Lecture 6: 完全性证明 II

熊 明

1 学习目标

- (1) 熟悉 K4 等常见模态系统的完全性表述
- (2) 熟悉 K4 等常见模态系统的完全性证明
- (3) 了解 K4 等常见模态系统的可判定性及其证明 (optional)

2 引导问题

- (1) 证明系统 K4 的完全性的过程与明 K4 的完全性的过程有哪些异同?
- (2) 你认为 K4 完全性证明中最困难的是哪一步?
- (3) 把上面的问题换做系统 D, 思考相同的问题。
- (4) 把上面的问题换做系统 K4, 思考相同的问题。
- (5) 常见的模态系统都是可判定的,而我们已知(算术语言的)一阶逻辑是不可判定的,试比较这两个结论的证明过程。(optional)

3 教学纲要

定理 3.1 (**K4 的刻画定理**) K4 \vdash A, 当且仅当对任意**传递**框架 \mathcal{K} , $\mathcal{K} \models A$ 。

可靠性: 如果 $K4 \vdash A$, 那么对任意传递框架 $\mathcal{K}, \mathcal{K} \models A$ 。

完全性: 如果对任意传递框架 $K, K \models A$, 那么 $K4 \vdash A$ 。

我们要证的是后面这个结论。为此,我们证明:

如果 $K4 \nvdash A$, 那么对存在传递框架 $K, K \not\models A$ 。

定义 3.2 对有穷公式集 Σ ,用 Λ Σ 表示以 Σ 中的公式作为合取支得到的合取式。如果 $K \nvdash \neg (\Lambda \Sigma)$,那么称 Σ 是 K4 一致的。

事实 3.3 为证 K4 的完全性,只需证明:如果 A 是 K4 一致的,那么存在 传递模型 $\langle W, R, \mathcal{V} \rangle$ 和 $w \in W$,使得 $\langle W, R, \mathcal{V} \rangle$, $w \models A$ 。

说明: W 中的可能世界将被取为相关于 A 的极大一致集。

定义 3.4 给定公式 A。规定集合 \hat{A} 为由 A 的所有子公式和子公式的否定构成的(有穷)集合。对 \hat{A} 的子集 Σ ,如果:

- (i) Σ 是 K4 一致的,
- (ii) 对 A 的任意子公式 B, B 或 $\neg B$ 至少有一个在 Σ 中,

那么称 Σ 相对于 A 是 K4 极大一致的。

事实 3.5 证明: \hat{A} 的任何一个 K4 一致子集都可扩充为相对于 A 的 K4 极大一致子集。

构造所需的模型 $\langle W, R, \mathcal{V} \rangle$:

- $W \neq \hat{A}$ 的所有相对于 A 的 K4 极大一致子集构成的集合。
- 对任意命题变元 $\pi \in \hat{A}$, $\pi \in \mathcal{V}(w)$, 当且仅当 $\pi \in w$ 。
- uRv, 当且仅当对 A 的任何形如 $\Box B$ 的子公式,若 $\Box B \in u$,则 $\Box B \in v$ 也 $B \in v$ 。

事实 3.6 证明: $R \neq W$ 上的传递关系。

事实 3.7 证明: 对 A 的每个形如 $\Box B$ 的子公式,对每个 $w \in W$: $\Box B \in w$, 当且仅当对所有满足 w R x 的 x,都有 $B \in x$ 。

事实 3.8 证明:对任意 $w \in W$,对 A 的任何子公式 B, $w \models B$,当且仅 当 $B \in w$ 。

定理 3.9 (**K4 的完全性定理**) 证明: 如果 A 是 K 一致的,那么存在传递模型 \mathcal{M} 和其论域中世界 w,使得 $\mathcal{M},w \not\models A$ 。

4 课后任务

- 问题 4.1 陈述并证明系统 D 的完全性定理。。
- 问题 4.2 陈述并证明系统 T 的完全性定理。
- 问题 4.3 陈述并证明系统 B 的完全性定理。
- 问题 4.4 陈述并证明系统 S4 的完全性定理。
- 问题 4.5 陈述并证明系统 S5 的完全性定理。
- 问题 4.6 继续阅读 Boolos (1993), pp. 78-84.