Lecture 11: 句法的算术化与对角线引理

熊 明

1 学习目标

- (1) 了解句法算术化的基本思想
- (2) 了解哥德尔编号的基本过程
- (3) 了解(能行)可判定、(能行)可计算的直观定义
- (4) 了解可判定关系的 Σ_1 可表示性
- (5) 了解可计算关系的 Σ_1 可表示性
- (6) 了解对角线引理及其证明思想

2 引导问题

- (1) 从原始符号到公式到公式序列,如何一步步进行编码?
- (2) 什么叫程序?
- (3) 什么是能行可判定关系?
- (4) 什么是能行可计算函数?

- (5) 句法是如何算术化的?
- (6) 对角线引理的对角线在哪里?

3 教学纲要

Table 1 初始符号的编码

θ	()	Г	V	\wedge	\rightarrow	A	3	≡	\boldsymbol{S}	+	•	0	v_i
$\#(\theta)$	3	5	7	9	11	13	15	17	19	21	23	25	1	2i + 27

项和公式的编码:

a sequence of symbols, for instance,)0 \rightarrow S+, is coded by the number

$$2^5 3^1 5^{13} 7^{21} 11^{23} = * * * * *$$

$$5 \times 1 \times 13 \times 21 \times 23 = * * * *$$

The term $\overline{2}$, i.e., SS0, is coded by the number

$$2^{21}3^{21}5^1$$

In particular, a sequence of symbols, $\theta_1\theta_2\dots\theta_n$, is coded by the number

$$p_1^{\#(\theta_1)}p_2^{\#(\theta_2)}\dots p_n^{\#(\theta_n)},$$

where for any $i \leq n$, θ_i is a primitive symbol of $\mathcal{L}_{\mathbb{N}}$, p_i is the *i*-th prime

number, that is, $p_1 = 2$, $p_2 = 3$, $p_3 = 5$, ldots. The above number is also called 'the Gödel number (code)' of the sequence $\theta_1 \theta_2 \dots \theta_n$.

Quiz 1 The Gödel number of the formula, $\neg 0 \equiv S0$, is ???

公式序列的编码:

Given a sequence of n formulas, A_1 , A_2 , ..., A_n , we can code this sequence by the number

$$p_1^{\lceil A_1 \rceil} p_2^{\lceil A_2 \rceil} \dots p_n^{\lceil A_n \rceil}$$

where for any $i \leq n$, $\lceil A_i \rceil$ denotes the Gödel number of A_i .

Consider the following sequence:

(1)
$$\forall v_0(v_0 + \mathbf{0} \equiv v_0)$$
 $2^{15}3^{27}5^37^{27}11^{23}13^117^{19}19^{27}23^5$

(2)
$$\forall v_0(v_0 + \mathbf{0} \equiv v_0) \to \overline{1} + \mathbf{0} \equiv \overline{1}$$

$$* = 2^{15}3^{27}5^37^{27}11^{23}13^117^{19}19^{27}23^529^{13}31^{21}37^141^{23}43^147^{19}53^{21}57^1$$

(3)
$$S\mathbf{0} + \mathbf{0} \equiv S\mathbf{0}$$
 $2^{21}3^{1}5^{23}7^{1}11^{19}13^{21}17^{1}$

The Gödel number of the above sequence is

$$2^{2^{15}3^{27}5^37^{27}11^{23}13^{1}17^{19}19^{27}23^{5}}3^*5^{2^{21}3^{1}5^{23}7^{1}11^{19}13^{21}17^{1}}$$

Trick of Gödel's numbering (coding) lies in that not only can we calculate

the Gödel number of an expression or a sequence of expressions, but also we can conversely figure out what the expression or the sequence of expressions is once we know the corresponding Gödel number.

The predicate '... is a primitive symbol in $\mathcal{L}_{\mathbb{N}}$ '.

The statement: $\mathbf{0}$ is a primitive symbol.

1 is not a primitive symbol.

Motivation: we want to arithmetize the statement '**0** is a primitive symbol.'

That is, we want to find an arithmetic statement whose meaning is precisely what '**0** is a primitive symbol' expresses.

For this purpose, we would like to find a formal predicate ps(x), which denotes the predicate 'x is a primitive symbol'.

Consider the set $\{1,3,5,\ldots,\}$, the set of all odd numbers. This set is exactly the set including all Gödel numbers of the primitive symbols. The statement '**0** is a primitive symbol' can be represent as '1 is an odd number', which can even formalized in $\mathcal{L}_{\mathbb{N}}$ as $\exists v(\overline{1} \equiv v \cdot v + \overline{1})$.

1 is not a primitive symbol.

