Models and Relative Consistency

Ming Hsiung mingshone@163.com

School of Philosophy and Social Development South China Normal University

Set Theory, Spring 2022

Outline

• The Cumulative Hierarchy of Sets

Models of Set Theory

Outline

• The Cumulative Hierarchy of Sets

2 Models of Set Theory

$$\begin{array}{rcl} V_0 & = & 0; \\ V_{\alpha+1} & = & \mathscr{P}(V_\alpha); \\ V_\alpha & = & \bigcup_{\beta < \alpha} V_\beta, \text{ if } \alpha \text{ is a non-zero limit.} \end{array}$$

- Fact: If $x \in V_{\alpha}$ and $y \in x$ then $y \in V_{\beta}$ for some $\beta < \alpha$.
- Fact: For all α , V_{α} is a transitive set.
- Fact: $V_{\alpha} \subseteq V_{\alpha+1}$.
- Fact: If $\alpha < \beta$ then $V_{\alpha} \subseteq V_{\beta}$.

$$\begin{array}{rcl} V_0 & = & 0; \\ V_{\alpha+1} & = & \mathscr{P}(V_\alpha); \\ V_\alpha & = & \bigcup_{\beta < \alpha} V_\beta, \text{ if } \alpha \text{ is a non-zero limit.} \end{array}$$

- Fact: If $x \in V_{\alpha}$ and $y \in x$ then $y \in V_{\beta}$ for some $\beta < \alpha$.
- Fact: For all α , V_{α} is a transitive set.
- Fact: $V_{\alpha} \subseteq V_{\alpha+1}$.
- Fact: If $\alpha < \beta$ then $V_{\alpha} \subseteq V_{\beta}$.

$$\begin{array}{rcl} V_0 & = & 0; \\ V_{\alpha+1} & = & \mathscr{P}(V_\alpha); \\ V_\alpha & = & \bigcup_{\beta < \alpha} V_\beta, \text{ if } \alpha \text{ is a non-zero limit.} \end{array}$$

- Fact: If $x \in V_{\alpha}$ and $y \in x$ then $y \in V_{\beta}$ for some $\beta < \alpha$.
- Fact: For all α , V_{α} is a transitive set.
- Fact: $V_{\alpha} \subseteq V_{\alpha+1}$.
- Fact: If $\alpha < \beta$ then $V_{\alpha} \subseteq V_{\beta}$.

$$\begin{array}{rcl} V_0 & = & 0; \\ V_{\alpha+1} & = & \mathscr{P}(V_\alpha); \\ V_\alpha & = & \bigcup_{\beta < \alpha} V_\beta, \text{ if } \alpha \text{ is a non-zero limit.} \end{array}$$

- Fact: If $x \in V_{\alpha}$ and $y \in x$ then $y \in V_{\beta}$ for some $\beta < \alpha$.
- Fact: For all α , V_{α} is a transitive set.
- Fact: $V_{\alpha} \subseteq V_{\alpha+1}$.
- Fact: If $\alpha < \beta$ then $V_{\alpha} \subseteq V_{\beta}$.

$$\begin{array}{rcl} V_0 & = & 0; \\ V_{\alpha+1} & = & \mathscr{P}(V_\alpha); \\ V_\alpha & = & \bigcup_{\beta < \alpha} V_\beta, \text{ if } \alpha \text{ is a non-zero limit.} \end{array}$$

- Fact: If $x \in V_{\alpha}$ and $y \in x$ then $y \in V_{\beta}$ for some $\beta < \alpha$.
- Fact: For all α , V_{α} is a transitive set.
- Fact: $V_{\alpha} \subseteq V_{\alpha+1}$.
- Fact: If $\alpha < \beta$ then $V_{\alpha} \subseteq V_{\beta}$.

- Recall: A is well-founded by \in , if for any non-empty subset B of A, there exists an element x of B such that $x \cap B = \emptyset$.
- Theorem: for any set A, A is well-founded by \in , iff $A \in V_{\alpha}$ for some ordinal α .

- Recall: A is well-founded by \in , if for any non-empty subset B of A, there exists an element x of B such that $x \cap B = \emptyset$.
- Theorem: for any set A, A is well-founded by \in , iff $A \in V_{\alpha}$ for some ordinal α .

- The Axiom of Foundation: Every set is well-founded by \in .
- Equivalent, every set occurs in some level of the cumulative hierarchy V_{α} ($\alpha \in \text{On}$).
- Let WF denote $\bigcup_{\alpha \in \text{On}} V_{\alpha}$. The Axiom of Foundation is equivalent to

$$V = WF$$
.

- The Axiom of Foundation: Every set is well-founded by \in .
- Equivalent, every set occurs in some level of the cumulative hierarchy V_{α} ($\alpha \in \text{On}$).
- Let WF denote $\bigcup_{\alpha \in \text{On}} V_{\alpha}$. The Axiom of Foundation is equivalent to

$$V = WF$$
.

- The Axiom of Foundation: Every set is well-founded by \in .
- Equivalent, every set occurs in some level of the cumulative hierarchy V_{α} ($\alpha \in On$).
- Let WF denote $\bigcup_{\alpha \in On} V_{\alpha}$. The Axiom of Foundation is equivalent to

$$V = WF$$
.

0000

Outline

The Cumulative Hierarchy of Sets

Models of Set Theory

- Definition: For any formula φ and any class M we define φ^M , the relativization of φ to M, by:
 - $(x = y)^M$ is x = y.
 - $(x \in y)^M$ is $x \in y$.
 - $(\neg \varphi)^M$ is $\neg \varphi^M$.
 - $(\varphi * \psi)^M$ is $\varphi^M * \psi^M$, where $* \in \{ \land, \lor, \rightarrow, \leftrightarrow \}$
 - $(\forall x \varphi)^M$ is $\forall x (x \in M \to \varphi^M)$, that is, $\forall x (P(x) \to \varphi^M)$.
 - $(\exists x \varphi)^M$ is $\exists x (x \in M \land \varphi^M)$.

