First Order Language

Ming Hsiung

School of Philosophy and Social Development South China Normal University

Contents

A toy language

2 The arithmetic language

Structures and Languages

Contents

A toy language

2 The arithmetic language

Structures and Languages

Example

- Socrates is a philosopher.
- Socrates influences Plato.
- Socrates influences all philosophers.
- Some philosopher influences all philosophers.

Symbols	Interpretations
P(x)	x is a philosopher
$Q(x_1, x_2)$	x_1 influences x_2
a	Socrates
b	Plato

- Socrates is a philosopher.
- \bullet P(a)

Symbols	Interpretations
P(x)	x is a philosopher
$Q(x_1, x_2)$	x_1 influences x_2
a	Socrates
b	Plato

- Socrates is a philosopher.
- \bullet P(a)

Symbols	Interpretations
P(x)	x is a philosopher
$Q(x_1, x_2)$	x_1 influences x_2
a	Socrates
b	Plato

- Socrates is a philosopher.
- \bullet P(a)

Symbols	Interpretations
P(x)	x is a philosopher
$Q(x_1, x_2)$	x_1 influences x_2
a	Socrates
b	Plato

- Socrates influences Plato.
- $extbf{Q}(a,b)$

Symbols	Interpretations
P(x)	x is a philosopher
$Q(x_1, x_2)$	x_1 influences x_2
a	Socrates
b	Plato

- Socrates influences Plato.
- Q(a,b)

Symbols	Interpretations
P(x)	x is a philosopher
$Q(x_1, x_2)$	x_1 influences x_2
a	Socrates
b	Plato

- Socrates influences Plato.
- ullet Q(a,b)

Symbols	Interpretations
P(x)	x is a philosopher
$Q(x_1,x_2)$	x_1 influences x_2
a	Socrates
b	Plato

- Socrates influences all philosophers.

7/29

Symbols	Interpretations
P(x)	x is a philosopher
$Q(x_1, x_2)$	x_1 influences x_2
a	Socrates
b	Plato

- Socrates influences all philosophers.

Symbols	Interpretations
P(x)	x is a philosopher
$Q(x_1, x_2)$	x_1 influences x_2
a	Socrates
b	Plato

- Socrates influences all philosophers.
- $\bullet \ \forall x (P(x) \to Q(a,x))$

Symbols	Interpretations
P(x)	\boldsymbol{x} is a philosopher
$Q(x_1, x_2)$	x_1 influences x_2
a	Socrates
b	Plato

- Some philosopher influences all philosophers.
- $\bullet \ \exists x_1(P(x_1) \land \forall x_2(P(x_2) \to Q(x_1, x_2))$

Symbols	Interpretations
P(x)	x is a philosopher
$Q(x_1, x_2)$	x_1 influences x_2
a	Socrates
b	Plato

Some philosopher influences all philosophers.

$$\bullet \ \exists x_1(P(x_1) \land \forall x_2(P(x_2) \to Q(x_1, x_2))$$

Symbols	Interpretations
P(x)	x is a philosopher
$Q(x_1, x_2)$	x_1 influences x_2
a	Socrates
b	Plato

- Some philosopher influences all philosophers.
- $\bullet \ \exists x_1(P(x_1) \land \forall x_2(P(x_2) \to Q(x_1, x_2))$

- A (non-empty) domain A (the set of human beings, or any other set including all philosophers).
- ullet the property R_1 (being a philosophy), as the interpretation of P
- ullet the relation R_2 (influencing), as the interpretation of Q
- the philosopher Socrates, as the interpretation of a
- ullet the philosopher Plato, as the interpretation of b

$$\mathfrak{A} = \langle A, R_1, R_2, \mathsf{Socrates}, \mathsf{Plato} \rangle$$

$$\langle 1, 2; -; 2 \rangle$$

- A (non-empty) domain A (the set of human beings, or any other set including all philosophers).
- ullet the property R_1 (being a philosophy), as the interpretation of P
- ullet the relation R_2 (influencing), as the interpretation of Q
- ullet the philosopher Socrates, as the interpretation of a
- ullet the philosopher Plato, as the interpretation of b

$$\mathfrak{A} = \langle A, R_1, R_2, \mathsf{Socrates}, \mathsf{Plato} \rangle$$

$$\langle 1, 2; -; 2 \rangle$$

- A (non-empty) domain A (the set of human beings, or any other set including all philosophers).
- ullet the property R_1 (being a philosophy), as the interpretation of P
- ullet the relation R_2 (influencing), as the interpretation of Q
- the philosopher Socrates, as the interpretation of a
- ullet the philosopher Plato, as the interpretation of b

$$\mathfrak{A} = \langle A, R_1, R_2, \mathsf{Socrates}, \mathsf{Plato} \rangle$$