'0 is a term'

S0 is a term'

 $\forall v_0(v_0 + \mathbf{0} \equiv v_0)$ is a formula'

 $\forall v_0(v_0 + \mathbf{0} \equiv v_0)$ is a sentence'

定义 3.1 (非形式定义) R 是自然数集上的 k 元关系,如果存在一个"程序",使得不论"输入"什么样的自然数 n_1 、…、 n_k ,都能根据这个程序判定 $R(n_1, \ldots, n_k)$ 是否成立,那么就称 R 是(能行)可判定的。

定义 3.2 (非形式定义) f 是自然数集上的 k 元函数,如果存在一个"程序",使得不论"输入"什么样的自然数 n_1,\dots,n_k ,都能根据这个程序计算 出 $f(n_1,\dots,n_k)$ 的取值,那么就称 f 是(能行)可计算的。

定理 3.3 (非形式定理) 自然数集上的可判定关系在一阶算术中是 Σ_1 -可表达的。具体而言,如果 R 是可判定的 k 元关系,那么存在 Σ_1 公式 $A(x_1,\ldots,x_k)$,使得对任意自然数 n_1,\ldots,n_k ,

- (1) 若 $R(n_1,\ldots,n_k)$ 成立,则 $PA \vdash A(\overline{n_1},\ldots,\overline{n_k})$ 。
- (2) 若 $R(n_1,\ldots,n_k)$ 不成立,则 $PA \vdash \neg A(\overline{n_1},\ldots,\overline{n_k})$ 。

定理 3.4 (非形式定理) 自然数集上的可计算函数在一阶算术中是 Σ_1 -可表达的。具体而言,如果 f 是可计算的 k 元函数,那么存在 Σ_1 公式 $A(x_1,\ldots,x_k,y)$,使得对任意自然数 n_1,\ldots,n_k,m ,若 $f(n_1,\ldots,n_k)=m$,则

$$PA \vdash \forall v (A(\overline{n_1}, \dots, \overline{n_k}, v) \rightarrow v \equiv \overline{m}).$$

引理 3.5 (对角线引理) For any formula $A(v_1)$, there exists a sentence δ such that

$$PA \vdash \delta \leftrightarrow A\left(\overline{\lceil \delta \rceil}\right).$$

For example, $A(v_1)$ is the formula $v_1 \equiv \mathbf{0}$, then we find δ , such that

$$PA \vdash \delta \leftrightarrow \overline{\lceil \delta \rceil} \equiv \mathbf{0}$$

運明: We define a function d as follows: for any number n, if n is the Gödel number of a formula $B(v_0)$, then d(n) is the Gödel number of $B(\overline{n})$; otherwise, d(n) = n. Then, it is evident that the function d is effectively computable (we usually show this point by giving an intuitive procedure (program)). Then by Theorem 4, we can find a formula $D(v_0, v_1)$, which represents the function d.

We have:

- (1) if d(n) = m, then $PA \vdash D(\overline{n}, \overline{m})$.
- (2) if $d(n) \neq m$, then $PA \vdash \neg D(\overline{n}, \overline{m})$.
- (3) $PA \vdash \forall x \left(D(\overline{n}, x) \to x = \overline{d(n)} \right).$

Consider the formula $\exists v_1 (D(v_0, v_1) \land A(v_1))$, and let it be $B(v_0)$. Let n be its Gödel number. We denote $B(\overline{n})$ with δ . We now prove δ satisfies the desired condition.

$$PA \vdash \delta \leftrightarrow \exists v_1 (D(\overline{n}, v_1) \land A(v_1))$$

Let d(n)=m. Then by definition of d, m is the Gödel number of $B(\overline{n}),$ i.e., Gödel number of δ .

$$\mathrm{PA} \; \vdash \; D\left(\overline{n}, \overline{m}\right) \wedge \forall x \left(D\left(\overline{n}, x\right) \to x = \overline{m}\right)$$

Then,

$$PA \vdash \exists v_1 (D(\overline{n}, v_1) \land A(v_1)) \leftrightarrow D(\overline{n}, \overline{m}) \land A(\overline{m})$$

Thus, we get

PA
$$\vdash \delta \leftrightarrow D(\overline{n}, \overline{m}) \land A(\overline{m})$$
PA $\vdash \delta \leftrightarrow \overline{d(n)} \equiv \overline{m} \land A(\overline{m})$
PA $\vdash \delta \leftrightarrow A(\overline{d(n)})$

$$PA \vdash \delta \leftrightarrow A\left(\overline{\lceil \delta \rceil}\right)$$

4 课后任务

问题 4.1 完成我的讲义 2.4 和 2.5 节.