Interpreting closed terms and sentences

Ming Hsiung

School of Philosophy and Social Development South China Normal University

Contents

1 The arithmetic language again

² General case

Contents

1 The arithmetic language again

² General case

Recall

The structure of natural numbers:

$$
\mathfrak{N}=\langle\mathbb{N},',+,\times,0\rangle
$$

A toy structure

 $\mathfrak{R} = \langle \mathbb{R}, \sqrt[3]{\cdot}, +, \times, 0 \rangle$

The similarity type of \mathfrak{N} (\mathfrak{R}):

⟨−; 1*,* 2*,* 2; 1*⟩*

The arithmetic language

$$
\mathcal{L}_A = \langle \mathbf{S}, +, \times, \mathbf{0} \rangle
$$

true or false

$$
\bullet \ \phi = \forall x (x \times 0 \dot{=} 0)
$$

$$
\bullet \ \psi = \forall x_1 \exists x_2 (x_1 \dot{=} S x_2)
$$

$$
\mathfrak{N}=\langle\mathbb{N},',+,\times,0\rangle
$$

$$
\mathfrak{R}=\left\langle \mathbb{R},\sqrt[3]{\cdot},+,\times,0\right\rangle
$$

Formal semantics

It is Tarski who first made it clear in what sense a sentence is true in a structure.

- \bullet $\phi = \forall x (x \times 0) = 0$
- $\psi = \forall x_1 \exists x_2 (x_1 \doteq S x_2)$

$$
\mathfrak{N}=\langle\mathbb{N},',+,\times,0\rangle
$$

$$
\mathfrak{R}=\left\langle \mathbb{R},\sqrt[3]{\cdot},+,\times,0\right\rangle
$$

- $\bullet \ \mathfrak{N} \models \phi \ ([\phi]_{\mathfrak{N}} = 1, \ \mathcal{V}_{\mathfrak{N}}(\phi) = 1), \ \mathfrak{R} \models \phi$
- $\bullet \ \Re \not\models \psi \ ([\psi]_{\mathfrak{N}} = 0, \ \mathcal{V}_{\mathfrak{N}}(\psi) = 0), \ \Re \models \psi$

Expanding languages by adding constants

$$
\mathcal{L}_A = \langle \mathbf{S}, +, \times, \mathbf{0} \rangle
$$

$$
\mathfrak{N}=\langle\mathbb{N},',+,\times,0\rangle
$$

$$
\mathcal{L}_A(\mathfrak{N}) = \langle \mathbf{S}, +, \times, \mathbf{0}, \overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}, \ldots \rangle
$$

or more precisely,

$$
\mathcal{L}_A(\mathfrak{N}) = \langle \mathbf{S}, +, \times, \mathbf{0}, \{ \overline{n} | n \in \mathbb{N} \} \rangle
$$

$$
\mathfrak{R}=\left\langle \mathbb{R},\sqrt[3]{\cdot},+,\times,0\right\rangle
$$

$$
\mathcal{L}_A(\mathfrak{R}) = \langle \mathbf{S}, +, \times, \mathbf{0}, \{\overline{r}|r \in \mathbb{R}\} \rangle \in \mathbb{R}^2
$$

Terms of $\mathcal{L}_A(\mathfrak{N})$

- Variables are terms (of $\mathcal{L}_A(\mathfrak{N})$).
- **0** is a term, and for any *n ∈* N, *n* is a term.
- If *t* is a term, so is *St*.
- If t_1 and t_2 are terms, so are $t_1 + t_2$ and $t_1 \times t_2$.
- Only expressions obtained by the above rules are terms.

