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@ This is a formal deduction (derivation), which shows that from ¢,
¥, and p A ) — o, we can deduce o.
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@ This is a formal deduction (derivation), which shows that from ¢,
¥, and p A ) — o, we can deduce o.

@ Notation: {x,¢¥,p A = o} F 0o,
or briefly, p, v, o AN = o F 0.

7135



@ Y J
eNY OANY— o
%

8/35



® Y
AP

Al YAy =0
= —E

@ This is actually a derivation schema. One of its instances in
propositional logic is as follows:

prg N PAG—T J
%
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= —E

@ This is actually a derivation schema. One of its instances in
propositional logic is as follows:

prg N PAG—T
= —E

@ We will always say the top one is a derivation, even we know it is
a schema.
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@ In the textbook, —¢ is a defined expression for ¢ — L.

@ Thus, the above derivation also shows - ¢ — ——p.

[0]? [p— L] ]2 o]t

— 1

o= ((p—>1) > 1) DI
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@ Definition of derivation
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All derivations that we have given have
the form of trees.
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Derivation

@ A one-element tree ¢ is a derivation, whose hypothesis and
conclusion are both .

M
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Derivation

@ A one-element tree ¢ is a derivation, whose hypothesis and
conclusion are both .

D D’

@ If both and , are derivations, so is
) ¥

D D’

@ ¢

pAg
whose conclusion is ¢ A ¢, and whose hypotheses are the union
I) /
of those in and those in
¥ ¥

M
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Derivation (continued)

o If p is a derivation, then the following two items are also

AP
derivations
D D
YA AP
T

whose conclusions are respectively ¢ and v, and whose

hypotheses are exactly the same as those in Ak
12

A
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Derivation (continued)
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@ If both D is a derivation, so is

(g

[]
D
P

=Y
whose conclusion is ¢ — 1, and whose hypotheses are those in
2
D minus .
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Derivation (continued)

D D
@ If both and are derivations, so is
P =Y

D D'
@ =P
(7

whose conclusion is 1, and whose hypotheses are union of those

in P and those in
@ =Y

-
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Derivation (continued)

D
o If L is a derivation, so is

D
1
2
whose conclusion is ¢, and whose hypotheses are exactly the

same as those in

A
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Derivation (continued)
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@ If D isaderivation, sois
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whose conclusion is ¢, and whose hypotheses are those in D
1
minus —. )
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Derivation (continued)

Definition J

@ Only the trees obtained by the above rules are the derivations.
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@ [' ¢: there is a derivation with conclusion ¢ and with all
(unconceled) hypotheses in T'.
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@ [' ¢: there is a derivation with conclusion ¢ and with all
(unconceled) hypotheses in T'.
In this case, we also say: ¢ is derivable from I.
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@ [' ¢: there is a derivation with conclusion ¢ and with all
(unconceled) hypotheses in T'.
In this case, we also say: ¢ is derivable from I.

@ We use - y instead of @ F ¢.
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@ [' ¢: there is a derivation with conclusion ¢ and with all
(unconceled) hypotheses in T'.
In this case, we also say: ¢ is derivable from I.

@ We use I p instead of @ I .
In this case, we say, ¢ is a theorem.
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© More examples
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°F(p—=¢) =W —=0)=(p—0)
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@ (p—=1) = (- = —p)
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In (Van Dalen’s) derivations, we use the following definitions:

o =g L
eVY =g (A1)
ooy =g (P=V)AW =)
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@ oV
@ Y pVy
Note: This can be used as derived rules.
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o Ifl'yroand v Fo,thenT,pViY o
Note: This can be used as a derived rule.

VY o o
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See pp. 47-48 of the textbook for more derived rules.
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Qo g)\/'ﬂgj
Hint: use derived rules!
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Thanks for your attention!
Q&A
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