Lecture 13: 无参数的不动点定理

能 明

1 学习目标

- (1) 了解不动点定理的背景
- (2) 了解不动点定理中不动点的定义
- (3) 了解无参数不动点定理的证明

2 引导问题

- (1) 哥德尔语句是哪个公式的不动点?
- (2) 一致性语句是哪个公式的不动点?
- (3) 亨金语句是哪个公式的不动点?
- (4) 给定一个 p 在其中不自由的 p 公式,如何求其不动点?

3 教学纲要

动机:

PA 中可证的事实:

$G \leftrightarrow \neg \operatorname{Bew}\left(\overline{ \ulcorner G \urcorner}\right)$	$G \leftrightarrow \neg \text{Bew}\left(\overline{ \ulcorner \bot \urcorner} \right)$
$H \leftrightarrow \operatorname{Bew}\left(\overline{\sqcap}H^{\sqcap}\right)$	$H \leftrightarrow \top$
$\delta \leftrightarrow \operatorname{Bew}\left(\overline{ \lceil \neg \delta \rceil} \right)$	$\delta \leftrightarrow \operatorname{Bew}\left(\bot \right)$
$\delta \leftrightarrow \neg \operatorname{Bew}\left(\overline{ \neg \delta} \right)$	$\delta \leftrightarrow \bot$
$\delta \leftrightarrow (\operatorname{Bew}\left(\overline{\lceil \delta \rceil}\right) \to \operatorname{Bew}\left(\overline{\lceil \neg \delta \rceil}\right))$	$\delta \leftrightarrow \left(\operatorname{Bew} \left(\overline{\lceil \bot \rceil} \right) \overline{\rceil} \right) \to \operatorname{Bew} \left(\overline{\lceil \bot \rceil} \right) \right)$

反映到 GL:

方程	无变元的解		
$p \leftrightarrow \neg \Box p$	¬□⊥		
$p \leftrightarrow \Box p$	Т		
$p \leftrightarrow \Box \neg p$			
$p \leftrightarrow \neg \Box \neg p$	Т		
$p \leftrightarrow (\Box p \to \Box \neg p)$	$\Box\Box\bot\to\Box\bot$		

Recall $\Box A = \Box A \wedge A$.

Observation: if A(p) is a formula of modal language, in which only p is its variable and any occurrence of p is in the scope of some \square , then there exists

a variable-free (=letterless) formula F such that

$$GL \vdash \boxdot(p \leftrightarrow A(p)) \leftrightarrow \boxdot(p \leftrightarrow F).$$

Equivalently,

$$GL \vdash \Box(p \leftrightarrow A(p)) \rightarrow (p \leftrightarrow F).$$

It follows

$$GL \vdash F \leftrightarrow A(F)$$
.

Let $A(p) = \Box p \leftrightarrow \Box \neg p$. We come to find a variable-free fixed point of A(p), i.e., a variable-free formula F such that

$$GL \vdash \Box(p \leftrightarrow A(p)) \rightarrow (p \leftrightarrow F).$$

Recall: $GL \vdash C$, iff C is valid in any finite, transitive and irreflexive model.

Thus, we only need to find F such that for any finite, transitive and irreflexive model \mathcal{M} , if $\mathcal{M} \models \boxdot(p \leftrightarrow A(p))$, then $\mathcal{M} \models p \leftrightarrow F$. Equivalently, it is sufficient to make sure that if $\mathcal{M} \models p \leftrightarrow A(p)$, then $\mathcal{M} \models p \leftrightarrow F$.

Suppose \mathcal{M} is a finite, transitive and irreflexive model such that $\mathcal{M} \models p \leftrightarrow A(p)$, we investigate the semantical features of the variable p in the model \mathcal{M} .

Since \mathcal{M} is conversely well-founded, there exists a dead end, i.e., a point which is accessible to any point. We all know that any formula of form $\Box C$ is true at dead end, more formally, $\mathcal{M}, 0 \models \Box C$, which 0 is a dead end in the (domain of) model \mathcal{M} . Thus, $\mathcal{M}, 0 \models A(p)$. But $\mathcal{M} \models p \leftrightarrow A(p)$, and so $\mathcal{M}, 0 \models p$.

 $\Box p$ $\Box \neg p$ $\Box p \leftrightarrow \Box \neg p$ \perp $\neg\Box\bot$ $\Box\Box\bot\land\neg\Box\bot$ $\neg p$ \mathbf{T} Τ Τ F F F Τ Τ Τ F F \mathbf{F} Τ Τ F Τ F F Τ Τ 2 F \mathbf{F} Τ F Τ F Τ F F \mathbf{F} 3 F \mathbf{F} Τ \mathbf{T} F Τ F F \mathbf{F} \mathbf{F}

Table 1 秩决定 $\Box p \leftrightarrow \Box \neg p$ 的真假

 $\neg(\neg\Box\bot\wedge\Box\Box\bot)$, i.e. $\Box\bot\vee\neg\Box\Box\bot$ is the very formula F that we want to find.

Define the notion of rank:

A point of rank 0 is a dead end.

a point of rank 1 is a point which accessible to at least a point of rank 0, and all accessible points from which are of rank 0.

a point of rank 2 is a point which accessible to at least a point of rank 1, and all accessible points from which are of rank ≤ 1 .

a point of rank 3 is a point which accessible to at least a point of rank 2,

and all accessible points from which are of rank ≤ 2 .

We find: the truth value of p at a point is determined by the rank of that point.

We come to verify that a variable-free fixed point of $A(p) = \Box \neg p$ is $\Box \bot$. Suppose $\mathcal{M} \models p \leftrightarrow \Box \neg p$.

Table 2 验证已知无变元不动点的例子

	$\Box \neg p$	p	$\neg p$			$\neg\Box\bot$
0	Т	Τ	F	F	Τ	F
1	F	\mathbf{F}	\mathbf{T}	F	\mathbf{F}	${ m T}$
2	F	\mathbf{F}	\mathbf{T}	F	\mathbf{F}	${ m T}$

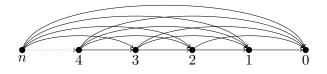


Figure 1 框架 $\langle \{0,1,\ldots,n\}, \rangle \rangle$

令 $A(p) = \neg \Box p$,求这个公式的无变元不动点,即满足 $\operatorname{GL} \vdash \boxdot (p \leftrightarrow A(p)) \leftrightarrow \boxdot (p \leftrightarrow H)$ 的无变元公式。为此,只需给出表格 4。从这个表格,直接看出带求不动点为 $\neg \Box \bot$ 。

求 $A(p) = \Box(\neg p \leftrightarrow \Box \bot)$ 的无变元不动点。表列如下。 由这个表可知,待求不动点为 $\Box \bot$ 。

Table 3 验证已知无变元不动点的例子

	$\Box p$	$\neg\Box p$	p	1		$\neg\Box\bot$
0	Т	F	F	F	Τ	\mathbf{F}
1	F	\mathbf{T}	T	F	\mathbf{F}	${ m T}$
2	F	${ m T}$	T	F	F	Τ

Table 4 验证已知无变元不动点的例子

		$\Box(\neg p \leftrightarrow \Box\bot)$	p	$\neg p$	$\neg p \leftrightarrow \Box \bot$	\perp
0	Т	T	Τ	\mathbf{F}	F	F
1	F	\mathbf{F}	F	${ m T}$	\mathbf{F}	F
2	F	\mathbf{F}	F	Τ	F	F

4 课后任务

问题 4.1 阅读我的讲义 3.2 节.

问题 4.2 阅读 Boolos (1993), pp. 104-111.