Sets and Axioms

Ming Hsiung mingshone@163.com

School of Philosophy and Social Development South China Normal University

Set Theory, Spring 2022

Outline

Cantor's set and Russell's paradox

More Axioms

Relations and functions

Outline

Cantor's set and Russell's paradox

2 More Axioms

Relations and functions

What is a set

A set is a collection into a whole of definite, distinct objects of our intuition or our thought. The objects are called elements (members) of the set.

Georg Cantor

Russell's paradox

$$\{x|x\notin x\}$$

- variables: $x, y, z, x_0, x_1, ...$
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow
- quantifiers: \forall , \exists
- predicate symbols: =, \in
- auxiliary symbols:) , (.

$$\mathcal{L}_S = \langle \in \rangle$$

- variables: $x, y, z, x_0, x_1, ...$
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow
- quantifiers: \forall , \exists
- predicate symbols: =, \in
- auxiliary symbols:),(.

$$\mathcal{L}_S = \langle \in \rangle$$

- variables: $x, y, z, x_0, x_1, ...$
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow
- quantifiers: \forall , \exists
- predicate symbols: =, \in
- auxiliary symbols:) , (.

$$\mathcal{L}_S = \langle \in \rangle$$

- variables: $x, y, z, x_0, x_1, ...$
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow
- quantifiers: \forall , \exists
- predicate symbols: =, \in
- auxiliary symbols:),(.

$$\mathcal{L}_S = \langle \in \rangle$$

- variables: $x, y, z, x_0, x_1,$
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow
- quantifiers: \forall , \exists
- predicate symbols: =, \in
- auxiliary symbols:),(.

$$\mathcal{L}_S = \langle \in \rangle$$

- variables: $x, y, z, x_0, x_1,$
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow
- quantifiers: \forall , \exists
- predicate symbols: =, \in
- auxiliary symbols:),(.

$$\mathcal{L}_S = \langle \in \rangle$$

- If t_1 and t_2 are variables, then $(t_1 = t_2)$ is a formula.
- If α is a formula, so is $\neg \alpha$.
- If α and β are formulas, so is $(\alpha \star \beta)$, where \star is \wedge , \vee , \rightarrow , or \leftrightarrow .
- If α is a formula, then for any variable x, $\forall x \alpha$ and $\exists x \alpha$ are also formulas.
- Formulas are exactly those expressions obtained by the above rules.

- If t_1 and t_2 are variables, then $(t_1 = t_2)$ is a formula.
- If α is a formula, so is $\neg \alpha$.
- If α and β are formulas, so is $(\alpha \star \beta)$, where \star is \wedge , \vee , \rightarrow , or \leftrightarrow .
- If α is a formula, then for any variable x, $\forall x \alpha$ and $\exists x \alpha$ are also formulas.
- Formulas are exactly those expressions obtained by the above rules.

- If t_1 and t_2 are variables, then $(t_1 = t_2)$ is a formula.
- If α is a formula, so is $\neg \alpha$.
- If α and β are formulas, so is $(\alpha \star \beta)$, where \star is \wedge , \vee , \rightarrow , or \leftrightarrow .
- If α is a formula, then for any variable x, $\forall x \alpha$ and $\exists x \alpha$ are also formulas.
- Formulas are exactly those expressions obtained by the above rules.

- If t_1 and t_2 are variables, then $(t_1 = t_2)$ is a formula.
- If α is a formula, so is $\neg \alpha$.
- If α and β are formulas, so is $(\alpha \star \beta)$, where \star is \wedge , \vee , \rightarrow , or \leftrightarrow .
- If α is a formula, then for any variable x, $\forall x \alpha$ and $\exists x \alpha$ are also formulas.
- Formulas are exactly those expressions obtained by the above rules.

- If t_1 and t_2 are variables, then $(t_1 = t_2)$ is a formula.
- If α is a formula, so is $\neg \alpha$.
- If α and β are formulas, so is $(\alpha \star \beta)$, where \star is \wedge , \vee , \rightarrow , or \leftrightarrow .
- If α is a formula, then for any variable x, $\forall x \alpha$ and $\exists x \alpha$ are also formulas.
- Formulas are exactly those expressions obtained by the above rules.

