Transfinite Recursion on Ordinals

Ming Hsiung mingshone@163.com

School of Philosophy and Social Development South China Normal University

Set Theory, Spring 2022

Outline

• The Axiom of Replacement

Transfinite Induction

3 Transfinite Recursion

Outline

• The Axiom of Replacement

Transfinite Induction

3 Transfinite Recursion

• Theorem: Every well-ordered set is isomorphic to a unique ordinal number.

- The Axiom Schema of Replacement: Let P(x,y) be a property such that for every x, there is a unique y for which P(x,y) holds. For every set A, there is a set B such that, for every $x \in A$, there is $y \in B$ for which P(x,y) holds.
- If A is a set, then $F[A] = \{y|y = F(x), x \in A\}$ is also a set for

$$F[A] = \{ y \in B | y = F(x), x \in A \},$$

where B is the set that the Axiom Schema of Replacement admits (and P(x, y) is the relation F(x) = y).

- The Axiom Schema of Replacement: Let P(x, y) be a property such that for every x, there is a unique y for which P(x, y) holds. For every set A, there is a set B such that, for every $x \in A$, there is $y \in B$ for which P(x, y) holds.
- If A is a set, then $F[A] = \{y|y = F(x), x \in A\}$ is also a set for

$$F[A] = \{y \in B | y = F(x), x \in A\},$$

where B is the set that the Axiom Schema of Replacement admits (and P(x, y) is the relation F(x) = y).

Outline

• The Axiom of Replacement

Transfinite Induction

3 Transfinite Recursion

• The Transfinite Induction Principle: Let P(x) be a property (possibly with parameters). Assume that, for all ordinal numbers α :

If
$$P(\beta)$$
 holds for all $\beta < \alpha$, then $P(\alpha)$.

Then $P(\alpha)$ holds for all ordinals α .

- The Transfinite Induction Principle, the Second Version: Let P(x) be a property. Assume that
 - (a) P(0) holds.
 - (b) $P(\alpha)$ implies $P(\alpha + 1)$ for all ordinals α .
 - (c) For all non-zero limit α , if $P(\beta)$ holds for all $\beta < \alpha$, then $P(\alpha)$ holds.

Then $P(\alpha)$ holds for all ordinals α .

Outline

• The Axiom of Replacement

Transfinite Induction

3 Transfinite Recursion

- Definition: Let A be a class. If P(x,y) is a property such that for each $x \in A$, there exists a unique y such that P(x,y) (formally, $ZFC \vdash \forall x \in A \exists ! y P(x,y)$), then we say that P(x,y) defines a (unary) **operation** (on A).
- As usual, we use G(x) to denote an operation. That is, $G(x) = y =_{\mathrm{df}} P(x,y)$.
- Similarly, we can define a binary operation.

- Definition: Let A be a class. If P(x,y) is a property such that for each $x \in A$, there exists a unique y such that P(x,y) (formally, $ZFC \vdash \forall x \in A \exists ! y P(x,y)$), then we say that P(x,y) defines a (unary) **operation** (on A).
- As usual, we use G(x) to denote an operation. That is, $G(x) = y =_{\mathrm{df}} P(x,y)$.
- Similarly, we can define a binary operation.

- Definition: Let A be a class. If P(x,y) is a property such that for each $x \in A$, there exists a unique y such that P(x,y) (formally, ZFC $\vdash \forall x \in A \exists ! y P(x,y)$), then we say that P(x,y) defines a (unary) **operation** (on A).
- As usual, we use G(x) to denote an operation. That is, $G(x) = y =_{\mathrm{df}} P(x,y)$.
- Similarly, we can define a binary operation.

ullet The successor operation S is an operation (on V):

$$S(x) = y =_{df} y = x \cup \{x\}.$$

- The successor operation S is also an operation on the class of all ordinals (On): $S(\alpha) = \beta =_{\mathrm{df}} \beta = \alpha \cup \{\alpha\}$.
- The powerset operation $\mathcal P$ is an operation:

$$\mathscr{P}(x) = y =_{\mathrm{df}} y = \{z | z \subseteq x\}.$$

$$x_1 \cap x_2 = y =_{\mathsf{df}} y = \{ z | z \in x_1 \land z \in x_2 \}$$

ullet The successor operation S is an operation (on V):

$$S(x) = y =_{\mathsf{df}} y = x \cup \{x\}.$$

- The successor operation S is also an operation on the class of all ordinals (On): $S(\alpha) = \beta =_{\mathrm{df}} \beta = \alpha \cup \{\alpha\}$.
- The powerset operation \mathcal{P} is an operation:

$$\mathscr{P}(x) = y =_{\mathrm{df}} y = \{z | z \subseteq x\}.$$

$$x_1 \cap x_2 = y =_{\mathrm{df}} y = \{ z | z \in x_1 \land z \in x_2 \}$$

• The successor operation S is an operation (on V):

$$S(x) = y =_{\mathsf{df}} y = x \cup \{x\}.$$

- The successor operation S is also an operation on the class of all ordinals (On): $S(\alpha) = \beta =_{\mathrm{df}} \beta = \alpha \cup \{\alpha\}$.
- The powerset operation \mathcal{P} is an operation:

$$\mathscr{P}(x) = y =_{\mathrm{df}} y = \{z | z \subseteq x\}.$$

$$x_1 \cap x_2 = y =_{\mathrm{df}} y = \{ z | z \in x_1 \land z \in x_2 \}$$

ullet The successor operation S is an operation (on V):

$$S(x) = y =_{df} y = x \cup \{x\}.$$

- The successor operation S is also an operation on the class of all ordinals (On): $S(\alpha) = \beta =_{\mathrm{df}} \beta = \alpha \cup \{\alpha\}$.
- The powerset operation \mathcal{P} is an operation:

$$\mathscr{P}(x) = y =_{\mathrm{df}} y = \{z | z \subseteq x\}.$$

$$x_1 \cap x_2 = y =_{\mathsf{df}} y = \{z | z \in x_1 \land z \in x_2\}.$$

• The Transfinite Recursion Theorem: Let G be an operation; then there exists a unique operation F on the class of all the ordinals such that $F(\alpha) = G(F \upharpoonright \alpha)$ for all ordinals α .