For any closed term t of $\mathcal{L}_A(\mathfrak{N}),$ we define recursively $t^{\mathfrak{N}}$ as follows:

- $0^{\mathfrak{N}}=0.$
- For any $n \in \mathbb{N}$, $\overline{n}^{\mathfrak{N}} = n$.
- $(St)^{\mathfrak{N}} = (t^{\mathfrak{N}})'$.
- $(t_1 + t_2)^{\mathfrak{N}} = t_1^{\mathfrak{N}} + t_2^{\mathfrak{N}}.$
- $(t_1 \times t_2)^{\mathfrak{N}} = t_1^{\mathfrak{N}} \times t_2^{\mathfrak{N}}.$

 $(\cdot)^\mathfrak{N}$ is a mapping from the set of closed terms of $\mathcal{L}_A(\mathfrak{N})$ to $\mathbb{N},$ which is usually an interpretation of closed terms of $\mathcal{L}_A(\mathfrak{N})$ in \mathfrak{N} .

Eg.

 $(SS0)^{\mathfrak{N}}=2$

• $(SS0 + 3)^{\mathfrak{N}} = 5$

For any closed term t of $\mathcal{L}_A(\mathfrak{N}),$ we define recursively $t^{\mathfrak{N}}$ as follows:

 ${\bf 0}^{\Re}=0.$

- For any $n \in \mathbb{N}$, $\overline{n}^{\mathfrak{N}} = n$.
- $(St)^{\mathfrak{N}} = (t^{\mathfrak{N}})'$.
- $(t_1 + t_2)^{\mathfrak{N}} = t_1^{\mathfrak{N}} + t_2^{\mathfrak{N}}.$

$$
\bullet (t_1 \times t_2)^{\mathfrak{N}} = t_1^{\mathfrak{N}} \times t_2^{\mathfrak{N}}.
$$

 $(\cdot)^\mathfrak{N}$ is a mapping from the set of closed terms of $\mathcal{L}_A(\mathfrak{N})$ to $\mathbb{N},$ which is usually an interpretation of closed terms of $\mathcal{L}_A(\mathfrak{N})$ in \mathfrak{N} .

Eg.

 $(SS0)^{\mathfrak{N}}=2$

• $(SS0 + 3)^{\mathfrak{N}} = 5$

For any closed term t of $\mathcal{L}_A(\mathfrak{N}),$ we define recursively $t^{\mathfrak{N}}$ as follows:

- ${\bf 0}^{\Re}=0.$
- For any $n \in \mathbb{N}$, $\overline{n}^{\mathfrak{N}} = n$.
- $(St)^{\mathfrak{N}} = (t^{\mathfrak{N}})'$.
- $(t_1 + t_2)^{\mathfrak{N}} = t_1^{\mathfrak{N}} + t_2^{\mathfrak{N}}.$
- $(t_1 \times t_2)^{\mathfrak{N}} = t_1^{\mathfrak{N}} \times t_2^{\mathfrak{N}}.$

 $(\cdot)^\mathfrak{N}$ is a mapping from the set of closed terms of $\mathcal{L}_A(\mathfrak{N})$ to $\mathbb{N},$ which is usually an interpretation of closed terms of $\mathcal{L}_A(\mathfrak{N})$ in \mathfrak{N} .

Eg.

- $(SS0)^{\mathfrak{N}}=2$
- $(SS0 + 3)^{\mathfrak{N}} = 5$

For any closed term t of $\mathcal{L}_A(\mathfrak{N}),$ we define recursively $t^{\mathfrak{N}}$ as follows:

- ${\bf 0}^{\Re}=0.$
- For any $n \in \mathbb{N}$, $\overline{n}^{\mathfrak{N}} = n$.
- $(St)^{\mathfrak{N}} = (t^{\mathfrak{N}})'$.
- $(t_1 + t_2)^{\mathfrak{N}} = t_1^{\mathfrak{N}} + t_2^{\mathfrak{N}}.$
- $(t_1 \times t_2)^{\mathfrak{N}} = t_1^{\mathfrak{N}} \times t_2^{\mathfrak{N}}.$

 $(\cdot)^\mathfrak{N}$ is a mapping from the set of closed terms of $\mathcal{L}_A(\mathfrak{N})$ to $\mathbb{N},$ which is usually an interpretation of closed terms of $\mathcal{L}_A(\mathfrak{N})$ in \mathfrak{N} .

Eg.