- Definition: Let T be a theory such as ZF, ZFC and so on. Let φ be a sentence, and M be a class.
 - If $T \vdash \varphi^M$, we say that relative to T, M is a (standard) **model** of φ , or φ is **true** in M.
 - We say that relative to T, M is a **model** of a set Σ of sentences, whenever M is a model of each sentence in Σ .
- Sometimes, we can use more suggestive notation $T \vdash `M \models \varphi'$ instead of $T \vdash \varphi^M$.

• Notation: ZF⁻ denotes the theory ZF minus the Axiom of Foundation.

• Recall: M is transitive, if

$$\forall x \in M (x \subseteq M).$$

• Lemma: Relative to ZF⁻, if M is transitive, then the Axiom of Extensionality is true in M.

Two equivalent statements:

- Lemma (ZF⁻): If M is transitive, then the Axiom of Extensionality is true in M.
- Lemma: Working in ZF⁻, we have: if M is transitive, then the Axiom of Extensionality is true in M.

• Recall: M is transitive, if

$$\forall x \in M(x \subseteq M).$$

• Lemma: Relative to ZF⁻, if M is transitive, then the Axiom of Extensionality is true in M.

Two equivalent statements:

- Lemma (ZF⁻): If M is transitive, then the Axiom of Extensionality is true in M.
- Lemma: Working in ZF⁻, we have: if M is transitive, then the Axiom of Extensionality is true in M.

• Recall: M is transitive, if

$$\forall x \in M (x \subseteq M).$$

 Lemma: Relative to ZF⁻, if M is transitive, then the Axiom of Extensionality is true in M.

Two equivalent statements:

- Lemma (ZF⁻): If M is transitive, then the Axiom of Extensionality is true in M.
- Lemma: Working in ZF⁻, we have: if M is transitive, then the Axiom of Extensionality is true in M.

 \bullet Definition: M is super-transitive, if

$$\forall x \in M \forall y (y \subseteq x \to y \in M).$$

 Lemma (ZF⁻): If M is super-transitive, then the Axiom schema of Comprehension is true in M. \bullet Definition: M is super-transitive, if

$$\forall x \in M \forall y (y \subseteq x \to y \in M).$$

• Lemma (ZF⁻): If M is super-transitive, then the Axiom schema of Comprehension is true in M.

• Lemma (ZF^-): If M satisfies

$$\forall x, y \in M \exists z \in M (x \in z \land y \in z),$$

then the Axiom of Pair is true in M.

• Lemma (
$$ZF^-$$
): If M satisfies

$$\forall x \in M \exists y \in M(\bigcup x \subseteq y),$$

then the Axiom of Union is true in M.

• Lemma (ZF^-): If M satisfies

$$\forall x \in M \exists y \in M(\mathscr{P}(x) \cap M \subseteq y),$$

then the Axiom of Power Set is true in M.

A Typical Relative Consistency Theorem

• Lemma (ZF⁻): If M satisfies the following condition: for any formula $\varphi(x,y)$,

$$\forall x \in A \exists ! y \in M \varphi^{M}(x, y)$$

$$\rightarrow \exists x \in M \left(\left\{ y | \exists x \in A \varphi^{M}(x, y) \right\} \subseteq y \right),$$

then the Axiom Schema of Replacement is true in M.

• Lemma (ZF⁻): If $\omega \in M$, then the Axiom of Infinity is true in M.

• Lemma (ZF⁻): If $M \subseteq WF$, then the Axiom of Foundation is true in M.

Outline

• The Cumulative Hierarchy of Sets

Models of Set Theory

• Lemma: For any sentence ψ (of \mathcal{L}_S) and any class M, if $\vdash \psi$, then

$$\vdash \exists x (x \in M) \to \psi^M.$$

Note: About the axiom schema $\forall x \varphi(x) \to \varphi(y/x)$, we should consider its universal closure

$$\forall y (\forall x \varphi(x) \to \varphi(y/x)).$$

• Lemma: For any sentence ψ (of \mathcal{L}_S) and any class M, if $\vdash \psi$, then

$$\vdash \exists x (x \in M) \to \psi^M$$
.

Note: About the axiom schema $\forall x \varphi(x) \to \varphi(y/x)$, we should consider its universal closure

$$\forall y (\forall x \varphi(x) \to \varphi(y/x)).$$

• Lemma: If $\varphi_1, \varphi_2, ..., \varphi_n, \psi$ are sentences, and $\varphi_1, \varphi_2, ..., \varphi_n \vdash \psi$, then for any class M,

$$\vdash (\exists x (x \in M) \land \varphi_1^M \land \varphi_2^M \dots \land \varphi_n^M) \to \psi^M.$$

• Theorem: Let T_0 and T_1 be two theories in the language \mathcal{L}_S , and suppose the we can find a class M such that relative to T_0 , M is a model of T_1 . Then the consistency of T_0 implies that of T_1 .

model of ZF

- Theorem: If ZF⁻ is consistent, so is ZF.

 Proof. If suffices to verify that relative to ZF⁻, the class WF is a
 - The Axiom of Extensionality
 - The Axiom Schema of Comprehension
 - The Axiom of Pair
 - The Axiom of Union
 - The Axiom of Power Set
 - The Axiom of Infinity
 - The Axiom Schema of Replacement
 - The Axiom of Foundation

Homework

- Working in ZF, for each of the axioms (axiom schemata) in ZF, determine whether it is true in the set V_{ω} .
- Which consistency result can you get from your answer to the above question?

Thanks for your attention! Q & A