$$\langle 1, 2; -; 2 \rangle$$

- A (non-empty) domain A (the set of human beings, or any other set including all philosophers).
- ullet the property R_1 (being a philosophy), as the interpretation of P
- ullet the relation R_2 (influencing), as the interpretation of Q
- the philosopher Socrates, as the interpretation of a
- ullet the philosopher Plato, as the interpretation of b

$$\mathfrak{A} = \langle A, R_1, R_2, \mathsf{Socrates}, \mathsf{Plato} \rangle$$

$$\langle 1, 2; -; 2 \rangle$$

- A (non-empty) domain A (the set of human beings, or any other set including all philosophers).
- ullet the property R_1 (being a philosophy), as the interpretation of P
- ullet the relation R_2 (influencing), as the interpretation of Q
- the philosopher Socrates, as the interpretation of a
- the philosopher Plato, as the interpretation of b

$$\mathfrak{A} = \langle A, R_1, R_2, \mathsf{Socrates}, \mathsf{Plato} \rangle$$

$$\langle 1, 2; -; 2 \rangle$$

- A (non-empty) domain A (the set of human beings, or any other set including all philosophers).
- ullet the property R_1 (being a philosophy), as the interpretation of P
- ullet the relation R_2 (influencing), as the interpretation of Q
- the philosopher Socrates, as the interpretation of a
- ullet the philosopher Plato, as the interpretation of b

$$\mathfrak{A} = \langle A, R_1, R_2, \mathsf{Socrates}, \mathsf{Plato} \rangle$$

$$\langle 1, 2; -; 2 \rangle$$

- (individual) variables: x_0, x_1, \dots
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: a, b
- ullet predicate symbols: P, Q
- function symbols: none
- auxiliary symbols:) , (.

$$\mathcal{L} = \langle P, Q, a, b \rangle$$

- (individual) variables: x_0, x_1, \dots
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: a, b
- predicate symbols: P, Q
- function symbols: none
- auxiliary symbols:) , (.

$$\mathcal{L} = \langle P, Q, a, b \rangle$$

- (individual) variables: $x_0, x_1,$
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: a, b
- ullet predicate symbols: P, Q
- function symbols: none
- auxiliary symbols:) , (.

$$\mathcal{L} = \langle P, Q, a, b \rangle$$

- (individual) variables: $x_0, x_1,$
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: a, b
- ullet predicate symbols: P, Q
- function symbols: none
- auxiliary symbols:) , (.

$$\mathcal{L} = \langle P, Q, a, b \rangle$$

- (individual) variables: x_0, x_1, \dots
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: a, b
- predicate symbols: P, Q
- function symbols: none
- auxiliary symbols:) , (.

$$\mathcal{L} = \langle P, Q, a, b \rangle$$

- (individual) variables: x_0, x_1, \dots
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: a, b
- predicate symbols: P, Q
- function symbols: none
- auxiliary symbols:) , (.

$$\mathcal{L} = \langle P, Q, a, b \rangle$$

- (individual) variables: x_0, x_1, \dots
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: a, b
- predicate symbols: P, Q
- function symbols: none
- auxiliary symbols:) , (.

$$\mathcal{L} = \langle P, Q, a, b \rangle$$

- (individual) variables: x_0, x_1, \dots
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: a, b
- predicate symbols: P, Q
- function symbols: none
- auxiliary symbols:) , (.

$$\mathcal{L} = \langle P, Q, a, b \rangle$$

- ⊥ is a formula.
- If t, t_1 , and t_2 are terms, then expressions of form P(t) or $Q(t_1, t_2)$ are formulas.
- If φ is a formula, so is $(\neg \varphi)$.
- If φ and ψ are formulas, so is $(\varphi \star \psi)$, where \star is \land , \lor , \rightarrow , or \leftrightarrow .
- If φ is a formula, then for any variable x, $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are also formulas.
- Formulas are exactly those expressions obtained by the above rules.

- \bullet \perp is a formula.
- If t, t_1 , and t_2 are terms, then expressions of form P(t) or $Q(t_1, t_2)$ are formulas.
- If φ is a formula, so is $(\neg \varphi)$.
- If φ and ψ are formulas, so is $(\varphi \star \psi)$, where \star is \land , \lor , \rightarrow , or \leftrightarrow .
- If φ is a formula, then for any variable x, $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are also formulas.
- Formulas are exactly those expressions obtained by the above rules.

- \bullet \perp is a formula.
- If t, t_1 , and t_2 are terms, then expressions of form P(t) or $Q(t_1,t_2)$ are formulas.
- If φ is a formula, so is $(\neg \varphi)$.
- If φ and ψ are formulas, so is $(\varphi \star \psi)$, where \star is \wedge , \vee , \rightarrow , or \leftrightarrow .
- If φ is a formula, then for any variable x, $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are also formulas.
- Formulas are exactly those expressions obtained by the above rules.

