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Induction Principle

Example
o0
o 1=5(0) = {0}
o 2=25(1) = {0,1}
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The Axiom of Infinity

@ Is there any infinite set?

@ Answer: the Axiom of Infinity is indpendent of the other axioms
of ZFC.

@ The Axiom of Infinity: There is a set I such that 0 € I and if
x € I, then S(x) € I.
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The Axiom of Infinity

@ Is there any infinite set?

@ Answer: the Axiom of Infinity is indpendent of the other axioms
of ZFC.

@ The Axiom of Infinity: There is a set I such that 0 € I and if
x € I, then S(x) € I.

@ Definition: a set [ is called inductive, if 0 € I and if z € I, then
S(z) € I.
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The set N

@ Definition: N =4 {x|z belongs to every inductive set}. The
elements of N are called the natural numbers.

Ming Hsiung 7126



The Set of Natural Numbers

[e]e]e]e] ]

The set N

@ Definition: N =4 {x|z belongs to every inductive set}. The
elements of N are called the natural numbers.

o Formally, N =4 .. ..

Ming Hsiung 7126



The Set of Natural Numbers

[e]e]e]e] ]

The set N

@ Definition: N =4 {x|z belongs to every inductive set}. The
elements of N are called the natural numbers.

o Formally, N =4 .. ..

o Fact: N itself is an inductive set, and it is a subset of every

inductive set.
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Induction Principle

e The Induction Principle: Let P(z) be a property (possibly with
parameters). Assume that

(a) P(0) holds.
(b) Foralln € N, P(n) implies P(S(n)).

Then P(n) holds for any n € N.

Ming Hsiung 9/26



t of Natural Numbers Induction Principle

[e]e] le]elele)

Example

@ Definition: The relation < on N is defined by: m < n iff m € n.
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@ Definition: The relation < on N is defined by: m < n iff m € n.

@ Definition: m <n =g m € nVm = n.
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Example
@ Definition: The relation < on N is defined by: m < n iff m € n.

@ Definition: m <n =g m € nVm = n.

@ Fact: Foranyn € N, 0 < n.
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@ Theorem: < is a linear ordering on N.

Ming Hsiung 11/26



Induction Principle

[e]e]ele] lele)

Induction Principle, Second Version

@ The Induction Principle, Second Version: Let P(z) be a
property (possibly with parameters). Assume that for n € N,

If P(k) holds for all £ < n, then P(n).

Then P(n) holds for any n € N.
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Well-foundedness

@ Definition: A relation R on A is well-founded, if for every
nonempty subset B of A, there exists a R-minimal element of B,
i.e., an element x € B such that y Rz fails for any y € B.
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@ Definition: A relation R on A is well-founded, if for every
nonempty subset B of A, there exists a R-minimal element of B,
i.e., an element x € B such that y Rz fails for any y € B.

@ Fact: A relation R on A is well-founded, iff no elements xq, 1,

..., of A can form a decreasing chain, that is, 1 Rzq, xo Rx1, ....
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Well-foundedness

@ Definition: A relation R on A is well-founded, if for every
nonempty subset B of A, there exists a R-minimal element of B,
i.e., an element x € B such that y Rz fails for any y € B.

@ Fact: A relation R on A is well-founded, iff no elements xq, 1,
..., of A can form a decreasing chain, that is, 1 Rzq, xo Rx1, ....
Proof. =:
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Well-foundedness

@ Definition: A relation R on A is well-founded, if for every
nonempty subset B of A, there exists a R-minimal element of B,
i.e., an element x € B such that y Rz fails for any y € B.

@ Fact: A relation R on A is well-founded, iff no elements xq, 1,
..., of A can form a decreasing chain, that is, 1 Rzq, xo Rx1, ....
Proof. =:

Note: The <« side needs to employ the Axiom of Choice (AC). People usually
use AC without realizing it!
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@ Theorem: < is a well-founded relation on N.
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Finite and Infinite Sequences

Informally,

@ ap,ay,...,an—1 is a sequence of length n.

Formally,
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Finite and Infinite Sequences

Informally,

@ ap,ay,...,an—1 is a sequence of length n.

@ ag,ai,...,an, - .. 1s an infinite sequence (of length w).
Formally,

@ A finite sequence of elements of A is a function from n to A for
some n. n is called the length of this sequence. If n = 0, we get

the empty sequence.
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Finite and Infinite Sequences

Ming Hsiung

Informally,

ag, ai, ..., an—1 is a sequence of length n.

ag, a1, ..., 0an, - .. 18 an infinite sequence (of length w).
Formally,

A finite sequence of elements of A is a function from n to A for
some n. n is called the length of this sequence. If n = 0, we get

the empty sequence.

An (countably) infinite sequence of elements of A is a function
from N to A.
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©1,1,2,6,24,...,1-2-...-m,....
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Example
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e Explicit Definition: f is a function such that
f(n) = nl(stipulate: 0! = 1).
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Example

©1,1,2,6,24,...,1-2-...-m,....
e Explicit Definition: f is a function such that
f(n) = nl(stipulate: 0! = 1).
e Implicit Definition: f is a function such that f(0) = 1 and

f(S(n)) = f(n)-S(n). !

!This is an example for illustrating the idea of recursion, as we still have not a

well-defined notion of multiplication for natural numbers.
Ming Hsiung 17/26
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Recursion on Natural Numbers

Theorem (The Recursion Theorem)

For any set A, any a € A, and any function g : A x N — A, there
exists a unique function f : N — A such that

(@ f(0) =a,
(b) f(S(n)) =g(f(n),n) foralln € N.
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@ Application 1: For every m € N, there exists a unique function
fm : N — N such that

(@) fm(0) =m;
(b) fm(S(n)) = S(fm(n)) forall n € N.

Proof.

@ Definition.
m+n =g fm(n).
o Thus:
(@ m+0=m;
(b) m+ S(n) =S(m+n) forallm,n € N.
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@ Prove: m+ 1= S5(m)

From now on, we can use m + 1 instead of S(m).
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Theorem (The Recursion Theorem with parameters)

Forany a: P — A and any function g : P x A x N — A, there
exists a unique function f : P x N — A such that

(@) f(p,0) =al(p);
() f(p,S(n)) = g(p, f(n),n) foralln € Nandp € P.
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@ Application 2: There exists a unique function f : N x N — N
such that
(@) f(m,0) =0
(b) f(m,S(n)) = f(m,n)+ m forall m,n € N.
Proof.

@ Definition.
m - n =g f(m,n).
o Thus:
(@ m-0=m;
(b) m-S(n) =m-n+mforallm,n € N.
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@ Application 3: There exists a unique function f : N — N such

that
@@ f(0)=1
(b) f(S(n)) = f(n)-nforalln € N.
Proof.

@ Definition.
n! =4¢ f(n).
o Thus:
(a) 0l=1;
(b) (n+1)!=n!-nforalln e N.
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Theorem (The Recursion Theorem)

For any set A, any a € A, and any function g : A x N — A, there exists a
unique function f : N — A such that

@ f(0)=a
(b) f(S(n)) =g(f(n),n)foralln € N.

Proof.
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Homework

@ How to define exponentiation of natural numbers? Justify your
definition.

@ How to define (by recursion) Fibonacci function f : N — N,
which meets the condition:

fln+2)=fln+ 1)+ f(n),n>0

Hint: Refer to Hrbaeck & Jech (3 ed.), pp. 50.
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Thanks for your attention!
Q&A
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