• The Transfinite Recursion Theorem, Parametric Version:

Let G be an operation; then there exists a unique operation F on $V \times \text{On}$ such that $F(z, \alpha) = G(z, F \upharpoonright \alpha)$ for all ordinals α .

- Application 1: For every ordinal β , there exists a unique function $F_{\beta}: \operatorname{On} \to \operatorname{On}$ such that
 - (a) $F_{\beta}(0) = \beta;$
 - (b) $F_{\beta}(S(\alpha)) = S(F_{\beta}(\alpha))$ for all α .
 - (c) $F_{\beta}(\alpha) = \bigcup \{F_{\beta}(\gamma) | \gamma < \alpha\}$ for all non-zero limit α .
- Definition.

$$\beta + \alpha =_{\mathsf{df}} F_{\beta}(\alpha).$$

- Thus: for all $\alpha, \beta \in On$,
 - (a) $\beta + 0 = \beta$;
 - (b) $\beta + S(\alpha) = S(\beta + \alpha)$.
 - (c) $\beta + \alpha = \bigcup \{\beta + \gamma | \gamma < \alpha \}$ if α is a non-zero limit.

• Theorem: Let $(A, <_1)$ and $(B, <_2)$ be two disjoint well-ordered sets, isomorphic to ordinals α and β , respectively, and let < be a relation on $A \cup B$ defined by

$$a < b =_{\mathsf{df}} (a, b \in A \land a <_1 b)$$

 $\lor (a, b \in B \land a <_2 b)$
 $\lor (a \in A \land b \in B)$

Then $(A \cup B, <)$ is isomorphic to the ordinal $\alpha + \beta$.

• Thus: $1 + \omega = \omega$, but $\omega + 1 \neq \omega$.

• Theorem: Let $(A, <_1)$ and $(B, <_2)$ be two disjoint well-ordered sets, isomorphic to ordinals α and β , respectively, and let < be a relation on $A \cup B$ defined by

$$a < b =_{\mathrm{df}} (a, b \in A \land a <_1 b)$$

 $\lor (a, b \in B \land a <_2 b)$
 $\lor (a \in A \land b \in B)$

Then $(A \cup B, <)$ is isomorphic to the ordinal $\alpha + \beta$.

• Thus: $1 + \omega = \omega$, but $\omega + 1 \neq \omega$.

- Definition: for all $\alpha, \beta \in \text{On}$,
 - (a) $\beta \cdot 0 = 0$;
 - (b) $\beta \cdot S(\alpha) = \beta \cdot \alpha + \beta$.
 - (c) $\beta \cdot \alpha = \bigcup \{\beta \cdot \gamma | \gamma < \alpha \}$ if α is a non-zero limit.

• Theorem: Let $(A, <_1)$ and $(B, <_2)$ be two well-ordered sets, isomorphic to ordinals α and β , respectively, and let < be a relation on $B \times A$ defined by

$$(b_1, a_1) < (b_2, a_2) =_{\mathrm{df}} (b_1 <_2 b_2)$$

 $\lor (b_1 = b_2 \land a_1 <_1 a_2)$

Then $(B \times A, <)$ is isomorphic to the ordinal $\alpha \cdot \beta$.

• Thus: $2 \cdot \omega = \omega$, but $\omega \cdot 2 = \omega + \omega \neq \omega$.

• Theorem: Let $(A, <_1)$ and $(B, <_2)$ be two well-ordered sets, isomorphic to ordinals α and β , respectively, and let < be a relation on $B \times A$ defined by

$$(b_1, a_1) < (b_2, a_2) =_{\mathsf{df}} (b_1 <_2 b_2)$$

 $\lor (b_1 = b_2 \land a_1 <_1 a_2)$

Then $(B \times A, <)$ is isomorphic to the ordinal $\alpha \cdot \beta$.

• Thus: $2 \cdot \omega = \omega$, but $\omega \cdot 2 = \omega + \omega \neq \omega$.

- Definition: for all $\alpha, \beta \in On$,
 - (a) $\beta^0 = 1$;
 - (b) $\beta^{S(\alpha)} = \beta^{\alpha} \cdot \beta$.
 - (c) $\beta^{\alpha} = \bigcup \{\beta^{\gamma} | \gamma < \alpha \}$ if α is a non-zero limit.
- Thus: $2^{\omega} = \omega$, but $\omega^2 = \omega \cdot \omega \neq \omega$.

- Definition: for all $\alpha, \beta \in On$,
 - (a) $\beta^0 = 1$;
 - (b) $\beta^{S(\alpha)} = \beta^{\alpha} \cdot \beta$.
 - (c) $\beta^{\alpha} = \bigcup \{\beta^{\gamma} | \gamma < \alpha\}$ if α is a non-zero limit.
- Thus: $2^{\omega} = \omega$, but $\omega^2 = \omega \cdot \omega \neq \omega$.

Homework

• (P. 123) 5. 11

Thanks for your attention! Q & A