- ⊥ is a formula.
- If t, t_1 , and t_2 are terms, then expressions of form P(t) or $Q(t_1,t_2)$ are formulas.
- If φ is a formula, so is $(\neg \varphi)$.
- If φ and ψ are formulas, so is $(\varphi \star \psi)$, where \star is \land , \lor , \rightarrow , or \leftrightarrow .
- If φ is a formula, then for any variable x, $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are also formulas.
- Formulas are exactly those expressions obtained by the above rules.

- ⊥ is a formula.
- If t, t_1 , and t_2 are terms, then expressions of form P(t) or $Q(t_1,t_2)$ are formulas.
- If φ is a formula, so is $(\neg \varphi)$.
- If φ and ψ are formulas, so is $(\varphi \star \psi)$, where \star is \wedge , \vee , \rightarrow , or \leftrightarrow .
- If φ is a formula, then for any variable x, $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are also formulas.
- Formulas are exactly those expressions obtained by the above rules.

- ⊥ is a formula.
- If t, t_1 , and t_2 are terms, then expressions of form P(t) or $Q(t_1,t_2)$ are formulas.
- If φ is a formula, so is $(\neg \varphi)$.
- If φ and ψ are formulas, so is $(\varphi \star \psi)$, where \star is \wedge , \vee , \rightarrow , or \leftrightarrow .
- If φ is a formula, then for any variable x, $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are also formulas.
- Formulas are exactly those expressions obtained by the above rules.

Terms and formulas for the toy language

Terms are variables or constant symbols.

- ⊥ is a formula.
- If t, t_1 , and t_2 are terms, then expressions of form P(t) or $Q(t_1, t_2)$ are formulas.
- If φ is a formula, so is $(\neg \varphi)$.
- If φ and ψ are formulas, so is $(\varphi \star \psi)$, where \star is \wedge , \vee , \rightarrow , or \leftrightarrow .
- If φ is a formula, then for any variable x, $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are also formulas.
- Formulas are exactly those expressions obtained by the above rules.

Contents

A toy language

The arithmetic language

Structures and Languages

Example

- 0 is not the successor of any number.
- 0 is less than 1.
- 0 is an even number.
- Any number multiplied by 0 is still equal to 0.

Symbols	Interpretations
$x_1 \dot{=} x_2$	x_1 is equal to x_2
$\boldsymbol{S}x$	the successor of x
$x_1 + x_2$	the sum of x_1 and x_2
$x_1 \times x_2$	the product of x_1 and x_2
0	zero

- 0 is not (equal to) the successor of any number.
- $\bullet \ \forall x \neg (0 \doteq Sx)$

Symbols	Interpretations
$x_1 \dot{=} x_2$	x_1 is equal to x_2
$\boldsymbol{S}x$	the successor of x
$x_1 + x_2$	the sum of x_1 and x_2
$x_1 \times x_2$	the product of x_1 and x_2
0	zero

- 0 is not (equal to) the successor of any number.
- $\bullet \ \forall x \neg (0 \doteq Sx)$

Symbols	Interpretations
$x_1 \dot{=} x_2$	x_1 is equal to x_2
$\boldsymbol{S}x$	the successor of x
$x_1 + x_2$	the sum of x_1 and x_2
$x_1 \times x_2$	the product of x_1 and x_2
0	zero

- 0 is not (equal to) the successor of any number.
- $\bullet \ \forall x \neg (0 \doteq Sx)$

Symbols	Interpretations
$x_1 \dot{=} x_2$	x_1 is equal to x_2
$\boldsymbol{S}x$	the successor of x
$x_1 + x_2$	the sum of x_1 and x_2
$x_1 \times x_2$	the product of x_1 and x_2
0	zero

- 0 is an even number.
- $\bullet \ \exists x \, (\mathbf{0} \dot{=} \mathbf{SSO} \times x)$

Symbols	Interpretations
$x_1 \dot{=} x_2$	x_1 is equal to x_2
$\boldsymbol{S}x$	the successor of x
$x_1 + x_2$	the sum of x_1 and x_2
$x_1 \times x_2$	the product of x_1 and x_2
0	zero

- 0 is an even number.
- $\bullet \ \exists x \, (\mathbf{0} \dot{=} \mathbf{SS0} \times x)$

Symbols	Interpretations
$x_1 \dot{=} x_2$	x_1 is equal to x_2
$\boldsymbol{S}x$	the successor of x
$x_1 + x_2$	the sum of x_1 and x_2
$x_1 \times x_2$	the product of x_1 and x_2
0	zero

