Boolean Functions and Formulas

Ming Hsiung

School of Philosophy and Social Development South China Normal University

Contents

- From a formula to a truth table
- From a truth table to a formula
- What is a truth table?
- Main result

Contents

- From a formula to a truth table
- From a truth table to a formula
- What is a truth table?
- Main result

Recall

φ	$ \psi $	$\neg \varphi$	$\varphi \lor \psi$	$\varphi \wedge \psi$	$\varphi \to \psi$	$\varphi \leftrightarrow \psi$
1	1	0	1	1	1	1
1	0		1	0	0	0
0	1	1	1	0	1	0
0	0		0	0	1	1

p_1	p_2	$(p_1 \vee \neg p_2) \to (p_1 \wedge \neg p_2)$
1	1	
1	0	
0	1	
0	0	

p_1	p_2	$\neg p_2$	$p_1 \vee \neg p_2$	$p_1 \wedge \neg p_2$	$(p_1 \vee \neg p_2) \to (p_1 \wedge \neg p_2)$
1	1	0	1	0	0
1	0	1	1	1	1
0	1	0	0	0	1
0	0	1	1	0	0

p_1	p_2	$\neg p_2$	$p_1 \vee \neg p_2$	$p_1 \wedge \neg p_2$	$(p_1 \vee \neg p_2) \to (p_1 \wedge \neg p_2)$
1	1	0	1	0	0
1	0	1	1	1	1
0	1	0	0	0	1
0	0	1	1	0	0

p_1	p_2	$\neg p_2$	$p_1 \vee \neg p_2$	$p_1 \wedge \neg p_2$	$(p_1 \vee \neg p_2) \to (p_1 \wedge \neg p_2)$
1	1	0	1	0	0
1	0	1	1	1	1
0	1	0	0	0	1
0	0	1	1	0	0

p_1	p_2	$\neg p_2$	$p_1 \vee \neg p_2$	$p_1 \wedge \neg p_2$	$(p_1 \vee \neg p_2) \to (p_1 \wedge \neg p_2)$
1	1	0	1	0	0
1	0	1	1	1	1
0	1	0	0	0	1
0	0	1	1	0	0

p_1	p_2	$\neg p_2$	$p_1 \vee \neg p_2$	$p_1 \wedge \neg p_2$	$(p_1 \vee \neg p_2) \to (p_1 \wedge \neg p_2)$
1	1	0	1	0	0
1	0	1	1	1	1
0	1	0	0	0	1
0	0	1	1	0	0

Contents

- From a formula to a truth table
- From a truth table to a formula
- What is a truth table?
- Main result

ullet Find a formula φ , such that its corresponding truth table is

p	q	φ
1	1	0
1	0	1
0	1	1
0	0	0

Solution

p	q	φ
1	1	0
1	0	1
0	1	1
0	0	0

p	q	φ_1
1	1	0
1	0	1
0	1	0
0	0	0

p	q	φ_2
1	1	0
1	0	0
0	1	1
0	0	0

p	q	φ
1	1	0
1	0	1
0	1	1
0	0	0

$$\varphi \iff \varphi_1 \vee \varphi_2$$

p	q	φ_1
1	1	0
1	0	1
0	1	0
0	0	0

p	q	φ_2
1	1	0
1	0	0
0	1	1
0	0	0

p	q	φ
1	1	0
1	0	1
0	1	1
0	0	0

$$\varphi \iff \varphi_1 \vee \varphi_2$$

p	q	φ_1
1	1	0
1	0	1
0	1	0
0	0	0

$$\varphi_1 \iff p \land \neg q$$

p	q	$ \varphi_2 $
1	1	0
1	0	0
0	1	1
0	0	0

 $\varphi_2 \iff \dots$

p	q	φ
1	1	0
1	0	1
0	1	1
0	0	0

$$\varphi \iff \varphi_1 \vee \varphi_2$$

p	q	φ_1
1	1	0
1	0	1
0	1	0
0	0	0

$$\varphi_1 \iff p \land \neg q$$

p	q	φ_2
1	1	0
1	0	0
0	1	1
0	0	0

$$\varphi_2 \iff \neg p \land q$$

Quiz

ullet Find a formula φ , such that its corresponding truth table is

p	q	r	φ
1	1	1	1
1	1	0	0
1	0	1	1
1	0	0	1
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	1

A procedure from a truth table to a formula

Click: A procedure from a truth table to a formula

Contents

- From a formula to a truth table
- 2 From a truth table to a formula
- What is a truth table?
- Main result

A truth table is essentially a Boolean function!

