Language for Propositional Logic

Ming Hsiung

School of Philosophy and Social Development South China Normal University

Contents

- Formulas of Propositional Logic
- Proof by Induction
- Openition by Recursion
- 4 Valuations

Contents

- Formulas of Propositional Logic
- Proof by Induction
- 3 Definition by Recursion
- Valuations

The language of propositional logic

The language of propositional logic:

- the alphabet
- the formation rules

The language of propositional logic

The language of propositional logic:

- the alphabet
- the formation rules

The alphabet

The alphabet of the propositional logic language consists of

- proposition symbols: p_0 , p_1 , p_2 ,...
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- auxiliary symbols:), (.

The alphabet

The alphabet of the propositional logic language consists of

- proposition symbols: p_0 , p_1 , p_2 ,...
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- auxiliary symbols:), (.

The alphabet

The alphabet of the propositional logic language consists of

- proposition symbols: p_0 , p_1 , p_2 ,...
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- auxiliary symbols:), (.

- \bullet proposition symbols are formulas, and \bot is a formula. (atomic formulas)
- if φ is a formula, so is $(\neg \varphi)$.
- if φ and ψ are formulas, so are $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$.
- only the sequence of symbols obtained by the above rules are the formulas.

- \bullet proposition symbols are formulas, and \bot is a formula. (atomic formulas)
- if φ is a formula, so is $(\neg \varphi)$.
- if φ and ψ are formulas, so are $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$.
- only the sequence of symbols obtained by the above rules are the formulas.

- \bullet proposition symbols are formulas, and \bot is a formula. (atomic formulas)
- if φ is a formula, so is $(\neg \varphi)$.
- if φ and ψ are formulas, so are $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$.
- only the sequence of symbols obtained by the above rules are the formulas.

- ullet proposition symbols are formulas, and ot is a formula. (atomic formulas)
- if φ is a formula, so is $(\neg \varphi)$.
- if φ and ψ are formulas, so are $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$.
- only the sequence of symbols obtained by the above rules are the formulas.

Contents

- Formulas of Propositional Logic
- Proof by Induction
- Openition by Recursion
- Valuations

Induction Principle

If we can prove

- all atomic formulas have a property P;
- whenever a formula φ has the property P, $(\neg \varphi)$ does so;
- whenever formulas φ and ψ have the property P, $(\varphi \land \psi), (\varphi \lor \psi), (\varphi \to \psi), (\varphi \leftrightarrow \psi)$ do so,

then we conclude that all formulas have the property P.

• Prove: Each formula has an even number of brackets.

Contents

- Formulas of Propositional Logic
- Proof by Induction
- Openition by Recursion
- 4 Valuations

Recursion principle

Theorem 2.1.6 (p. 10)

The number of brackets of a formula can be defined as follows

The number of connectives of a formula can be defined as follows

The set of subformulas of a formula can be defined as follows

Contents

- Formulas of Propositional Logic
- Proof by Induction
- Openition by Recursion
- 4 Valuations

Definition of valuation

A **valuation** for PL is a function v from the set of formulas to the set $\{0,1\}$, satisfying the following conditions: for any formulas φ and ψ ,

- $v(\bot) = 0$.
- $v(\neg \varphi) = 1$, iff $v(\varphi) = 0$.
- $v(\varphi \wedge \psi) = 1$, iff $v(\varphi) = 1$, $v(\psi) = 1$.
- $v(\varphi \lor \psi) = 0$, iff $v(\varphi) = 0$, $v(\psi) = 0$.
- $\bullet \ v(\varphi \to \psi) = 0 \text{, iff } v(\varphi) = 1 \text{,} \ \ v(\psi) = 0 \text{.}$
- $\bullet \ v(\varphi \leftrightarrow \psi) = 0 \text{, iff } v(\varphi) = v(\psi) \circ$
- $v(\varphi)$ is also called the truth/Boolean value of φ under the valuation v.

Definition of valuation

A **valuation** for PL is a function v from the set of formulas to the set $\{0,1\}$, satisfying the following conditions: for any formulas φ and ψ ,

- $v(\bot) = 0$.
- $v(\neg \varphi) = 1$, iff $v(\varphi) = 0$.
- $v(\varphi \wedge \psi) = 1$, iff $v(\varphi) = 1$, $v(\psi) = 1$.
- $v(\varphi \lor \psi) = 0$, iff $v(\varphi) = 0$, $v(\psi) = 0$.
- $\bullet \ v(\varphi \to \psi) = 0 \text{, iff } v(\varphi) = 1 \text{,} \ \ v(\psi) = 0 \text{.}$
- $\bullet \ v(\varphi \leftrightarrow \psi) = 0 \text{, iff } v(\varphi) = v(\psi) \text{.}$

 $v(\varphi)$ is also called the truth/Boolean value of φ under the valuation v.