- 0 is an even number.
- $\bullet \exists x (\mathbf{0} \doteq \mathbf{SSO} \times x)$

Symbols	Interpretations
$x_1 \dot{=} x_2$	x_1 is equal to x_2
$\boldsymbol{S}x$	the successor of x
$x_1 + x_2$	the sum of x_1 and x_2
$x_1 \times x_2$	the product of x_1 and x_2
0	zero

- Any number multiplied by 0 is still equal to 0.
- $\bullet \ \forall x(x \times 0 \dot{=} 0)$

Symbols	Interpretations
$x_1 \dot{=} x_2$	x_1 is equal to x_2
$\boldsymbol{S}x$	the successor of x
$x_1 + x_2$	the sum of x_1 and x_2
$x_1 \times x_2$	the product of x_1 and x_2
0	zero

- Any number multiplied by 0 is still equal to 0.
- $\bullet \ \forall x(x \times 0 \dot{=} 0)$

Symbols	Interpretations
$x_1 \dot{=} x_2$	x_1 is equal to x_2
$\boldsymbol{S}x$	the successor of x
$x_1 + x_2$	the sum of x_1 and x_2
$x_1 \times x_2$	the product of x_1 and x_2
0	zero

- Any number multiplied by 0 is still equal to 0.
- $\forall x(x \times 0 \doteq 0)$

- The domain $\mathbb N$ of (all) natural numbers.
- ullet the equality relation =, as the interpretation of $\dot{=}$
- the successor operation ', as the interpretation of S
- the addition operation +, as the interpretation of +
- ullet the multiplication operation imes, as the interpretation of imes
- the number 0, as the interpretation of 0

$$\mathfrak{N} = \langle \mathbb{N}, ', +, \times, 0 \rangle$$

$$\langle -; 1, 2, 2; 1 \rangle$$

- The domain $\mathbb N$ of (all) natural numbers.
- ullet the equality relation =, as the interpretation of \doteq
- the successor operation ', as the interpretation of S
- the addition operation +, as the interpretation of +
- ullet the multiplication operation imes, as the interpretation of imes
- the number 0, as the interpretation of 0

$$\mathfrak{N} = \langle \mathbb{N}, ', +, \times, 0 \rangle$$

$$\langle -; 1, 2, 2; 1 \rangle$$

- The domain $\mathbb N$ of (all) natural numbers.
- ullet the equality relation =, as the interpretation of \doteq
- ullet the successor operation ', as the interpretation of S
- the addition operation +, as the interpretation of +
- ullet the multiplication operation imes, as the interpretation of imes
- the number 0, as the interpretation of 0

$$\mathfrak{N} = \langle \mathbb{N}, ', +, \times, 0 \rangle$$

$$\langle -; 1, 2, 2; 1 \rangle$$

- The domain $\mathbb N$ of (all) natural numbers.
- ullet the equality relation =, as the interpretation of \doteq
- ullet the successor operation ', as the interpretation of S
- the addition operation +, as the interpretation of +
- ullet the multiplication operation imes, as the interpretation of imes
- the number 0, as the interpretation of 0

$$\mathfrak{N} = \langle \mathbb{N}, ', +, \times, 0 \rangle$$

$$\langle -; 1, 2, 2; 1 \rangle$$

- The domain $\mathbb N$ of (all) natural numbers.
- ullet the equality relation =, as the interpretation of \doteq
- ullet the successor operation ', as the interpretation of S
- the addition operation +, as the interpretation of +
- ullet the multiplication operation imes, as the interpretation of imes
- the number 0, as the interpretation of 0

$$\mathfrak{N} = \langle \mathbb{N}, ', +, \times, 0 \rangle$$

$$\langle -; 1, 2, 2; 1 \rangle$$

- The domain $\mathbb N$ of (all) natural numbers.
- ullet the equality relation =, as the interpretation of \doteq
- ullet the successor operation ', as the interpretation of S
- the addition operation +, as the interpretation of +
- ullet the multiplication operation imes, as the interpretation of imes
- the number 0, as the interpretation of 0

$$\mathfrak{N} = \langle \mathbb{N}, ', +, \times, 0 \rangle$$

$$\langle -; 1, 2, 2; 1 \rangle$$

- The domain $\mathbb N$ of (all) natural numbers.
- ullet the equality relation =, as the interpretation of \doteq
- ullet the successor operation ', as the interpretation of S
- the addition operation +, as the interpretation of +
- ullet the multiplication operation imes, as the interpretation of imes
- the number 0, as the interpretation of 0

$$\mathfrak{N} = \langle \mathbb{N}, ', +, \times, 0 \rangle$$

$$\langle -; 1, 2, 2; 1 \rangle$$

- variables: x_0 , x_1 ,
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: 0
- ullet predicate symbols: $\dot=$ (which, again, is always uploaded, and so is deliberately not mentioned)
- function symbols: S, +, \times
- auxiliary symbols:) , (.

