Countable and Uncountable Sets

Ming Hsiung mingshone@163.com

School of Philosophy and Social Development South China Normal University

Set Theory, Spring 2022

Cardinality of Sets

Countable Sets

Cardinality of Sets

Countable Sets

- Definition: Sets A and B are equipotent (have the same cardinality) if there is a one-to-one function f from A onto B.
 We denote this by |A| = |B|.
- Fact: The equipotency relation is an equivalence relation.

- Definition: Sets A and B are equipotent (have the same cardinality) if there is a one-to-one function f from A onto B.
 We denote this by |A| = |B|.
- Fact: The equipotency relation is an equivalence relation.

• Example: $|\mathbb{N}| = |\{0, 1, 4, \dots, n^2, \dots\}|$

• Example: $|\mathbb{N}| = |\mathbb{Z}|$

• Example: |(3,2022)| = |(0,1)|, where (0,1) and (3,2022) are both intervals of real numbers.

• Example: $|\mathbb{R}| = |(0,1)|$, where (0,1) is an interval of real numbers.

- Definition: The cardinality of A is less than or equal to the cardinality of B (notation: $|A| \le |B|$) if there is a one-to-one mapping of A into B. |A| = |B|.
- Fact: The above relation \leq is reflexive and transitive.

- Definition: The cardinality of A is less than or equal to the cardinality of B (notation: $|A| \le |B|$) if there is a one-to-one mapping of A into B. |A| = |B|.
- Fact: The above relation \leq is reflexive and transitive.

Theorem (Cantor-Bernstein Theorem)

If
$$|X| \le |Y|$$
 and $|Y| \le |X|$, then $|X| = |Y|$.

Cardinality of Sets

Countable Sets

- Definition: A set S is **countable** if $|S| = |\mathbb{N}|$. A set S is **at most countable** if $|S| \leq |\mathbb{N}|$.
- Fact: \mathbb{Z} is countable.

- Definition: A set S is **countable** if $|S| = |\mathbb{N}|$. A set S is **at most countable** if $|S| \leq |\mathbb{N}|$.
- Fact: \mathbb{Z} is countable.

- ullet Example: $\mathbb Z$ is countable (again).
- Generally, If A and B are countable, then $A \cup B$ is countable.

- \bullet Example: $\mathbb{N}\times\mathbb{N}$ is countable.
- Generally, If A and B are countable, then $A \times B$ is countable.

 \bullet Example: $\mathbb Q$ is countable.

- Definition: Seq(\mathbb{N}) =_{df} $\bigcup \{ \mathbb{N}^n | n \in \mathbb{N} \}$, i.e., the set of all finite sequence of natural numbers.
- Example: Seq(\mathbb{N}) is countable.
- Generally, if A is countable, then Seq(A) is countable.

Cardinality of Sets

Countable Sets

 \bullet Example: The interval (0,1) is uncountable.

- Example: The set $\mathscr{P}(\mathbb{N})$ is uncountable.
- Generally, $|A| < |\mathscr{P}(A)|$.

- Definition: $2^{\mathbb{N}} =_{\mathrm{df}} \{f | f : \mathbb{N} \to 2\}.$
- ullet Example: The set $2^{\mathbb{N}}$ is uncountable.

The Continuum Hypothesis

A summary:

- $|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}|$.
- $|\mathbb{R}| = |(0,1)| = |(a,b)|$, where a < b.
- $|\mathbb{N}| < |\mathbb{R}|$.

The Continuum Hypothesis: There is no set A such that $< |A| < |\mathbb{R}|$.

The Continuum Hypothesis

A summary:

- $|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}|$.
- $|\mathbb{R}| = |(0,1)| = |(a,b)|$, where a < b.
- $|\mathbb{N}| < |\mathbb{R}|$.

The Continuum Hypothesis: There is no set A such that

$$|\mathbb{N}| < |A| < |\mathbb{R}|.$$

Homework

Prove:

- $|2^A| = |\mathscr{P}(A)|$.
- $|2^{\mathbb{N}}| = |\mathbb{R}|$.
- $|2^{\mathbb{N}}| = |\mathbb{N}^{\mathbb{N}}|$.
- $|\mathbb{N}| < |Sym(\mathbb{N})|$, where $Sym(\mathbb{N})$ is the set of all permutations on \mathbb{N} . A permutation on \mathbb{N} is a bijection from \mathbb{N} to \mathbb{N} .

Thanks for your attention! Q & A