Deductions in \mathcal{L}_S

$$\Sigma \vdash \alpha$$

ZFC

- ZFC = $\{\exists x \forall y (y \notin x), \ldots\}$
- A proof of α in ZFC = a deduction for ZFC $\vdash \alpha$
- We usually make statements and proofs informally in the axiomatic set theory!

Example (for axioms)

• The Axiom of Existence:

There exists a set which has no elements.

 $\bullet \ \exists x \forall y (y \notin x)$

• The Axiom of

Extensionality: If two
sets have the same
elements, then they are
identical.

...

Example (for axioms)

• The Axiom of Existence:

There exists a set which has no elements.

 $\bullet \ \exists x \forall y (y \notin x)$

• The Axiom of

Extensionality: If two sets have the same elements, then they are identical.

...

Example (for proofs)

• Prove: There exists only one set with no elements.

• ZFC
$$\vdash \exists! x \forall y (y \notin x)$$

- Definition: The (unique) set with no elements is called the empty set and is denoted Ø.
- By the above definition, we introduce a new symbol into the language \mathcal{L}_S .
- New symbols serve as a simplification medium. If we like, we can always delete the new symbol.
- $x = \varnothing$: $\forall y (y \notin x)$
- \circ $\varnothing \in x$:

- Definition: The (unique) set with no elements is called the empty set and is denoted Ø.
- By the above definition, we introduce a new symbol into the language \mathcal{L}_S .
- New symbols serve as a simplification medium. If we like, we can always delete the new symbol.
- $x = \varnothing$: $\forall y (y \notin x)$
- \circ $\varnothing \in x$:

- Definition: The (unique) set with no elements is called the empty set and is denoted Ø.
- By the above definition, we introduce a new symbol into the language \mathcal{L}_S .
- New symbols serve as a simplification medium. If we like, we can always delete the new symbol.
- $x = \varnothing$: $\forall y (y \notin x)$
- \bullet $\varnothing \in x$:

- Definition: The (unique) set with no elements is called the empty set and is denoted Ø.
- By the above definition, we introduce a new symbol into the language \mathcal{L}_S .
- New symbols serve as a simplification medium. If we like, we can always delete the new symbol.
- $x = \varnothing$: $\forall y (y \notin x)$
- \circ $\varnothing \in x$:

- Definition: The (unique) set with no elements is called the empty set and is denoted Ø.
- By the above definition, we introduce a new symbol into the language \mathcal{L}_S .
- New symbols serve as a simplification medium. If we like, we can always delete the new symbol.
- $x = \varnothing$: $\forall y (y \notin x)$
- $\bullet \varnothing \in x$:

Outline

Cantor's set and Russell's paradox

More Axioms

Relations and functions

What is a property

- A property of x is a formula of form $\alpha(x)$.
- A property of x and y is a formula of form $\alpha(x, y)$, that is, a formula with free variables among x and y
- \bullet x = x.
- \bullet $x = \emptyset$.
- $\bullet x \notin x$.
- \bullet x = y
- $x \notin y$ or $x \in z$ (formally, $x \notin y \lor x \in z$)

What is a property

- A property of x is a formula of form $\alpha(x)$.
- A property of x and y is a formula of form $\alpha(x, y)$, that is, a formula with free variables among x and y
- \bullet x = x.
- \bullet $x = \varnothing$.
- \bullet $x \notin x$.
- \bullet x = y
- $x \notin y$ or $x \in z$ (formally, $x \notin y \lor x \in z$)

The Axiom Schema of Comprehension

- Let P(x) be a property of x. For any set A, there is a set B such that $x \in B$ if and only if $x \in A$ and P(x).
- Formally, $\forall z \exists y \forall x (x \in y \leftrightarrow x \in z \land \alpha(x))$

- Lemma: For every A, there is only one set B such that $x \in B$ if and only if $x \in A$ and P(x).
- Definition: $\{x \in A | P(x)\}$ is the set of all $x \in A$ with the property P(x).
- Definition: $A \cap B$ is the set $\{x \in A | x \in B\}$.

- Lemma: For every A, there is only one set B such that $x \in B$ if and only if $x \in A$ and P(x).
- Definition: $\{x \in A | P(x)\}$ is the set of all $x \in A$ with the property P(x).
- Definition: $A \cap B$ is the set $\{x \in A | x \in B\}$.