$$\mathcal{L}_A = \langle S, +, \times, \mathbf{0} \rangle$$

- variables: x_0, x_1, \ldots
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: 0
- ullet function symbols: S, +, imes
- auxiliary symbols:) , (.

$$\mathcal{L}_A = \langle oldsymbol{S}, +, imes, oldsymbol{0}
angle$$

- variables: x_0, x_1, \ldots
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: 0
- function symbols: S, +, \times
- auxiliary symbols:) , (.

$$\mathcal{L}_A = \langle S, +, \times, \mathbf{0} \rangle$$

- variables: x_0, x_1, \ldots
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: 0
- ullet predicate symbols: $\dot=$ (which, again, is always uploaded, and so is deliberately not mentioned)
- function symbols: $S, +, \times$
- auxiliary symbols:) , (.

$$\mathcal{L}_A = \langle S, +, \times, 0 \rangle$$

- variables: x_0, x_1, \ldots
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: 0
- ullet predicate symbols: $\dot=$ (which, again, is always uploaded, and so is deliberately not mentioned)
- function symbols: S, +, \times
- auxiliary symbols:) , (.

$$\mathcal{L}_A = \langle S, +, \times, \mathbf{0} \rangle$$

- variables: x_0, x_1, \ldots
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: 0
- ullet predicate symbols: $\dot=$ (which, again, is always uploaded, and so is deliberately not mentioned)
- function symbols: S, +, \times
- auxiliary symbols:) , (.

$$\mathcal{L}_A = \langle S, +, \times, 0 \rangle$$

- variables: x_0, x_1, \ldots
- connectives: \neg , \land , \lor , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: 0
- ullet predicate symbols: $\dot=$ (which, again, is always uploaded, and so is deliberately not mentioned)
- function symbols: S, +, \times
- auxiliary symbols:) , (.

$$\mathcal{L}_A = \langle S, +, \times, \mathbf{0} \rangle$$

- variables: x_0, x_1, \dots
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: 0
- function symbols: $S, +, \times$
- auxiliary symbols:) , (.

$$\mathcal{L}_A = \langle S, +, \times, \mathbf{0} \rangle$$

Terms of the arithmetic language

- Variables are terms (of \mathcal{L}_A).
- 0 is a term.
- If t is a term, so is St.
- If t_1 and t_2 are terms, so are $t_1 + t_2$ and $t_1 \times t_2$.
- Only expressions obtained by the above rules are terms.

- \perp is a formula (of \mathcal{L}_A).
- If t_1 and t_2 are terms, then $(t_1 = t_2)$ is a formula.
- If φ is a formula, so is $(\neg \varphi)$.
- If φ and ψ are formulas, so is $(\varphi \star \psi)$, where \star is \land , \lor , \rightarrow , or \leftrightarrow .
- If φ is a formula, then for any variable x, $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are also formulas.
- Formulas are exactly those expressions obtained by the above rules.

- \perp is a formula (of \mathcal{L}_A).
- If t_1 and t_2 are terms, then $(t_1 = t_2)$ is a formula.
- If φ is a formula, so is $(\neg \varphi)$.
- If φ and ψ are formulas, so is $(\varphi \star \psi)$, where \star is \land , \lor , \rightarrow , or \leftrightarrow .
- If φ is a formula, then for any variable x, $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are also formulas.
- Formulas are exactly those expressions obtained by the above rules.

- \perp is a formula (of \mathcal{L}_A).
- If t_1 and t_2 are terms, then $(t_1 = t_2)$ is a formula.
- If φ is a formula, so is $(\neg \varphi)$.
- If φ and ψ are formulas, so is $(\varphi \star \psi)$, where \star is \wedge , \vee , \rightarrow , or \leftrightarrow .
- If φ is a formula, then for any variable x, $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are also formulas.
- Formulas are exactly those expressions obtained by the above rules.

- \bullet \perp is a formula (of \mathcal{L}_A).
- If t_1 and t_2 are terms, then $(t_1 = t_2)$ is a formula.
- If φ is a formula, so is $(\neg \varphi)$.
- If φ and ψ are formulas, so is $(\varphi \star \psi)$, where \star is \wedge , \vee , \rightarrow , or \leftrightarrow .
- If φ is a formula, then for any variable x, $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are also formulas.
- Formulas are exactly those expressions obtained by the above rules.

- \bullet \perp is a formula (of \mathcal{L}_A).
- If t_1 and t_2 are terms, then $(t_1 = t_2)$ is a formula.
- If φ is a formula, so is $(\neg \varphi)$.
- If φ and ψ are formulas, so is $(\varphi \star \psi)$, where \star is \wedge , \vee , \rightarrow , or \leftrightarrow .
- If φ is a formula, then for any variable x, $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are also formulas.
- Formulas are exactly those expressions obtained by the above rules.

