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@ Definition: An ordinal number « is called an initial ordinal (or a

cardinal) if it is not equipotent to any 5 < a.
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@ Definition: An ordinal number « is called an initial ordinal (or a

cardinal) if it is not equipotent to any 5 < a.

0 |wl=|lw+1ll=|w+wl =|w-w|.

@ w is a cardinal, but none of w + 1, w + w, w - W 1S S0.
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@ Definition: For any set A, let h(A) be the least ordinal number
which is not equipotent to any subset of A. h(A) is called the
Hartog’s number of A.
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@ Definition: For any set A, let h(A) be the least ordinal number
which is not equipotent to any subset of A. h(A) is called the
Hartog’s number of A.

e Fact: For any A, h(A), if exists, is a cardinal.
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e Lemma: For any A, h(A) exists.
Proof. Let B = {3||8| < |A|}.

Claim 1: B is a set.
Claim 2: h(A) = B.
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e Lemma: For any cardinal k, h(k) is the least cardinal that is

greater than .
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e Lemma: If A is a set of cardinals, | J A is also a cardinal, and it is

the least upper bound of A.
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@ Definition: Define w, by transfinite recursion on « by

Wp = Ww
Watl = h(wy)
Wa = U{wﬁ\ﬁ < a}, if « is a non-zero limit
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@ Definition: Define w, by transfinite recursion on « by

Wp = Ww
Watl = h(wy)
Wa = U{wﬁ\ﬁ < a}, if « is a non-zero limit

o Fact: Every w, is an infinite cardinal.
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@ Theorem: Every infinite cardinal is some wy,.
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@ Notation:

Noc =df Wa

To avoid confusion, we employ the convention of using the
w-symbolism when the ordinal operations are involved, and

the N-symbolism for the cardinal operations.

Hrbacek & Jech, 1999, p. 132.
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@ Notation:

Noc =df Wa

To avoid confusion, we employ the convention of using the
w-symbolism when the ordinal operations are involved, and

the N-symbolism for the cardinal operations.

Hrbacek & Jech, 1999, p. 132.

@ Wy +wy=uwp-2# wo; Ng+Ng=Ng:-2=1Ng

@ 20 = wy; 2% > No.
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o In the following, we always use x, A, i1, and so on to denote the

cardinals.

@ Definition:

K4+ A =ar |(k x {0}) U (X x {1})]
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o In the following, we always use x, A, i1, and so on to denote the

cardinals.

@ Definition:

K4+ A =ar |(k x {0}) U (X x {1})]

@ Precisely, x + A is the cardinal 1 which is equipotent to the set

(5 x {0}) U (A x {1}).

Ming Hsiung 13/19



Cardinals Cardinal Arithmetic

[e]e] lele]elele)

Fact:
@ K+tA=A+&

o Kkt (A+p) = (r+N)+p
o N, +n=2N,.
° Na“‘Nﬁ = Nmax(oz.ﬂ)'
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@ Definition:
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@ Theorem: N, - N, = N,
e Corollary: Ry - Rg = Nyor(a,8)-
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Homework

@ Proof: If o and 3 are at most countable ordinals then o + S is
also at most countable.

@ Show that the ordinal and cardinal additions n + m are equal.
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Thanks for your attention!
Q&A
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