Cardinals and Cardinal Arithmetic

Ming Hsiung mingshone@163.com

School of Philosophy and Social Development South China Normal University

Set Theory, Spring 2022

Outline

Cardinals

Cardinal Arithmetic

Outline

Cardinals

Cardinal Arithmetic

• Definition: An ordinal number α is called an **initial ordinal** (or a **cardinal**) if it is not equipotent to any $\beta < \alpha$.

•
$$|\omega| = |\omega + 1| = |\omega + \omega| = |\omega \cdot \omega|$$
.

• ω is a cardinal, but none of $\omega + 1$, $\omega + \omega$, $\omega \cdot \omega$ is so.

• Definition: An ordinal number α is called an **initial ordinal** (or a **cardinal**) if it is not equipotent to any $\beta < \alpha$.

•
$$|\omega| = |\omega + 1| = |\omega + \omega| = |\omega \cdot \omega|$$
.

• ω is a cardinal, but none of $\omega + 1$, $\omega + \omega$, $\omega \cdot \omega$ is so.

• Definition: An ordinal number α is called an **initial ordinal** (or a **cardinal**) if it is not equipotent to any $\beta < \alpha$.

•
$$|\omega| = |\omega + 1| = |\omega + \omega| = |\omega \cdot \omega|$$
.

• ω is a cardinal, but none of $\omega + 1$, $\omega + \omega$, $\omega \cdot \omega$ is so.

- Definition: For any set A, let h(A) be the least ordinal number which is not equipotent to any subset of A. h(A) is called the Hartog's number of A.
- Fact: For any A, h(A), if exists, is a cardinal.

- Definition: For any set A, let h(A) be the least ordinal number which is not equipotent to any subset of A. h(A) is called the Hartog's number of A.
- Fact: For any A, h(A), if exists, is a cardinal.

• Lemma: For any A, h(A) exists.

Proof. Let $B = \{\beta | |\beta| \le |A|\}.$

Claim 1: B is a set.

Claim 2: h(A) = B.

• Lemma: For any cardinal κ , $h(\kappa)$ is the least cardinal that is greater than κ .

• Lemma: If A is a set of cardinals, $\bigcup A$ is also a cardinal, and it is the least upper bound of A.

• Definition: Define ω_{α} by transfinite recursion on α by

$$\begin{array}{rcl} \omega_0 &=& \omega \\ \\ \omega_{\alpha+1} &=& h(\omega_\alpha) \\ \\ \omega_\alpha &=& \bigcup \{\omega_\beta | \beta < \alpha\}, \text{ if } \alpha \text{ is a non-zero limit} \end{array}$$

• Fact: Every ω_{α} is an infinite cardinal.

• Definition: Define ω_{α} by transfinite recursion on α by

$$\begin{array}{rcl} \omega_0 &=& \omega \\ \\ \omega_{\alpha+1} &=& h(\omega_\alpha) \\ \\ \omega_\alpha &=& \bigcup \{\omega_\beta | \beta < \alpha\}, \text{ if } \alpha \text{ is a non-zero limit} \end{array}$$

• Fact: Every ω_{α} is an infinite cardinal.

• Theorem: Every infinite cardinal is some ω_{α} .

$$\aleph_{\alpha} =_{\mathsf{df}} \omega_{\alpha}$$

To avoid confusion, we employ the convention of using the ω -symbolism when the ordinal operations are involved, and the \aleph -symbolism for the cardinal operations.

Hrbacek & Jech, 1999, p. 132

•
$$\omega_0 + \omega_0 = \omega_0 \cdot 2 \neq \omega_0$$
; $\aleph_0 + \aleph_0 = \aleph_0 \cdot 2 = \aleph_0$

•
$$2^{\omega_0} = \omega_0$$
; $2^{\aleph_0} > \aleph_0$.

$$\aleph_{\alpha} =_{\mathsf{df}} \omega_{\alpha}$$

To avoid confusion, we employ the convention of using the ω -symbolism when the ordinal operations are involved, and the \aleph -symbolism for the cardinal operations.