- \perp is a formula (of \mathcal{L}_A).
- If t_1 and t_2 are terms, then $(t_1 = t_2)$ is a formula.
- If φ is a formula, so is $(\neg \varphi)$.
- If φ and ψ are formulas, so is $(\varphi \star \psi)$, where \star is \wedge , \vee , \rightarrow , or \leftrightarrow .
- If φ is a formula, then for any variable x, $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are also formulas.
- Formulas are exactly those expressions obtained by the above rules.

Contents

A toy language

2 The arithmetic language

Structures and Languages

Structure

A structure a is an ordered sequence

$$\langle A, R_1, \dots, R_n, F_1, \dots, F_m, \{c_k | i \in K\} \rangle$$
,

where

- A is a non-empty set.
- $R_1, ..., R_n$ are relations on A.
- *F*₁, ..., *F*_m are functions on *A*.
- for all $k \in K$, c_k is an element of A, and K is an index set.

E.g

- $\mathfrak{A} = \langle A, R_1, R_2, \text{Socrates}, \text{Plato} \rangle$

A structure $\mathfrak A$ is an ordered sequence

$$\langle A, R_1, \dots, R_n, F_1, \dots, F_m, \{c_k | i \in K\} \rangle$$
,

where

- A is a non-empty set.
- $R_1, ..., R_n$ are relations on A.
- F_1 , ..., F_m are functions on A.
- ullet for all $k\in K$, c_k is an element of A, and K is an index set.

- $\mathfrak{A} = \langle A, R_1, R_2, \text{Socrates}, \text{Plato} \rangle$

A structure $\mathfrak A$ is an ordered sequence

$$\langle A, R_1, \dots, R_n, F_1, \dots, F_m, \{c_k | i \in K\} \rangle$$
,

where

- A is a non-empty set.
- $R_1, ..., R_n$ are relations on A.
- $F_1, ..., F_m$ are functions on A.
- ullet for all $k\in K$, c_k is an element of A, and K is an index set.

- $\mathfrak{A} = \langle A, R_1, R_2, \mathsf{Socrates}, \mathsf{Plato} \rangle$

A structure $\mathfrak A$ is an ordered sequence

$$\langle A, R_1, \dots, R_n, F_1, \dots, F_m, \{c_k | i \in K\} \rangle$$
,

where

- A is a non-empty set.
- $R_1, ..., R_n$ are relations on A.
- F_1 , ..., F_m are functions on A.
- ullet for all $k\in K$, c_k is an element of A, and K is an index set.

- $\mathfrak{A} = \langle A, R_1, R_2, \mathsf{Socrates}, \mathsf{Plato} \rangle$

A structure $\mathfrak A$ is an ordered sequence

$$\langle A, R_1, \dots, R_n, F_1, \dots, F_m, \{c_k | i \in K\} \rangle$$

where

- A is a non-empty set.
- $R_1, ..., R_n$ are relations on A.
- F_1 , ..., F_m are functions on A.
- for all $k \in K$, c_k is an element of A, and K is an index set.

- $\mathfrak{A} = \langle A, R_1, R_2, \mathsf{Socrates}, \mathsf{Plato} \rangle$

A structure $\mathfrak A$ is an ordered sequence

$$\langle A, R_1, \dots, R_n, F_1, \dots, F_m, \{c_k | i \in K\} \rangle$$

where

- A is a non-empty set.
- $R_1, ..., R_n$ are relations on A.
- F_1 , ..., F_m are functions on A.
- for all $k \in K$, c_k is an element of A, and K is an index set.

- $\mathfrak{A} = \langle A, R_1, R_2, \text{Socrates}, \text{Plato} \rangle$

A structure $\mathfrak A$ is an ordered sequence

$$\langle A, R_1, \dots, R_n, F_1, \dots, F_m, \{c_k | i \in K\} \rangle$$

where

- A is a non-empty set.
- $R_1, ..., R_n$ are relations on A.
- F_1 , ..., F_m are functions on A.
- for all $k \in K$, c_k is an element of A, and K is an index set.

- $\mathfrak{A} = \langle A, R_1, R_2, \text{Socrates}, \text{Plato} \rangle$
- $\mathfrak{A} = \langle \mathbb{N}, ', +, \times, 0 \rangle$

Similarity type

The similarity type of a structure $\mathfrak A$

$$\langle A, R_1, \dots, R_n, F_1, \dots, F_m, \{c_i | i \in I\} \rangle$$

is a sequence

$$\langle r_1,\ldots,r_n;a_1,\ldots,a_m;\kappa\rangle$$

where $R_i \subseteq A^{r_i}$, $F_j : A^{a_j} \to A$, the size of $\{c_k | k \in K\}$ is κ .