- $(SS0)^{\mathfrak{N}}=2$
- $(SS0 + 3)^{\mathfrak{N}} = 5$

For any closed term t of $\mathcal{L}_A(\mathfrak{N}),$ we define recursively $t^{\mathfrak{N}}$ as follows:

- ${\bf 0}^{\Re}=0.$
- For any $n \in \mathbb{N}$, $\overline{n}^{\mathfrak{N}} = n$.
- $(St)^{\mathfrak{N}} = (t^{\mathfrak{N}})'$.
- $(t_1 + t_2)^{\mathfrak{N}} = t_1^{\mathfrak{N}} + t_2^{\mathfrak{N}}.$
- $(t_1 \times t_2)^{\mathfrak{N}} = t_1^{\mathfrak{N}} \times t_2^{\mathfrak{N}}.$

 $(\cdot)^\mathfrak{N}$ is a mapping from the set of closed terms of $\mathcal{L}_A(\mathfrak{N})$ to $\mathbb{N},$ which is usually an interpretation of closed terms of $\mathcal{L}_A(\mathfrak{N})$ in \mathfrak{N} .

Eg.

- $(SS0)^{\mathfrak{N}}=2$
- $(SS0 + 3)^{\mathfrak{N}} = 5$

For any closed term t of $\mathcal{L}_A(\mathfrak{N}),$ we define recursively $t^{\mathfrak{N}}$ as follows:

- ${\bf 0}^{\Re}=0.$
- For any $n \in \mathbb{N}$, $\overline{n}^{\mathfrak{N}} = n$.
- $(St)^{\mathfrak{N}} = (t^{\mathfrak{N}})'$.
- $(t_1 + t_2)^{\mathfrak{N}} = t_1^{\mathfrak{N}} + t_2^{\mathfrak{N}}.$
- $(t_1 \times t_2)^{\mathfrak{N}} = t_1^{\mathfrak{N}} \times t_2^{\mathfrak{N}}.$

 $(\cdot)^\mathfrak{N}$ is a mapping from the set of closed terms of $\mathcal{L}_A(\mathfrak{N})$ to $\mathbb{N},$ which is usually an interpretation of closed terms of $\mathcal{L}_A(\mathfrak{N})$ in \mathfrak{N} .

Eg.

- $(SS0)^{\mathfrak{N}}=2$
- $(SS0 + 3)^{\mathfrak{N}} = 5$

For any closed term t of $\mathcal{L}_A(\mathfrak{N}),$ we define recursively $t^{\mathfrak{N}}$ as follows:

- ${\bf 0}^{\Re}=0.$
- For any $n \in \mathbb{N}$, $\overline{n}^{\mathfrak{N}} = n$.
- $(St)^{\mathfrak{N}} = (t^{\mathfrak{N}})'$.
- $(t_1 + t_2)^{\mathfrak{N}} = t_1^{\mathfrak{N}} + t_2^{\mathfrak{N}}.$
- $(t_1 \times t_2)^{\mathfrak{N}} = t_1^{\mathfrak{N}} \times t_2^{\mathfrak{N}}.$

 $(\cdot)^\mathfrak{N}$ is a mapping from the set of closed terms of $\mathcal{L}_A(\mathfrak{N})$ to $\mathbb{N},$ which is usually an interpretation of closed terms of $\mathcal{L}_A(\mathfrak{N})$ in \mathfrak{N} .

Eg. $(SS0)^{\mathfrak{N}}=2$ • $(SS0 + 3)^{\mathfrak{N}} = 5$

For any closed term t of $\mathcal{L}_A(\mathfrak{N}),$ we define recursively $t^{\mathfrak{N}}$ as follows:

- ${\bf 0}^{\Re}=0.$
- For any $n \in \mathbb{N}$, $\overline{n}^{\mathfrak{N}} = n$.
- $(St)^{\mathfrak{N}} = (t^{\mathfrak{N}})'$.
- $(t_1 + t_2)^{\mathfrak{N}} = t_1^{\mathfrak{N}} + t_2^{\mathfrak{N}}.$
- $(t_1 \times t_2)^{\mathfrak{N}} = t_1^{\mathfrak{N}} \times t_2^{\mathfrak{N}}.$

 $(\cdot)^\mathfrak{N}$ is a mapping from the set of closed terms of $\mathcal{L}_A(\mathfrak{N})$ to $\mathbb{N},$ which is usually an interpretation of closed terms of $\mathcal{L}_A(\mathfrak{N})$ in \mathfrak{N} .