- Lemma: For every A, there is only one set B such that $x \in B$ if and only if $x \in A$ and P(x).
- Definition: $\{x \in A | P(x)\}$ is the set of all $x \in A$ with the property P(x).
- Definition: $A \cap B$ is the set $\{x \in A | x \in B\}$.

Russell's paradox again

- $\{x|P(x)\}$ is a class. $x \in \{x|P(x)\}$ is equivalent to P(x).
- $\{x|P(x)\}$ is a **proper class**, if it is not a set.
- Fact: $\{x | x \notin x\}$ is a proper class.
- Formally, $\neg \exists y \forall x (x \in y \leftrightarrow x \notin x)$ (is provable in ZFC).

Russell's paradox again

- $\{x|P(x)\}$ is a class. $x \in \{x|P(x)\}$ is equivalent to P(x).
- $\{x|P(x)\}$ is a **proper class**, if it is not a set.
- Fact: $\{x | x \notin x\}$ is a proper class.
- Formally, $\neg \exists y \forall x (x \in y \leftrightarrow x \notin x)$ (is provable in ZFC).

Russell's paradox again

- $\{x|P(x)\}$ is a class. $x \in \{x|P(x)\}$ is equivalent to P(x).
- $\{x|P(x)\}$ is a **proper class**, if it is not a set.
- Fact: $\{x | x \notin x\}$ is a proper class.
- Formally, $\neg \exists y \forall x (x \in y \leftrightarrow x \notin x)$ (is provable in ZFC).

Russell's paradox again

- $\{x|P(x)\}$ is a class. $x \in \{x|P(x)\}$ is equivalent to P(x).
- $\{x|P(x)\}$ is a **proper class**, if it is not a set.
- Fact: $\{x | x \notin x\}$ is a proper class.
- Formally, $\neg \exists y \forall x (x \in y \leftrightarrow x \notin x)$ (is provable in ZFC).

The big V

- $V =_{df} \{x | x = x\}.$
- \bullet Fact: V is a proper class.
- Formally, ...

The big V

- $V =_{df} \{x | x = x\}.$
- ullet Fact: V is a proper class.
- Formally, ...

The big V

- $V =_{df} \{x | x = x\}.$
- \bullet Fact: V is a proper class.
- Formally, ...

The Axiom of Pair

- The Axiom of Pair: For any A and B, there is a set C such that $x \in C$ if and only if x = A or x = B.
- Formally, ...
- Definition: $\{A, B\}$ is defined as the (unique) set C in the Axiom of Pair.

The Axiom of Pair

- The Axiom of Pair: For any A and B, there is a set C such that $x \in C$ if and only if x = A or x = B.
- Formally, ...
- Definition: {A, B} is defined as the (unique) set C in the Axiom of Pair.

- Ø
- $\{\emptyset,\emptyset\}$, briefly, $\{\emptyset\}$
- \bullet $\{\varnothing, \{\varnothing\}\}$
- $\bullet \ \{\varnothing, \{\varnothing, \{\varnothing\}\}\}\}$
- $\bullet \ \{\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}\}$

- Ø
- $\{\emptyset,\emptyset\}$, briefly, $\{\emptyset\}$
- \bullet $\{\varnothing, \{\varnothing\}\}$
- $\bullet \ \{\varnothing, \{\varnothing, \{\varnothing\}\}\}$
- $\bullet \ \{\{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\}$

- Ø
- $\{\emptyset,\emptyset\}$, briefly, $\{\emptyset\}$
- $\{\varnothing, \{\varnothing\}\}$
- $\bullet \ \{\varnothing, \{\varnothing, \{\varnothing\}\}\}\}$
- $\bullet \ \{\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}\}$

- Ø
- $\{\emptyset,\emptyset\}$, briefly, $\{\emptyset\}$
- $\{\emptyset, \{\emptyset\}\}$
- $\{\varnothing, \{\varnothing, \{\varnothing\}\}\}$
- $\bullet \ \{\{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\}$

- Ø
- $\{\emptyset,\emptyset\}$, briefly, $\{\emptyset\}$
- $\{\emptyset, \{\emptyset\}\}$
- $\{\emptyset, \{\emptyset, \{\emptyset\}\}\}$
- $\bullet \ \{\{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\}$

The Axiom of Union

- The Axiom of Union: For any set S, there exists a set U such that $x \in U$ if and only if $x \in A$ for some $A \in S$.
- Formally, ...
- Definition: $\bigcup S$ is defined as the (unique) set U in the Axiom of Union.
- Definition: $A \cup B =_{\mathrm{df}} \bigcup \{A, B\}$.

