Language for Propositional Logic #### Ming Hsiung School of Philosophy and Social Development South China Normal University ### **Contents** - Formulas of Propositional Logic - Proof by Induction - Openition by Recursion - 4 Valuations #### **Contents** - Formulas of Propositional Logic - Proof by Induction - 3 Definition by Recursion - Valuations ## The language of propositional logic The language of propositional logic: - the alphabet - the formation rules ## The language of propositional logic The language of propositional logic: - the alphabet - the formation rules ## The alphabet The alphabet of the propositional logic language consists of - proposition symbols: p_0 , p_1 , p_2 ,... - connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot - auxiliary symbols:), (. ## The alphabet The alphabet of the propositional logic language consists of - proposition symbols: p_0 , p_1 , p_2 ,... - connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot - auxiliary symbols:), (. ## The alphabet The alphabet of the propositional logic language consists of - proposition symbols: p_0 , p_1 , p_2 ,... - connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot - auxiliary symbols:), (. - \bullet proposition symbols are formulas, and \bot is a formula. (atomic formulas) - if φ is a formula, so is $(\neg \varphi)$. - if φ and ψ are formulas, so are $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$. - only the sequence of symbols obtained by the above rules are the formulas. - \bullet proposition symbols are formulas, and \bot is a formula. (atomic formulas) - if φ is a formula, so is $(\neg \varphi)$. - if φ and ψ are formulas, so are $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$. - only the sequence of symbols obtained by the above rules are the formulas. - \bullet proposition symbols are formulas, and \bot is a formula. (atomic formulas) - if φ is a formula, so is $(\neg \varphi)$. - if φ and ψ are formulas, so are $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$. - only the sequence of symbols obtained by the above rules are the formulas. - ullet proposition symbols are formulas, and ot is a formula. (atomic formulas) - if φ is a formula, so is $(\neg \varphi)$. - if φ and ψ are formulas, so are $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$. - only the sequence of symbols obtained by the above rules are the formulas. ### **Contents** - Formulas of Propositional Logic - Proof by Induction - Openition by Recursion - Valuations ## **Induction Principle** If we can prove - all atomic formulas have a property P; - whenever a formula φ has the property P, $(\neg \varphi)$ does so; - whenever formulas φ and ψ have the property P, $(\varphi \land \psi), (\varphi \lor \psi), (\varphi \to \psi), (\varphi \leftrightarrow \psi)$ do so, then we conclude that all formulas have the property P. • Prove: Each formula has an even number of brackets. ### **Contents** - Formulas of Propositional Logic - Proof by Induction - Openition by Recursion - 4 Valuations ## **Recursion principle** Theorem 2.1.6 (p. 10) The number of brackets of a formula can be defined as follows The number of connectives of a formula can be defined as follows The set of subformulas of a formula can be defined as follows ## **Contents** - Formulas of Propositional Logic - Proof by Induction - Openition by Recursion - 4 Valuations #### **Definition of valuation** A **valuation** for PL is a function v from the set of formulas to the set $\{0,1\}$, satisfying the following conditions: for any formulas φ and ψ , - $v(\bot) = 0$. - $v(\neg \varphi) = 1$, iff $v(\varphi) = 0$. - $v(\varphi \wedge \psi) = 1$, iff $v(\varphi) = 1$, $v(\psi) = 1$. - $v(\varphi \lor \psi) = 0$, iff $v(\varphi) = 0$, $v(\psi) = 0$. - $\bullet \ v(\varphi \to \psi) = 0 \text{, iff } v(\varphi) = 1 \text{,} \ \ v(\psi) = 0 \text{.