Structure	Similarity type
$\langle A, R_1, R_2, Socrates, Plato \rangle$	$\langle 1, 2; -; 2 \rangle$
$\langle \mathbb{N},',+,\times,0 \rangle$	$\langle -; 1, 2, 2; 1 \rangle$
$\langle G,R \rangle$	$\langle 1; -; - \rangle$

Similarity type

The similarity type of a structure $\mathfrak A$

$$\langle A, R_1, \dots, R_n, F_1, \dots, F_m, \{c_i | i \in I\} \rangle$$

is a sequence

$$\langle r_1,\ldots,r_n;a_1,\ldots,a_m;\kappa\rangle$$

where $R_i \subseteq A^{r_i}$, $F_j : A^{a_j} \to A$, the size of $\{c_k | k \in K\}$ is κ .

Structure	Similarity type
$\langle A, R_1, R_2, Socrates, Plato \rangle$	$\langle 1, 2; -; 2 \rangle$
$\langle \mathbb{N},',+,\times,0 \rangle$	$\langle -; 1, 2, 2; 1 \rangle$
$\langle G, R \rangle$	$\langle 1; -; - \rangle$

About identity relation

Stipulate:

- All structures possess an identity (equality) relation, unless otherwise claimed.
- We always omit the identity relation in a structure.
- Accordingly, we do not mention the arity of the identity relation in the similarity type.

- variables: x_0 , x_1 ,
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: $\overline{c_k}$ for all $k \in K$
- predicate symbols: $P_1, ..., P_n, (\doteq)$
- function symbols: $f_1, ..., f_m$
- auxiliary symbols:) , (.

$$\mathcal{L} = \langle P_1, \dots, P_n, f_1, \dots, f_m, \{\overline{c_k} | k \in K \} \rangle$$

- variables: x_0, x_1, \ldots
- connectives: \neg , \land , \lor , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: $\overline{c_k}$ for all $k \in K$
- predicate symbols: $P_1, ..., P_n, (\doteq)$
- function symbols: $f_1, ..., f_m$
- auxiliary symbols:) , (.

- variables: x_0, x_1, \ldots
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: $\overline{c_k}$ for all $k \in K$
- predicate symbols: $P_1, ..., P_n, (\doteq)$
- function symbols: $f_1, ..., f_m$
- auxiliary symbols:) , (.

- variables: x_0 , x_1 ,
- connectives: \neg , \land , \lor , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: $\overline{c_k}$ for all $k \in K$
- predicate symbols: $P_1, ..., P_n, (\dot{=})$
- function symbols: $f_1, ..., f_m$
- auxiliary symbols:) , (.

- variables: x_0 , x_1 ,
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: $\overline{c_k}$ for all $k \in K$
- predicate symbols: $P_1, ..., P_n, (\dot{=})$
- function symbols: $f_1, ..., f_m$
- auxiliary symbols:) , (.

- variables: x_0 , x_1 ,
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: $\overline{c_k}$ for all $k \in K$
- predicate symbols: $P_1, ..., P_n, (\dot{=})$
- function symbols: $f_1, ..., f_m$
- auxiliary symbols:) , (.

- variables: x_0 , x_1 ,
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: $\overline{c_k}$ for all $k \in K$
- predicate symbols: $P_1, ..., P_n, (\dot{=})$
- function symbols: $f_1, ..., f_m$
- auxiliary symbols:) , (.

- variables: x_0, x_1, \ldots
- connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot
- quantifiers: ∀, ∃
- constant symbols: $\overline{c_k}$ for all $k \in K$
- predicate symbols: $P_1, ..., P_n, (\doteq)$
- function symbols: $f_1, ..., f_m$
- auxiliary symbols:) , (.

$$\mathcal{L} = \langle P_1, \dots, P_n, f_1, \dots, f_m, \{\overline{c_k} | k \in K \} \rangle$$

Terms of \mathcal{L}

- Variables and constant symbols are terms (of \mathcal{L}).
- For any $1 \le i \le m$, if $t_1, ..., t_{a_i}$ are terms, so is $f_i(t_1, ..., t_{a_i})$.
- Only the expressions obtained by the above rules are the terms.

Terms of \mathcal{L}

- Variables and constant symbols are terms (of \mathcal{L}).
- For any $1 \leq i \leq m$, if $t_1, \ldots t_{a_i}$ are terms, so is $f_i(t_1, \ldots, t_{a_i})$.
- Only the expressions obtained by the above rules are the terms.

