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@ Definition: Let A and B be two sets. Define
AB =4 {f|f: A— B}

@ Note: In the text (p. 26), the corresponding notation is B4,
which may be confused with the exponentiation operation.
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[e]e] lele]elele)

@ Question: Is there any question if we define

o =df |)"f|

@ Recall: we define

IQX/\:df‘K:XM

This is well-defined: the lexicographic ordering is an apparent
well-ordering for the set x x A, and so there is at least an ordinal

equipotent to K X .
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@ Question: Is there any well-ordering for
“2

@ Question: Is there any well-ordering for the set R?
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o The Well-ordering Principle (WO): Every set can be
well-ordered.

An attempt of proof.
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@ The Axiom of Choice (AC): For every set A, there exists a
function f on A such that for every nonempty = € A, f(x) € x.
The function f is called a choice function of A.

o ZF F (AC) « (WO).
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The Axiom of Choice is obviously true, the Well - Ordering
Principle is obviously false; and who can tell about Zorn's

Lemma.

J. L. Bona
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@ Zorn’s Lemma (ZL): If every chain in a partially ordered set
has an upper bound, then the partially ordered set has a maximal

element.

o ZF I (AC) + (ZL).
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@ Recall: A relation R on A is well-founded, if for every
nonempty subset B of A, there exists a R-minimal element of B,
i.e., an element x € B such that y Rz fails for any y € B.
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@ Recall: A relation R on A is well-founded, if for every
nonempty subset B of A, there exists a R-minimal element of B,
i.e., an element x € B such that y Rx fails for any y € B.

@ Fact: A relation R on A is well-founded, iff no elements xq, 1,
..., of A can form a decreasing chain, that is, 1 Rz, xo Rx1, ....
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@ Recall: A relation R on A is well-founded, if for every
nonempty subset B of A, there exists a R-minimal element of B,
i.e., an element x € B such that y Rx fails for any y € B.

@ Fact: A relation R on A is well-founded, iff no elements xq, 1,
..., of A can form a decreasing chain, that is, 1 Rz, xo Rx1, ....
Proof. The < side needs to employ the Axiom of Choice (AC).
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@ The Principle of Dependent Choices (DC): If R is a binary
relation on a non-empty set A such that for every = € A there
exists y € A, then there exists a sequence of elements in A, zg,

z1, ..., such that x,, Rx,,; forall n € N.

o ZF I (AC) — (DO).
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@ Theorem (AC): The union of a countable collection of countable

sets is countable.
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@ Theorem (AC): The union of a countable collection of countable

sets is countable.

o Compare: |,y N" is a countable set.
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@ The Axiom of Countable Choice) (CC): Every countable set
has a choice function.

o ZF - (DC) — (CC).
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@ Theorem (AC): For every set A, there exists a (unique) cardinal
k such that |A| = |k|.
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@ Theorem (AC): For every set A, there exists a (unique) cardinal
k such that |A| = |k|.

@ Usually, we use |A| to denote the cardinal such that |A| = ||
Thus, |A| = |k| = k.

@ Corollary (AC): The sizes (cardinals) of any two sets are
comparable.
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@ Hausdorff’s Formula:

Ng Ng
R A1 =N Ry
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Homework

@ Prove: for any sets A and B, |A| < | B, iff there exists a
function f from A onto B.
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Thanks for your attention!
Q&A
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