The Axiom of Union

- The Axiom of Union: For any set S, there exists a set U such that $x \in U$ if and only if $x \in A$ for some $A \in S$.
- Formally, ...
- Definition: $\bigcup S$ is defined as the (unique) set U in the Axiom of Union.
- Definition: $A \cup B =_{\mathrm{df}} \bigcup \{A, B\}$.

The Axiom of Union

- The Axiom of Union: For any set S, there exists a set U such that $x \in U$ if and only if $x \in A$ for some $A \in S$.
- Formally, ...
- Definition: $\bigcup S$ is defined as the (unique) set U in the Axiom of Union.
- Definition: $A \cup B =_{\mathrm{df}} \bigcup \{A, B\}$.

- Ø
- \bullet $\{\emptyset\}$
- \bullet $\{\emptyset, \{\emptyset\}\}$
- $\bullet \ \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\}$
-

Generally, we define: $S(x) =_{\mathrm{df}} x \cup \{x\}$. Then we have a sequence of sets: \varnothing , $S(\varnothing)$, $S(\varnothing)$, ..., which is denoted by $0, 1, 2, \ldots$

- Ø
- {∅}
- \bullet $\{\emptyset, \{\emptyset\}\}$
- $\bullet \ \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}$
-

Generally, we define: $S(x) =_{\mathrm{df}} x \cup \{x\}$. Then we have a sequence of sets: \varnothing , $S(\varnothing)$, $S(\varnothing)$, ..., which is denoted by $0, 1, 2, \ldots$

4□ > 4個 > 4 = > 4 = > = 990

- Ø
- {Ø}
- $\{\emptyset, \{\emptyset\}\}$
- $\bullet \ \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\}$
-

Generally, we define: $S(x) =_{\mathrm{df}} x \cup \{x\}$. Then we have a sequence of sets: \varnothing , $S(\varnothing)$, $S(\varnothing)$, ..., which is denoted by $0, 1, 2, \ldots$

4□ > 4個 > 4 = > 4 = > = 900

- Ø
- {Ø}
- $\{\emptyset, \{\emptyset\}\}$
- $\bullet \ \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\$
-

Generally, we define: $S(x) =_{\mathrm{df}} x \cup \{x\}$. Then we have a sequence of sets: \varnothing , $S(\varnothing)$, $S(\varnothing)$, ..., which is denoted by $0, 1, 2, \ldots$

- Ø
- {Ø}
- \bullet $\{\emptyset, \{\emptyset\}\}$
- $\bullet \ \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\$
-

Generally, we define: $S(x) =_{\mathrm{df}} x \cup \{x\}$. Then we have a sequence of sets: \varnothing , $S(\varnothing)$, $SS(\varnothing)$, ..., which is denoted by $0, 1, 2, \ldots$

- Ø
- {Ø}
- \bullet $\{\emptyset, \{\emptyset\}\}$
- $\{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\$
-

Generally, we define: $S(x) =_{\mathrm{df}} x \cup \{x\}$. Then we have a sequence of sets: \varnothing , $S(\varnothing)$, $SS(\varnothing)$, ..., which is denoted by $0, 1, 2, \ldots$

◆□▶◆□▶◆臣▶◆臣▶ 臣 り९@

- Definition: $A \subseteq B =_{\mathsf{df}} \forall x (x \in A \to x \in B)$.
- $\bullet \ \forall x (\varnothing \subseteq x).$
- The Axiom of Extension again: $\forall x \forall y (x \subseteq y \land y \subseteq x \rightarrow x = y)$.
- If $A \in S$, then $A \subseteq \bigcup S$.

- Definition: $A \subseteq B =_{\mathsf{df}} \forall x (x \in A \to x \in B)$.
- $\forall x (\varnothing \subseteq x)$.
- The Axiom of Extension again: $\forall x \forall y (x \subseteq y \land y \subseteq x \rightarrow x = y)$.
- If $A \in S$, then $A \subseteq \bigcup S$.