Eg.

 $(SS0)^{\mathfrak{N}}=2$ • $(SS0 + 3)^{\mathfrak{N}} = 5$

For any closed term t of $\mathcal{L}_A(\mathfrak{N}),$ we define recursively $t^{\mathfrak{N}}$ as follows:

- ${\bf 0}^{\Re}=0.$
- For any $n \in \mathbb{N}$, $\overline{n}^{\mathfrak{N}} = n$.
- $(St)^{\mathfrak{N}} = (t^{\mathfrak{N}})'$.
- $(t_1 + t_2)^{\mathfrak{N}} = t_1^{\mathfrak{N}} + t_2^{\mathfrak{N}}.$
- $(t_1 \times t_2)^{\mathfrak{N}} = t_1^{\mathfrak{N}} \times t_2^{\mathfrak{N}}.$

 $(\cdot)^\mathfrak{N}$ is a mapping from the set of closed terms of $\mathcal{L}_A(\mathfrak{N})$ to $\mathbb{N},$ which is usually an interpretation of closed terms of $\mathcal{L}_A(\mathfrak{N})$ in \mathfrak{N} .

Eg.

 $(SS0)^{\mathfrak{N}}=2$

• $(SS0 + 3)^{m} = 5$

For any closed term t of $\mathcal{L}_A(\mathfrak{N}),$ we define recursively $t^{\mathfrak{N}}$ as follows:

- ${\bf 0}^{\Re}=0.$
- For any $n \in \mathbb{N}$, $\overline{n}^{\mathfrak{N}} = n$.
- $(St)^{\mathfrak{N}} = (t^{\mathfrak{N}})'$.
- $(t_1 + t_2)^{\mathfrak{N}} = t_1^{\mathfrak{N}} + t_2^{\mathfrak{N}}.$
- $(t_1 \times t_2)^{\mathfrak{N}} = t_1^{\mathfrak{N}} \times t_2^{\mathfrak{N}}.$

 $(\cdot)^\mathfrak{N}$ is a mapping from the set of closed terms of $\mathcal{L}_A(\mathfrak{N})$ to $\mathbb{N},$ which is usually an interpretation of closed terms of $\mathcal{L}_A(\mathfrak{N})$ in $\mathfrak{N}.$

Eg.

- $(SS0)^{\mathfrak{N}}=2$
- $(SS0 + \overline{3})^{\mathfrak{N}} = 5$

Quiz

Prove: for any *n ∈* N,

$$
(\boldsymbol{S}\boldsymbol{S}\dots\boldsymbol{S}0)^{\mathfrak{N}}=(\overline{n})^{\mathfrak{N}},
$$

where there are *n* occurrences of *S* in the above equation.

Terms of $\mathcal{L}_A(\mathfrak{R})$

 $\begin{array}{ccccccccc} 4 & \Box & \rightarrow & 4 & \overline{\mathcal{B}} & \rightarrow & 4 & \overline{\mathcal{B}} & \rightarrow & 4 & \overline{\mathcal{B}} & \rightarrow & \overline{\mathcal{B}} & & \overline{\mathcal{B}} & & \overline{\mathcal{B}} \\ & & & & & & & & & 11/29 \end{array}$

Quiz

Find all *r ∈* R, such that

$$
(\bm{S}\overline{r})^{\mathfrak{R}}=(\overline{r})^{\mathfrak{R}}.
$$

Formulas of $\mathcal{L}_A(\mathfrak{N})$

- *⊥* is a formula (of *LA*).
- If t_1 and t_2 are terms, then $(t_1 \dot = t_2)$ is a formula.
- **If** φ is a formula, so is $(\neg \varphi)$.
- **•** If φ and ψ are formulas, so is $(\varphi \star \psi)$, where \star is \wedge , \vee , \rightarrow , or \leftrightarrow .
- **•** If φ is a formula, then for any variable x , $(\forall x)\varphi$ and $((\exists x)\varphi)$ are also formulas.
- Formulas are exactly those expressions obtained by the above rules.

