
stood from the point that for the systems with the same ferro-
magnetic coupling, one with higher coordination number shows
the higher critical temperature. It is noted that for triangular
system one spin interacts with six nearest neighbors rather than
four for square system. So, the algebraically correlated order in
triangular system is so robust and its destruction needs relatively
high temperature.
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The determination of TKT is made with the helicity modulus Y,
also called the spin-wave stiffness [22,23]. Under this circum-
stance, Y can be defined by

Y ¼ J1
2L2

∑
½i;j�
cosθij

* +
þ 2J2

L2
∑
½i;j�
cos 2θij

* +

−
1

TL2
J1∑

½i;j�
xijsinθij þ 2J2∑

½i;j�
xijsin2θij

 !2* +
ð2Þ
0.5
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Fig. 3. Specific heat C as a function of T for L¼36 at (a) x¼0.4, (b) x¼0.73 and
(c) x¼0.9.

Fig. 4. (a) A snapshot of the nematic order at T¼0.4 at x¼0.95. (b) A scaling plot of specifi
Here xij¼xi−xj is the separation of two coordinate sites. For a
given lattice size L, the critical temperature TKT can be determined
by the crossing of Y(T) with the straight line ð2=πÞð

ffiffiffi
3

p
=2ÞðJ1 þ 4J2Þ

T ¼ ð2=πÞð
ffiffiffi
3

p
=2Þð1þ 3xÞT . The helicity modulus for L¼18–72 at

x¼0.4 and 0.9 are shown in Fig. 2(a) and (c), and the correspond-
ing crossing points are shown in Fig. 2(b) and (d) respectively. The
extrapolations to L-∞ using the polynomial fits yield the esti-
mated values of TKT which is 1.254(5) for x¼0.4 and 1.379(5) for
x¼0.9. This method is effective in giving a good estimate of TKT
and a more sophisticated method taking into account the loga-
rithmic correction gives a similar result [24].

The critical temperature of the transition from the aM phase to
the aN phase can be easily estimated from the low-temperature
specific-heat peak, as stated in our earlier work [8]. Specific heat C
as a function of T at x¼0.4, x¼0.73 and x¼0.9 for L¼36 are plotted
in Fig. 3. It is indicated that the one single peak at small x separates
to two independent peaks which gradually detach from each other
with the increasing of x. In the low x region (xo0.65), no
transition from the aM phase to the aN phase occurs, leaving the
single peak in the C–T curves, as shown in Fig. 3(a). On the other
hand, the low-temperature sharp peaks at 0.96(2) for x¼0.73 and
0.36(2) for x¼0.9 clearly mark the nematic phase transitions, as
shown in Fig. 3(b) and (c).

In Fig. 4(a), we show a snapshot of the nematic order at T¼0.4
for x¼0.95. The spins become generally parallel or antiparallel
with each other, forming the so-called nematic order. At last, the
critical exponent of the nematic transition is estimated with the
dependence of the specific heat peak upon the absolute value of
the difference between the critical temperature and its neighbor
ones, i.e., Cpeak∝|Tc−T|−α. In Fig. 4(b), we plot the specific heats
under different temperatures around Cpeak for L¼36 at x¼0.9. The
linear fit gives α≈0.02 which is almost same as that of 2D Ising
model, i.e., α¼0. Taking into account the simulation errors, it is
reasonable to argue that the universality class of this phase
transition is that of 2D Ising transition as reported in earlier works
[5,7].

To sum up, the phase diagram of ferromagnetic XY model with
nematic coupling (x) on a triangular lattice is studied in details
with Monte Carlo method. The phase diagram exhibits three
phases including the algebraic-magnetic phase, the algebraic-
nematic phase and the paramagnetic phase. In the large region
of x (x≥0.65), an Ising transition from the aM phase to aN phase is
observed in addition to the usual KT transition. This work is a
complementary one to the study of 2D XY models, and may be
helpful to understand the experimental phenomena observed in
NiGa2S4.
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