Boolean function

An n-ary Boolean function is a function from the set of $\{0,1\}^n$ to $\{0,1\}.$

- Every Boolean function is a finite function in the sense that its domain is finite.
- As usual, every Boolean function can be fixed by a table (called truth table).

Boolean function

An n-ary Boolean function is a function from the set of $\{0,1\}^n$ to $\{0,1\}.$

- Every Boolean function is a finite function in the sense that its domain is finite.
- As usual, every Boolean function can be fixed by a table (called truth table).

Boolean function

An n-ary Boolean function is a function from the set of $\{0,1\}^n$ to $\{0,1\}.$

- Every Boolean function is a finite function in the sense that its domain is finite.
- As usual, every Boolean function can be fixed by a table (called truth table).

unitary Boolean functions

There are altogether four unitary Boolean functions. We give them by the corresponding tables:

	$f_1(p)$
1	1
	1
	$f_3(p)$
1	
0	1

	$f_2(p)$
1	1
	$f_4(p)$
1	

unitary Boolean functions

There are altogether four unitary Boolean functions. We give them by the corresponding tables:

p	$f_1(p)$
1	1
0	1

p	$f_3(p)$
1	0
0	1

p	$f_2(p)$
1	1
0	0

p	$f_4(p)$
1	0
0	0

An example of binary Boolean functions

p_1	p_2	$f(p_1, p_2)$
1	1	0
1	0	1
0	1	1
0	0	0

Fact

For any $n \ge 1$, there are exactly 2^{2^n} n-ary Boolean functions.

Contents

- From a formula to a truth table
- 2 From a truth table to a formula
- What is a truth table?
- Main result

Any Boolean function can be represented by a formula in the following sense.

Theorem

For any n-ary Boolean function f, there exists a formula φ containing only variables $p_1, ..., p_n$, and connectives \neg , \wedge , and \vee , such that for any assignment σ ,

$$[\varphi]_{\sigma} = f(\sigma(p_1), \ldots, \sigma(p_n)).$$

Some notions

- A literal is a variable or the negation of a variable.
- A formula is in conjunctive normal form (CNT) if it is a conjunction consisting of one or more conjuncts, each of which is a disjunction of one or more literals.
- A formula is in disjunctive normal form (DNT) if it is a disjunction consisting of one or more disjuncts, each of which is a conjunction of one or more literals.

Some notions

- A literal is a variable or the negation of a variable.
- A formula is in conjunctive normal form (CNT) if it is a conjunction consisting of one or more conjuncts, each of which is a disjunction of one or more literals.
- A formula is in disjunctive normal form (DNT) if it is a disjunction consisting of one or more disjuncts, each of which is a conjunction of one or more literals.

Some notions

- A literal is a variable or the negation of a variable.
- A formula is in conjunctive normal form (CNT) if it is a conjunction consisting of one or more conjuncts, each of which is a disjunction of one or more literals.
- A formula is in disjunctive normal form (DNT) if it is a disjunction consisting of one or more disjuncts, each of which is a conjunction of one or more literals.

- \bullet $p_1 \lor \neg p_2 \lor p_3$.
- \bullet $p_1 \wedge \neg p_2 \wedge p_3$.
- $\bullet (p_1 \wedge \neg p_2) \vee p_3.$

- $\bullet \ p_1 \vee \neg p_2 \vee p_3.$
- $p_1 \wedge \neg p_2 \wedge p_3$.
- $\bullet (p_1 \wedge \neg p_2) \vee p_3.$

- $\bullet \ p_1 \vee \neg p_2 \vee p_3.$
- $p_1 \wedge \neg p_2 \wedge p_3$.
- $\bullet \ (p_1 \land \neg p_2) \lor p_3.$

- $\bullet \ p_1 \vee \neg p_2 \vee p_3.$
- $p_1 \wedge \neg p_2 \wedge p_3$.
- $\bullet \ (p_1 \land \neg p_2) \lor p_3.$

- \bullet $p_1 \lor \neg p_2 \lor p_3$.
- $p_1 \wedge \neg p_2 \wedge p_3$.
- $\bullet \ (p_1 \land \neg p_2) \lor p_3.$
- $\bullet \ (p_1 \land \neg p_2 \land p_3) \lor (\neg p_4 \land p_5) \lor \neg p_3$

Corollary

For any formula φ , we can find a formula φ^\wedge in CNF and a formula φ^\vee in DNF such that

$$\varphi \iff \varphi^{\wedge},$$

and

$$\varphi \iff \varphi^{\vee}.$$

Thanks for your attention! Q & A