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of Replacement nite Induction

@ Theorem: Every well-ordered set is isomorphic to a unique

ordinal number.

Ming Hsiung 4/20



The Axiom of Replacement Transfinite Induction
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@ The Axiom Schema of Replacement: Let P(z,y) be a property
such that for every z, there is a unique y for which P(z, y) holds.
For every set A, there is a set B such that, for every x € A, there
is y € B for which P(z,y) holds.
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@ The Axiom Schema of Replacement: Let P(z,y) be a property
such that for every z, there is a unique y for which P(z, y) holds.
For every set A, there is a set B such that, for every x € A, there
is y € B for which P(z,y) holds.

o If Aisaset, then F[A] = {yly = F(x),x € A} is also a set for
F[A]={y € Bly=F(z),z € A},

where B is the set that the Axiom Schema of Replacement
admits (and P(z,y) is the relation F'(x) = y).
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The Axiom of Replacement Transfinite Induction Transfinite
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@ The Transfinite Induction Principle: Let P(x) be a property
(possibly with parameters). Assume that, for all ordinal numbers
o

If P(B) holds for all 8 < a, then P(«).

Then P(«) holds for all ordinals c.
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The Axiom of Replacement Transfinite Induction
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@ The Transfinite Induction Principle, the Second Version: Let
P(x) be a property. Assume that
(a) P(0) holds.
(b) P(«) implies P(a + 1) for all ordinals a.
(c) For all non-zero limit «, if P(/3) holds for all 8 < «, then P(«)
holds.

Then P(«) holds for all ordinals c.
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@ Transfinite Recursion
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@ Definition: Let A be a class. If P(x,y) is a property such that
for each x € A, there exists a unique y such that P(z, y)
(formally, ZFC + Vx € A3lyP(x,y)), then we say that P(z,y)
defines a (unary) operation (on A).
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@ Definition: Let A be a class. If P(x,y) is a property such that
for each x € A, there exists a unique y such that P(z, y)
(formally, ZFC + Vx € A3lyP(x,y)), then we say that P(z,y)
defines a (unary) operation (on A).

@ Asusual, we use G(x) to denote an operation. That is,
G(z) =y =ar P(z,y).
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@ Definition: Let A be a class. If P(x,y) is a property such that
for each x € A, there exists a unique y such that P(z, y)
(formally, ZFC + Vx € A3lyP(x,y)), then we say that P(z,y)
defines a (unary) operation (on A).

@ Asusual, we use G(x) to denote an operation. That is,
G(z) =y =ar P(z,y).

o Similarly, we can define a binary operation.
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Example

@ The successor operation S is an operation (on V):
S(z) =y =¢y=zU{x}.
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Example

@ The successor operation S is an operation (on V):
S(z) =y =ary=zU{z}

@ The successor operation S is also an operation on the class of all
ordinals (On): S(a) = 8 =4t B = a U {a}.
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Example

@ The successor operation S is an operation (on V):
S(z) =y =ary=zU{z}

@ The successor operation S is also an operation on the class of all
ordinals (On): S(a) = 8 =4t B = a U {a}.

@ The powerset operation &2 is an operation:
P(z) =y =4y = {#|z C z}.
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Example
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The successor operation S is an operation (on V):

S(x) =y =4ty =2zU{z}.

The successor operation S is also an operation on the class of all
ordinals (On): S(a) = 8 =4t B = a U {a}.

The powerset operation & is an operation:

P(z) =y =4y = {#|z C z}.

The intersection operation M is an operation:

r1Nxe =y =4ty = {2|2 € x1 A\ 2z € 22}.
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@ The Transfinite Recursion Theorem: Let G be an operation;
then there exists a unique operation F' on the class of all the
ordinals such that F'(«) = G(F' | «) for all ordinals «.
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@ The Transfinite Recursion Theorem, Parametric Version:
Let GG be an operation; then there exists a unique operation F' on
V' x On such that F'(z, ) = G(z, F' | «) for all ordinals c.
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@ Application 1: For every ordinal 3, there exists a unique function
Fjs : On — On such that

(a) F5(0) = 5;
(b) Fz(S(ar)) = S(Fs(w)) forall a
(c) Fp(a) = U{EFs(v)|y < o} for all non-zero limit c.

@ Definition.
B + =df Fg(a).
@ Thus: forall o, 5 € On,

(@ B+0=2;
(b) B+ S(a) =SB+ a).
(¢) B+a=U{B+~|y < a}ifaisanon-zero limit.
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@ Theorem: Let (A, <1) and (B, <2) be two disjoint well-ordered
sets, isomorphic to ordinals « and 3, respectively, and let < be a
relation on A U B defined by

a<b =g (a,bEA/\a<1b)
V(a,be BANa<ab)
V(a € ANb € B)

Then (A U B, <) is isomorphic to the ordinal o + (3.
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@ Theorem: Let (A, <1) and (B, <2) be two disjoint well-ordered
sets, isomorphic to ordinals « and 3, respectively, and let < be a
relation on A U B defined by

a<b =g (a,bEA/\a<1b)
V(a,be BANa<ab)
V(a € ANb € B)

Then (A U B, <) is isomorphic to the ordinal o + (3.

@ Thus: 1 +w =w,butw + 1 # w.
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@ Definition: for all o, 8 € On,

(@ B-0=0;
(b) f-S(@)=5-a+p.
() B-a=U{B 7]y < a}if ais anon-zero limit.
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@ Theorem: Let (A, <1) and (B, <2) be two well-ordered sets,
isomorphic to ordinals « and 3, respectively, and let < be a
relation on B x A defined by

(b1,a1) < (b2,a2) =gr (b1 <2 b2)
\/(bl =by ANay1 <1 az)

Then (B x A, <) is isomorphic to the ordinal « - 5.
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@ Theorem: Let (A, <1) and (B, <2) be two well-ordered sets,
isomorphic to ordinals « and 3, respectively, and let < be a
relation on B x A defined by

(b1,a1) < (b2,a2) =gr (b1 <2 b2)
\/(bl =by ANay1 <1 az)

Then (B x A, <) is isomorphic to the ordinal « - 5.

@ Thus: 2 - w=w,butw -2 =w+ w # w.
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@ Definition: for all o, 8 € On,

(@) 8°=1;
() 55 = g% B
() B~ =U{B7|y < a} if a is a non-zero limit.
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@ Definition: for all o, 8 € On,

(@) 8°=1;
() 55 = g% B
() B~ =U{B7|y < a} if a is a non-zero limit.

e Thus: 2“ = w,butw? = w - w # w.
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Homework

o (P.123)5. 11
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Thanks for your attention!
Q&A
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