}$ - $\bullet \ v(\varphi \leftrightarrow \psi) = 0 \text{, iff } v(\varphi) = v(\psi) \circ$ - $v(\varphi)$ is also called the truth/Boolean value of φ under the valuation v. #### **Definition of valuation** A **valuation** for PL is a function v from the set of formulas to the set $\{0,1\}$, satisfying the following conditions: for any formulas φ and ψ , - $v(\bot) = 0$. - $v(\neg \varphi) = 1$, iff $v(\varphi) = 0$. - $v(\varphi \wedge \psi) = 1$, iff $v(\varphi) = 1$, $v(\psi) = 1$. - $v(\varphi \lor \psi) = 0$, iff $v(\varphi) = 0$, $v(\psi) = 0$. - $\bullet \ v(\varphi \to \psi) = 0 \text{, iff } v(\varphi) = 1 \text{,} \ \ v(\psi) = 0 \text{.}$ - $\bullet \ v(\varphi \leftrightarrow \psi) = 0 \text{, iff } v(\varphi) = v(\psi) \text{.}$ $v(\varphi)$ is also called the truth/Boolean value of φ under the valuation v. ## **Basic Truth Table** | φ | $ \psi $ | $\neg \varphi$ | $\varphi \lor \psi$ | $\varphi \wedge \psi$ | $\varphi \to \psi$ | $\varphi \leftrightarrow \psi$ | |-----------|----------|----------------|---------------------|-----------------------|--------------------|--------------------------------| | 1 | 1 | 0 | 1 | 1 | 1 | 1 | | 1 | 0 | | 1 | 0 | 0 | 0 | | 0 | 1 | 1 | 1 | 0 | 1 | 0 | | 0 | 0 | | 0 | 0 | 1 | 1 | • Prove: If $v(p_i) = v'(p_i)$ for all p_i occurring in φ , then $v(\varphi) = v'(\varphi)$. #### **Fact** Any assignment σ (that is, a function from the set of variables to $\{0,1\}$) can be extended uniquely to be a valuation v such that $v(p_i)=\sigma(p_i)$. Notation. $[\cdot]_{\sigma}$: the (unique) valuation induced from the assignment σ . #### **Fact** Any assignment σ (that is, a function from the set of variables to $\{0,1\}$) can be extended uniquely to be a valuation v such that $v(p_i)=\sigma(p_i)$. Notation. $[\cdot]_{\sigma}$: the (unique) valuation induced from the assignment σ . ### Some notions - $\models \varphi$ (φ is a tautology): for any valuation $v, v(\varphi) = 1$; or equivalently, for any assignment $\sigma, [\varphi]_{\sigma} = 1$ - $\varphi \iff \psi$ (φ is logically equivalent to ψ): $\models \varphi \leftrightarrow \psi$. Or equivalently, for any valuation $v, v(\varphi) = v(\psi)$ - Let Σ be a set of formulas. $\Sigma \models \varphi$ (φ is a (semantic) consequence of Σ), if $v(\varphi) = 1$ holds for any valuation v such that for any $\psi \in \Sigma$, $v(\psi) = 1$. ### Some notions - $\models \varphi$ (φ is a tautology): for any valuation $v, v(\varphi) = 1$; or equivalently, for any assignment $\sigma, [\varphi]_{\sigma} = 1$ - $\varphi \iff \psi$ (φ is logically equivalent to ψ): $\models \varphi \leftrightarrow \psi$. Or equivalently, for any valuation v, $v(\varphi) = v(\psi)$ - Let Σ be a set of formulas. $\Sigma \models \varphi$ (φ is a (semantic) consequence of Σ), if $v(\varphi) = 1$ holds for any valuation v such that for any $\psi \in \Sigma$, $v(\psi) = 1$. #### Some notions - $\models \varphi$ (φ is a tautology): for any valuation v, $v(\varphi) = 1$; or equivalently, for any assignment σ , $[\varphi]_{\sigma} = 1$ - $\varphi \iff \psi$ (φ is logically equivalent to ψ): $\models \varphi \leftrightarrow \psi$. Or equivalently, for any valuation $v, v(\varphi) = v(\psi)$ - Let Σ be a set of formulas. $\Sigma \models \varphi$ (φ is a (semantic) consequence of Σ), if $v(\varphi) = 1$ holds for any valuation v such that for any $\psi \in \Sigma$, $v(\psi) = 1$. ## **Facts** - $\bullet \neg (\varphi \land \psi) \iff \neg \varphi \lor \neg \psi$ - $\bullet \neg (\varphi \lor \psi) \iff \neg \varphi \land \neg \psi$ - $\bullet \neg \varphi \iff \varphi \rightarrow \bot$ - ... - $\varphi, \varphi \to \psi \models \psi$ (that is, $\{\varphi, \varphi \to \psi\} \models \psi$) - $\Sigma \cup \{\varphi\} \models \psi$, iff $\Sigma \models \varphi \rightarrow \psi$. - ... Please refer to D. Van Dalen's textbook for more similar facts. # Thanks for your attention! Q & A ## Supplementary exercise 1 Let X be the smallest set with the properties - $p_i \in X$, and $\bot \in X$. - if $\varphi \in X$, then $(\neg \varphi) \in X$. - $\bullet \ \ \text{if} \ \varphi,\psi \in X \text{, then } (\varphi \wedge \psi), (\varphi \vee \psi), (\varphi \rightarrow \psi), (\varphi \leftrightarrow \psi) \in X.$ Prove: Every formula is in X. ## **Supplementary exercise 2** Let X be as above, and let Y be the set of all formulas. - ullet Try to give a set-theoretical representation of Y. - Prove: Every member of Y is in X.