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Recall

∅

{∅}

{∅, {∅}}

{∅, {∅}, {∅, {∅}}}

……
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Example

S(x) =df x ∪ {x}

0

1 = S(0) = {0}

2 = S(1) = {0, 1}

3 = S(2) = {0, 1, 2}

……
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The Axiom of Infinity

Is there any infinite set?

Answer: the Axiom of Infinity is indpendent of the other axioms
of ZFC.

The Axiom of Infinity: There is a set I such that 0 ∈ I and if
x ∈ I , then S(x) ∈ I .

Definition: a set I is called inductive, if 0 ∈ I and if x ∈ I , then
S(x) ∈ I .
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The set N

Definition: N =df {x|x belongs to every inductive set}. The
elements of N are called the natural numbers.

Formally, N =df . . ..

Fact: N itself is an inductive set, and it is a subset of every
inductive set.
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Induction Principle

The Induction Principle: Let P (x) be a property (possibly with
parameters). Assume that
(a) P (0) holds.
(b) For all n ∈ N, P (n) implies P (S(n)).

Then P (n) holds for any n ∈ N.
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Example

Definition: The relation < on N is defined by: m < n iffm ∈ n.

Definition: m ≤ n =df m ∈ n ∨m = n.

Fact: For any n ∈ N, 0 ≤ n.
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Theorem: < is a linear ordering on N.
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Induction Principle, Second Version

The Induction Principle, Second Version: Let P (x) be a
property (possibly with parameters). Assume that for n ∈ N,

If P (k) holds for all k < n, then P (n).

Then P (n) holds for any n ∈ N.
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Well-foundedness

Definition: A relation R on A is well-founded, if for every
nonempty subset B of A, there exists a R-minimal element of B,
i.e., an element x ∈ B such that yRx fails for any y ∈ B.
Fact: A relation R on A is well-founded, iff no elements x0, x1,
…, of A can form a decreasing chain, that is, x1Rx0, x2Rx1, ….
Proof. ⇒:

⇐:

Note: The⇐ side needs to employ the Axiom of Choice (AC). People usually
use AC without realizing it!
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Theorem: < is a well-founded relation on N.
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Finite and Infinite Sequences

Informally,

a0, a1, . . . , an−1 is a sequence of length n.

a0, a1, . . . , an, . . . is an infinite sequence (of length ω).

Formally,

A finite sequence of elements of A is a function from n to A for
some n. n is called the length of this sequence. If n = 0, we get
the empty sequence.

An (countably) infinite sequence of elements of A is a function
from N to A.
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The Set of Natural Numbers Induction Principle The Recursion Theorem

Example

1, 1, 2, 6, 24, . . . , 1 · 2 · . . . · n, . . ..

Explicit Definition: f is a function such that
f(n) = n!(stipulate: 0! = 1).

Implicit Definition: f is a function such that f(0) = 1 and
f(S(n)) = f(n) · S(n). 1

1This is an example for illustrating the idea of recursion, as we still have not a
well-defined notion of multiplication for natural numbers.
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well-defined notion of multiplication for natural numbers.
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Example

1, 1, 2, 6, 24, . . . , 1 · 2 · . . . · n, . . ..

Explicit Definition: f is a function such that
f(n) = n!(stipulate: 0! = 1).

Implicit Definition: f is a function such that f(0) = 1 and
f(S(n)) = f(n) · S(n). 1

1This is an example for illustrating the idea of recursion, as we still have not a
well-defined notion of multiplication for natural numbers.
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Recursion on Natural Numbers

Theorem (The Recursion Theorem)
For any set A, any a ∈ A, and any function g : A× N → A, there
exists a unique function f : N → A such that

(a) f(0) = a;

(b) f(S(n)) = g(f(n), n) for all n ∈ N.
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Application 1: For everym ∈ N, there exists a unique function
fm : N → N such that
(a) fm(0) = m;
(b) fm(S(n)) = S(fm(n)) for all n ∈ N.

Proof.

Definition.
m+ n =df fm(n).

Thus:
(a) m+ 0 = m;
(b) m+ S(n) = S(m+ n) for allm,n ∈ N.
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Prove: m+ 1 = S(m)

From now on, we can usem+ 1 instead of S(m).
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The Set of Natural Numbers Induction Principle The Recursion Theorem

Theorem (The Recursion Theorem with parameters)
For any a : P → A and any function g : P ×A× N → A, there
exists a unique function f : P × N → A such that

(a) f(p, 0) = a(p);

(b) f(p, S(n)) = g(p, f(n), n) for all n ∈ N and p ∈ P .
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The Set of Natural Numbers Induction Principle The Recursion Theorem

Application 2: There exists a unique function f : N× N → N
such that
(a) f(m, 0) = 0;
(b) f(m,S(n)) = f(m,n) +m for allm,n ∈ N.

Proof.

Definition.
m · n =df f(m,n).

Thus:
(a) m · 0 = m;
(b) m · S(n) = m · n+m for allm,n ∈ N.
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Application 3: There exists a unique function f : N → N such
that
(a) f(0) = 1;
(b) f(S(n)) = f(n) · n for all n ∈ N.

Proof.

Definition.
n! =df f(n).

Thus:
(a) 0! = 1;
(b) (n+ 1)! = n! · n for all n ∈ N.
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Theorem (The Recursion Theorem)
For any set A, any a ∈ A, and any function g : A×N → A, there exists a
unique function f : N → A such that

(a) f(0) = a;

(b) f(S(n)) = g(f(n), n) for all n ∈ N.

Proof.
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Homework

How to define exponentiation of natural numbers? Justify your
definition.

How to define (by recursion) Fibonacci function f : N → N,
which meets the condition:

f(0) = 1

f(1) = 1

f(n+ 2) = f(n+ 1) + f(n), n ≥ 0

Hint: Refer to Hrbaeck & Jech (3 ed.), pp. 50.
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Thanks for your attention!
Q & A

Ming Hsiung 26 / 26


	The Set of Natural Numbers
	Induction Principle
	The Recursion Theorem

