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@ Definition: Sets A and B are equipotent (have the same
cardinality) if there is a one-to-one function f from A onto B.
We denote this by |A| = | B.
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@ Definition: Sets A and B are equipotent (have the same
cardinality) if there is a one-to-one function f from A onto B.
We denote this by |A| = | B.

e Fact: The equipotency relation is an equivalence relation.
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e Example: [N| = [{0,1,4,...,n2,...}|
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e Example: |N| = |Z|

Ming Hsiung 6/23



Cardinality of Sets Countable Sets

[e]e]e]e] lelele)

e Example: |(3,2022)| = |(0, 1)|, where (0, 1) and (3, 2022) are
both intervals of real numbers.
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e Example: |R| = |(0, 1)|, where (0, 1) is an interval of real

numbers.
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@ Definition: The cardinality of A is less than or equal to the
cardinality of B (notation: |A| < |Bj) if there is a one-to-one
mapping of A into B. |A| = |B|.
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@ Definition: The cardinality of A is less than or equal to the
cardinality of B (notation: |A| < |Bj) if there is a one-to-one
mapping of A into B. |A| = |B|.

@ Fact: The above relation < is reflexive and transitive.
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Theorem (Cantor-Bernstein Theorem)
If|X| <|Y|and |Y| < |X]|, then | X| =Y.
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@ Definition: A set S is countable if S| = |N|. A set S is at most
countable if |S| < |N|.
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@ Definition: A set S is countable if S| = |N|. A set S is at most
countable if |S| < |N|.

@ Fact: Z is countable.
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e Example: Z is countable (again).

@ Generally, If A and B are countable, then A U B is countable.

Ming Hsiung 13/23



Countable Sets

[e]ele] lole}

e Example: N x N is countable.

@ Generally, If A and B are countable, then A x B is countable.
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o Example: Q is countable.
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@ Definition: Seq(N) =4¢ [J{N"|n € N}, i.e., the set of all finite
sequence of natural numbers.

e Example: Seq(N) is countable.
@ Generally, if A is countable, then Seq(A) is countable.
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e Example: The interval (0, 1) is uncountable.
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e Example: The set #(N) is uncountable.
o Generally, |A| < |Z(A)|.
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o Definition: 2V =4 {f|f : N — 2}.

o Example: The set 2V is uncountable.
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The Continuum Hypothesis

A summary:
o [N|=1z| =|Ql.
o [R| =|(0,1)| = |(a,b)|, where a < b.
° [N| <[R].
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The Continuum Hypothesis

A summary:
o [N|=1z| =|Ql.
o [R| =|(0,1)| = |(a,b)|, where a < b.
° [N| <[R].

The Continuum Hypothesis: There is no set A such that
IN| < [A] < [R].
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Homework

Prove:

24| = |2(A)].
2Y] = |R].
28] = |NN].

IN| < |Sym(N)|, where Sym(N) is the set of all permutations on

N. A permutation on N is a bijection from N to N.
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Thanks for your attention!
Q&A
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