Hrbacek & Jech, 1999, p. 132.

•
$$\omega_0 + \omega_0 = \omega_0 \cdot 2 \neq \omega_0$$
; $\aleph_0 + \aleph_0 = \aleph_0 \cdot 2 = \aleph_0$

•
$$2^{\omega_0} = \omega_0; 2^{\aleph_0} > \aleph_0.$$

$$\aleph_{\alpha} =_{\mathsf{df}} \omega_{\alpha}$$

To avoid confusion, we employ the convention of using the ω -symbolism when the ordinal operations are involved, and the \aleph -symbolism for the cardinal operations.

Hrbacek & Jech, 1999, p. 132.

•
$$\omega_0 + \omega_0 = \omega_0 \cdot 2 \neq \omega_0$$
; $\aleph_0 + \aleph_0 = \aleph_0 \cdot 2 = \aleph_0$

•
$$2^{\omega_0} = \omega_0; 2^{\aleph_0} > \aleph_0.$$

$$\aleph_{\alpha} =_{\mathsf{df}} \omega_{\alpha}$$

To avoid confusion, we employ the convention of using the ω -symbolism when the ordinal operations are involved, and the \aleph -symbolism for the cardinal operations.

Hrbacek & Jech, 1999, p. 132.

•
$$\omega_0 + \omega_0 = \omega_0 \cdot 2 \neq \omega_0$$
; $\aleph_0 + \aleph_0 = \aleph_0 \cdot 2 = \aleph_0$

•
$$2^{\omega_0} = \omega_0$$
; $2^{\aleph_0} > \aleph_0$.

Outline

Cardinals

Cardinal Arithmetic

- In the following, we always use κ , λ , μ , and so on to denote the cardinals.
- Definition:

$$\kappa + \lambda =_{\mathrm{df}} |(\kappa \times \{0\}) \cup (\lambda \times \{1\})|$$

• Precisely, $\kappa + \lambda$ is the cardinal μ which is equipotent to the set $(\kappa \times \{0\}) \cup (\lambda \times \{1\})$.

- In the following, we always use κ , λ , μ , and so on to denote the cardinals.
- Definition:

$$\kappa + \lambda =_{\mathsf{df}} |(\kappa \times \{0\}) \cup (\lambda \times \{1\})|$$

• Precisely, $\kappa + \lambda$ is the cardinal μ which is equipotent to the set $(\kappa \times \{0\}) \cup (\lambda \times \{1\})$.

Fact:

$$\bullet \ \kappa + \lambda = \lambda + \kappa$$

•
$$\kappa + (\lambda + \mu) = (\kappa + \lambda) + \mu$$

$$\bullet \ \aleph_{\alpha} + n = \aleph_{\alpha}.$$

•
$$\aleph_{\alpha} + \aleph_{\beta} = \aleph_{\max(\alpha,\beta)}$$
.

• Definition:

$$\kappa \cdot \lambda =_{\mathrm{df}} |\kappa \times \lambda|$$

Fact:

$$\bullet \ \kappa \cdot \lambda = \lambda \cdot \kappa$$

$$\bullet \ \kappa \cdot (\lambda \cdot \mu) = (\kappa \cdot \lambda) \cdot \mu$$

$$\bullet \ \kappa \cdot (\lambda + \mu) = \kappa \cdot \lambda + \kappa \cdot \mu$$

$$\bullet \ \aleph_{\alpha} \cdot n = \aleph_{\alpha}.$$

- Theorem: $\aleph_{\alpha} \cdot \aleph_{\alpha} = \aleph_{\alpha}$
- Corollary: $\aleph_{\alpha} \cdot \aleph_{\beta} = \aleph_{\max(\alpha,\beta)}$.

Homework

- Proof: If α and β are at most countable ordinals then $\alpha + \beta$ is also at most countable.
- Show that the ordinal and cardinal additions n + m are equal.

Thanks for your attention! Q & A