- \bullet [\perp]_N = 0 (another notation: $\mathcal{V}_{\mathfrak{N}}(\perp) = 0$)
- $[t_1 \dot{=} t_2]_{\mathfrak{N}} = 1$, iff $t_1^{\mathfrak{N}} = t_2^{\mathfrak{N}}$; otherwise, $[t_1 \dot{=} t_2]_{\mathfrak{N}} = 0$.
- \bullet $[\neg \varphi]_{\mathfrak{N}} = 1$, iff $[\varphi]_{\mathfrak{N}} = 0$.
- \bullet [$\varphi \to \psi$]_N = 0, iff [φ]_N = 1 and [ψ]_N = 0; ...
- \bullet $[(\forall x)\varphi]_{\mathfrak{N}} = 1$, iff for all $n \in \mathbb{N}$, $[\varphi(\overline{n}/x)]_{\mathfrak{N}} = 1$.
- \bigcirc $[(\exists x)\varphi]_{\mathfrak{N}} = 1$, iff

 $[\cdot]_{\mathfrak{N}}$ is a mapping from the set of sentences of $\mathcal{L}_A(\mathfrak{N})$ to $\{1,0\}$, which is usually an interpretation (evaluation) of sentences of $\mathcal{L}_A(\mathfrak{N})$ in \mathfrak{N} .

```
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
                                                                15 / 29
```
- \bullet [\perp]_N = 0 (another notation: $\mathcal{V}_{\mathfrak{N}}(\perp) = 0$)
- $[t_1 \dot{=} t_2]$ _{$\mathfrak{N} = 1$, iff $t_1^{\mathfrak{N}} = t_2^{\mathfrak{N}}$; otherwise, $[t_1 \dot{=} t_2]$ _{$\mathfrak{N} = 0$.}}
- \bullet $[\neg \varphi]_{\mathfrak{N}} = 1$, iff $[\varphi]_{\mathfrak{N}} = 0$.
- \bullet [$\varphi \to \psi$]_N = 0, iff [φ]_N = 1 and [ψ]_N = 0; ...
- $[$ ($\forall x$) φ] $]$ π = 1, iff for all $n \in \mathbb{N}$, $[\varphi(\overline{n}/x)]$ π = 1.
- \bigcirc $[(\exists x)\varphi]_{\mathfrak{N}} = 1$, iff

 $[\cdot]_{\mathfrak{N}}$ is a mapping from the set of sentences of $\mathcal{L}_A(\mathfrak{N})$ to $\{1,0\}$, which is usually **an interpretation (evaluation) of sentences of** *LA*(N) **in** N.

```
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
                                                                15 / 29
```
- \bullet [\perp]_N = 0 (another notation: $\mathcal{V}_{\mathfrak{N}}(\perp) = 0$)
- $[t_1 \dot{=} t_2]$ _{$\mathfrak{N} = 1$, iff $t_1^{\mathfrak{N}} = t_2^{\mathfrak{N}}$; otherwise, $[t_1 \dot{=} t_2]$ _{$\mathfrak{N} = 0$.}}
- \bullet $[\neg \varphi]_{\mathfrak{N}} = 1$, iff $[\varphi]_{\mathfrak{N}} = 0$.
- \bullet [$\varphi \to \psi$]_N = 0, iff [φ]_N = 1 and [ψ]_N = 0; ...
- $[$ ($\forall x$) φ] $]$ π = 1, iff for all $n \in \mathbb{N}$, $[\varphi(\overline{n}/x)]$ π = 1.
- \bigcirc $[(\exists x)\varphi]_{\mathfrak{N}} = 1$, iff