Terms of \mathcal{L}

- Variables and constant symbols are terms (of \mathcal{L}).
- For any $1 \leq i \leq m$, if $t_1, \ldots t_{a_i}$ are terms, so is $f_i(t_1, \ldots, t_{a_i})$.
- Only the expressions obtained by the above rules are the terms.

- \bullet \perp is a formula (of \mathcal{L}).
- For any terms t_1 and t_2 , $t_1 = t_2$ is a formula.
- For any $1 \le i \le n$, if $t_1, ..., t_{r_i}$ are terms, then $P_i(t_1, ..., t_{r_i})$ is a formula.
- If φ is a formula, so is $(\neg \varphi)$.
- If φ and ψ are formulas, so is $(\varphi \star \psi)$, where \star is \land , \lor , \rightarrow , or \leftrightarrow .
- If φ is a formula, then for any variable x, $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are also formulas.
- Only expressions obtained by the above rules are formulas.

- \perp is a formula (of \mathcal{L}).
- For any terms t_1 and t_2 , $t_1 = t_2$ is a formula.
- For any $1 \le i \le n$, if $t_1, ..., t_{r_i}$ are terms, then $P_i(t_1, ..., t_{r_i})$ is a formula.
- If φ is a formula, so is $(\neg \varphi)$.
- If φ and ψ are formulas, so is $(\varphi \star \psi)$, where \star is \land , \lor , \rightarrow , or \leftrightarrow .
- If φ is a formula, then for any variable x, $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are also formulas.
- Only expressions obtained by the above rules are formulas.

- \perp is a formula (of \mathcal{L}).
- For any terms t_1 and t_2 , $t_1 = t_2$ is a formula.
- For any $1 \le i \le n$, if $t_1, ..., t_{r_i}$ are terms, then $P_i(t_1, ..., t_{r_i})$ is a formula.
- If φ is a formula, so is $(\neg \varphi)$.
- If φ and ψ are formulas, so is $(\varphi \star \psi)$, where \star is \land , \lor , \rightarrow , or \leftrightarrow .
- If φ is a formula, then for any variable x, $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are also formulas.
- Only expressions obtained by the above rules are formulas.

- \perp is a formula (of \mathcal{L}).
- For any terms t_1 and t_2 , $t_1 = t_2$ is a formula.
- For any $1 \le i \le n$, if $t_1, ..., t_{r_i}$ are terms, then $P_i(t_1, ..., t_{r_i})$ is a formula.
- If φ is a formula, so is $(\neg \varphi)$.
- If φ and ψ are formulas, so is $(\varphi \star \psi)$, where \star is \land , \lor , \rightarrow , or \leftrightarrow .
- If φ is a formula, then for any variable x, $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are also formulas.
- Only expressions obtained by the above rules are formulas.

- \perp is a formula (of \mathcal{L}).
- For any terms t_1 and t_2 , $t_1 = t_2$ is a formula.
- For any $1 \le i \le n$, if $t_1, ..., t_{r_i}$ are terms, then $P_i(t_1, ..., t_{r_i})$ is a formula.
- If φ is a formula, so is $(\neg \varphi)$.
- If φ and ψ are formulas, so is $(\varphi \star \psi)$, where \star is \wedge , \vee , \rightarrow , or \leftrightarrow .
- If φ is a formula, then for any variable x, $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are also formulas.
- Only expressions obtained by the above rules are formulas.

- \perp is a formula (of \mathcal{L}).
- For any terms t_1 and t_2 , $t_1 = t_2$ is a formula.
- For any $1 \le i \le n$, if $t_1, ..., t_{r_i}$ are terms, then $P_i(t_1, ..., t_{r_i})$ is a formula.
- If φ is a formula, so is $(\neg \varphi)$.
- If φ and ψ are formulas, so is $(\varphi \star \psi)$, where \star is \wedge , \vee , \rightarrow , or \leftrightarrow .
- If φ is a formula, then for any variable x, $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are also formulas.
- Only expressions obtained by the above rules are formulas.

- \perp is a formula (of \mathcal{L}).
- For any terms t_1 and t_2 , $t_1 = t_2$ is a formula.
- For any $1 \le i \le n$, if $t_1, ..., t_{r_i}$ are terms, then $P_i(t_1, ..., t_{r_i})$ is a formula.
- If φ is a formula, so is $(\neg \varphi)$.
- If φ and ψ are formulas, so is $(\varphi \star \psi)$, where \star is \wedge , \vee , \rightarrow , or \leftrightarrow .
- If φ is a formula, then for any variable x, $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are also formulas.
- Only expressions obtained by the above rules are formulas.

Other notions

- free occurrence of a variable
- free variable in a formula
- sentence
- substitution s[t/x]
- substitution $\varphi[t/x]$
- ullet t is free for x in φ

Thanks for your attention! Q & A