- Definition: $A \subseteq B =_{\mathsf{df}} \forall x (x \in A \to x \in B)$.
- $\forall x (\varnothing \subseteq x)$.
- The Axiom of Extension again: $\forall x \forall y (x \subseteq y \land y \subseteq x \rightarrow x = y)$.
- If $A \in S$, then $A \subseteq \bigcup S$.

- Definition: $A \subseteq B =_{\mathsf{df}} \forall x (x \in A \to x \in B)$.
- $\forall x (\varnothing \subseteq x)$.
- The Axiom of Extension again: $\forall x \forall y (x \subseteq y \land y \subseteq x \rightarrow x = y)$.
- If $A \in S$, then $A \subseteq \bigcup S$.

The Axiom of Power Set

- The Axiom of Power Set: For any set S, there exists a set P such that $x \in P$ if and only if $x \subseteq S$.
- Formally, ...
- Definition: $\mathscr{P}(S)$ is defined as the (unique) set P in the Axiom of Power Set.

The Axiom of Power Set

- The Axiom of Power Set: For any set S, there exists a set P such that $x \in P$ if and only if $x \subseteq S$.
- Formally, ...
- Definition: $\mathscr{P}(S)$ is defined as the (unique) set P in the Axiom of Power Set.

- $\mathcal{P}(0) =$ $\mathcal{P}(1) =$ $\mathcal{P}(2) =$

- $\mathcal{P}(0) =$ $\mathcal{P}(1) =$ $\mathcal{P}(2) =$

Outline

Cantor's set and Russell's paradox

2 More Axioms

Relations and functions

$$(a,b) =_{\mathsf{df}} \{ \{a\}, \{a,b\} \}.$$

$$(a,b,c) =_{\mathsf{df}} ((a,b),c).$$

$$(a, b, c, d) =_{\mathsf{df}} (((a, b), c), d)$$

Fact

- (a, b) = (a', b') iff a = a' and b = b'.
- (a, b, c) = (a', b', c') iff a = a', b = b', and c = c'.

◆□▶◆□▶◆荳▶◆荳▶ 荳 幻९♡

$$(a,b) =_{\mathsf{df}} \{ \{a\}, \{a,b\} \}.$$

$$(a,b,c) =_{\mathsf{df}} ((a,b),c).$$

$$(a, b, c, d) =_{\mathsf{df}} (((a, b), c), d)$$

Fact

•
$$(a, b) = (a', b')$$
 iff $a = a'$ and $b = b'$.

•
$$(a, b, c) = (a', b', c')$$
 iff $a = a', b = b'$, and $c = c'$.

◆□ > ◆□ > ◆豆 > ◆豆 > 豆 のQで

$$(a,b) =_{\mathsf{df}} \{ \{a\}, \{a,b\} \}.$$

$$(a,b,c) =_{\mathsf{df}} ((a,b),c).$$

$$(a,b,c,d) =_{\mathsf{df}} (((a,b),c),d)$$

Fact

- (a, b) = (a', b') iff a = a' and b = b'.
- (a, b, c) = (a', b', c') iff a = a', b = b', and c = c'.

◆□▶◆□▶◆壹▶◆壹▶ 壹 める○

$$(a,b) =_{\mathsf{df}} \{ \{a\}, \{a,b\} \}.$$

$$(a,b,c) =_{\mathsf{df}} ((a,b),c).$$

$$(a,b,c,d) =_{\mathsf{df}} (((a,b),c),d)$$

Fact:

- (a,b) = (a',b') iff a = a' and b = b'.
- (a, b, c) = (a', b', c') iff a = a', b = b', and c = c'.

◆□▶◆□▶◆壹▶◆壹▶ 壹 夕久♡

Cartesian products

$$A \times B =_{\mathsf{df}} \{(a,b) | a \in A, b \in B\}.$$

$$A \times B \times C =_{\mathsf{df}} (A \times B) \times C$$

Fact:

- $A \times B = \{(a, b) \in \mathscr{P}(\mathscr{P}(A \cup B)) | a \in A, b \in B\}.$
- $\bullet \ A \times B \times C = \{(a, b, c) | a \in A, b \in B, c \in B\}.$

Cartesian products

$$A \times B =_{\mathsf{df}} \{(a, b) | a \in A, b \in B\}.$$

$$A \times B \times C =_{\mathrm{df}} (A \times B) \times C$$

Fact:

- $A \times B = \{(a, b) \in \mathscr{P}(\mathscr{P}(A \cup B)) | a \in A, b \in B\}.$
- $\bullet \ A \times B \times C = \{(a, b, c) | a \in A, b \in B, c \in B\}.$

Cartesian products

$$A \times B =_{\mathsf{df}} \{(a, b) | a \in A, b \in B\}.$$

$$A \times B \times C =_{\mathsf{df}} (A \times B) \times C$$

Fact:

- $\bullet \ A \times B = \{(a,b) \in \mathscr{P}(\mathscr{P}(A \cup B)) | a \in A, b \in B\}.$
- $\bullet \ A \times B \times C = \{(a, b, c) | a \in A, b \in B, c \in B\}.$

- A set R is a binary relation, if it is a subset of A × B for some A and B.
- Or equivalently, A set R is a binary relation if all elements of R are ordered pairs. We will use xRy instead of $(x,y) \in R$.

$$dom R =_{df} \{x | \exists y (xRy)\}$$

$$ranR =_{df} \{ y | \exists x (xRy) \}$$

- A set R is a binary relation, if it is a subset of A × B for some A and B.
- Or equivalently, A set R is a binary relation if all elements of R are ordered pairs. We will use xRy instead of $(x,y) \in R$.

$$dom R =_{df} \{x | \exists y (xRy)\}$$

$$ranR =_{df} \{ y | \exists x (xRy) \}$$

- A set R is a binary relation, if it is a subset of A × B for some A and B.
- Or equivalently, A set R is a binary relation if all elements of R are ordered pairs. We will use xRy instead of $(x,y) \in R$.

$$\mathrm{dom}R =_{\mathrm{df}} \{x|\exists y(xRy)\}$$

$$ranR =_{df} \{y | \exists x (xRy)\}$$

- A set R is a binary relation, if it is a subset of A × B for some A and B.
- Or equivalently, A set R is a binary relation if all elements of R are ordered pairs. We will use xRy instead of $(x,y) \in R$.

$$\mathrm{dom}R =_{\mathrm{df}} \{x|\exists y(xRy)\}$$

$$ranR =_{df} \{y | \exists x (xRy)\}$$

Functions

- A binary relation F is called a function (or mapping, correspondence) if aFb and aFb' imply b = b' for any a, b, and b'.
- For any $a \in \text{dom} F$, we use F(a) to denote the unique element b such that aFb, which is called the **value of** F **at** a.
- F is a function from A to B, if dom F = A and $ran F \subseteq B$. Notation: $F: A \to B$.

Functions

- A binary relation F is called a **function** (or **mapping**, **correspondence**) if aFb and aFb' imply b = b' for any a, b, and b'.
- For any $a \in \text{dom} F$, we use F(a) to denote the unique element b such that aFb, which is called the **value of** F **at** a.
- F is a function from A to B, if dom F = A and $ran F \subseteq B$. Notation: $F: A \to B$.

Functions

- A binary relation F is called a function (or mapping, correspondence) if aFb and aFb' imply b = b' for any a, b, and b'.
- For any $a \in \text{dom} F$, we use F(a) to denote the unique element b such that aFb, which is called the **value of** F **at** a.
- F is a function from A to B, if dom F = A and $ran F \subseteq B$. Notation: $F: A \rightarrow B$.

Some special functions

- A function F is an **injection** if for any $a \in \text{dom} F$ and $a' \in \text{dom} F$, if $a \neq a'$, then $F(a) \neq F(a')$.
- F is a function from A onto B, if dom F = A and ran F = B.
- An injection from A onto B is called a bijection from A to B, or a one-to-one correspondence from A to B.

Some special functions

- A function F is an **injection** if for any $a \in \text{dom} F$ and $a' \in \text{dom} F$, if $a \neq a'$, then $F(a) \neq F(a')$.
- F is a function from A onto B, if dom F = A and ran F = B.
- An injection from A onto B is called a bijection from A to B, or a one-to-one correspondence from A to B.

Some special functions

- A function F is an **injection** if for any $a \in \text{dom} F$ and $a' \in \text{dom} F$, if $a \neq a'$, then $F(a) \neq F(a')$.
- F is a function from A onto B, if dom F = A and ran F = B.
- An injection from A onto B is called a bijection from A to B, or a one-to-one correspondence from A to B.

Thanks for your attention! Q & A