Basic Truth Table

φ	$ \psi $	$\neg \varphi$	$\varphi \lor \psi$	$\varphi \wedge \psi$	$\varphi \to \psi$	$\varphi \leftrightarrow \psi$
1	1	0	1	1	1	1
1	0		1	0	0	0
0	1	1	1	0	1	0
0	0		0	0	1	1

• Prove: If $v(p_i) = v'(p_i)$ for all p_i occurring in φ , then $v(\varphi) = v'(\varphi)$.

Fact

Any assignment σ (that is, a function from the set of variables to $\{0,1\}$) can be extended uniquely to be a valuation v such that $v(p_i)=\sigma(p_i)$.

Notation. $[\cdot]_{\sigma}$: the (unique) valuation induced from the assignment σ .

Fact

Any assignment σ (that is, a function from the set of variables to $\{0,1\}$) can be extended uniquely to be a valuation v such that $v(p_i)=\sigma(p_i)$.

Notation. $[\cdot]_{\sigma}$: the (unique) valuation induced from the assignment σ .

Some notions

- $\models \varphi$ (φ is a tautology): for any valuation $v, v(\varphi) = 1$; or equivalently, for any assignment $\sigma, [\varphi]_{\sigma} = 1$
- $\varphi \iff \psi$ (φ is logically equivalent to ψ): $\models \varphi \leftrightarrow \psi$. Or equivalently, for any valuation $v, v(\varphi) = v(\psi)$
- Let Σ be a set of formulas. $\Sigma \models \varphi$ (φ is a (semantic) consequence of Σ), if $v(\varphi) = 1$ holds for any valuation v such that for any $\psi \in \Sigma$, $v(\psi) = 1$.

Some notions

- $\models \varphi$ (φ is a tautology): for any valuation $v, v(\varphi) = 1$; or equivalently, for any assignment $\sigma, [\varphi]_{\sigma} = 1$
- $\varphi \iff \psi$ (φ is logically equivalent to ψ): $\models \varphi \leftrightarrow \psi$. Or equivalently, for any valuation v, $v(\varphi) = v(\psi)$
- Let Σ be a set of formulas. $\Sigma \models \varphi$ (φ is a (semantic) consequence of Σ), if $v(\varphi) = 1$ holds for any valuation v such that for any $\psi \in \Sigma$, $v(\psi) = 1$.

Some notions

- $\models \varphi$ (φ is a tautology): for any valuation v, $v(\varphi) = 1$; or equivalently, for any assignment σ , $[\varphi]_{\sigma} = 1$
- $\varphi \iff \psi$ (φ is logically equivalent to ψ): $\models \varphi \leftrightarrow \psi$. Or equivalently, for any valuation $v, v(\varphi) = v(\psi)$
- Let Σ be a set of formulas. $\Sigma \models \varphi$ (φ is a (semantic) consequence of Σ), if $v(\varphi) = 1$ holds for any valuation v such that for any $\psi \in \Sigma$, $v(\psi) = 1$.

Facts

- $\bullet \neg (\varphi \land \psi) \iff \neg \varphi \lor \neg \psi$
- $\bullet \neg (\varphi \lor \psi) \iff \neg \varphi \land \neg \psi$
- $\bullet \neg \varphi \iff \varphi \rightarrow \bot$
- ...
- $\varphi, \varphi \to \psi \models \psi$ (that is, $\{\varphi, \varphi \to \psi\} \models \psi$)
- $\Sigma \cup \{\varphi\} \models \psi$, iff $\Sigma \models \varphi \rightarrow \psi$.
- ...

Please refer to D. Van Dalen's textbook for more similar facts.

Thanks for your attention! Q & A

Supplementary exercise 1

Let X be the smallest set with the properties

- $p_i \in X$, and $\bot \in X$.
- if $\varphi \in X$, then $(\neg \varphi) \in X$.
- $\bullet \ \ \text{if} \ \varphi,\psi \in X \text{, then } (\varphi \wedge \psi), (\varphi \vee \psi), (\varphi \rightarrow \psi), (\varphi \leftrightarrow \psi) \in X.$

Prove: Every formula is in X.

Supplementary exercise 2

Let X be as above, and let Y be the set of all formulas.

- ullet Try to give a set-theoretical representation of Y.
- Prove: Every member of Y is in X.