 $[\cdot]_{\mathfrak{N}}$ is a mapping from the set of sentences of $\mathcal{L}_A(\mathfrak{N})$ to $\{1,0\}$, which is usually **an interpretation (evaluation) of sentences of** *LA*(N) **in** N.

```
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
                                                                15 / 29
```
- \bullet [\perp]_N = 0 (another notation: $\mathcal{V}_{\mathfrak{N}}(\perp) = 0$)
- $[t_1 \dot{=} t_2]$ _{$\mathfrak{N} = 1$, iff $t_1^{\mathfrak{N}} = t_2^{\mathfrak{N}}$; otherwise, $[t_1 \dot{=} t_2]$ _{$\mathfrak{N} = 0$.}}
- \bullet $[\neg \varphi]_{\mathfrak{N}} = 1$, iff $[\varphi]_{\mathfrak{N}} = 0$.
- \bullet [$\varphi \to \psi$]_{$\mathfrak{N} = 0$, iff [φ] $\mathfrak{N} = 1$ and [ψ] $\mathfrak{N} = 0$; ...}
- $[$ $(\forall x)\varphi]_{\mathfrak{N}} = 1$, iff for all $n \in \mathbb{N}$, $[\varphi(\overline{n}/x)]_{\mathfrak{N}} = 1$.
- \bigcirc $[(\exists x)\varphi]_{\mathfrak{N}} = 1$, iff

 $[\cdot]_{\mathfrak{N}}$ is a mapping from the set of sentences of $\mathcal{L}_A(\mathfrak{N})$ to $\{1,0\}$, which is usually **an interpretation (evaluation) of sentences of** *LA*(N) **in** N.

```
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
                                                                15 / 29
```
- \bullet [\perp]_N = 0 (another notation: $\mathcal{V}_{\mathfrak{N}}(\perp) = 0$)
- $[t_1 \dot{=} t_2]$ _{$\mathfrak{N} = 1$, iff $t_1^{\mathfrak{N}} = t_2^{\mathfrak{N}}$; otherwise, $[t_1 \dot{=} t_2]$ _{$\mathfrak{N} = 0$.}}
- \bullet $[\neg \varphi]_{\mathfrak{N}} = 1$, iff $[\varphi]_{\mathfrak{N}} = 0$.
- \bullet [$\varphi \to \psi$]_{$\mathfrak{N} = 0$, iff [φ] $\mathfrak{N} = 1$ and [ψ] $\mathfrak{N} = 0$; ...}
- \bullet $[(\forall x)\varphi]_{\mathfrak{N}} = 1$, iff for all $n \in \mathbb{N}$, $[\varphi(\overline{n}/x)]_{\mathfrak{N}} = 1$.
- \bigcirc $[(\exists x)\varphi]_{\mathfrak{N}} = 1$, iff

 $[\cdot]_{\mathfrak{N}}$ is a mapping from the set of sentences of $\mathcal{L}_A(\mathfrak{N})$ to $\{1,0\}$, which is usually **an interpretation (evaluation) of sentences of** *LA*(N) **in** N.

```
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
                                                                15 / 29
```
- \bullet [\perp]_N = 0 (another notation: $\mathcal{V}_{\mathfrak{N}}(\perp) = 0$)
- $[t_1 \dot{=} t_2]$ _{$\mathfrak{N} = 1$, iff $t_1^{\mathfrak{N}} = t_2^{\mathfrak{N}}$; otherwise, $[t_1 \dot{=} t_2]$ _{$\mathfrak{N} = 0$.}}
- \bullet $[\neg \varphi]_{\mathfrak{N}} = 1$, iff $[\varphi]_{\mathfrak{N}} = 0$.
- \bullet [$\varphi \to \psi$]_{$\mathfrak{N} = 0$, iff [φ] $\mathfrak{N} = 1$ and [ψ] $\mathfrak{N} = 0$; ...}
- \bullet $[(\forall x)\varphi]_{\mathfrak{N}} = 1$, iff for all $n \in \mathbb{N}$, $[\varphi(\overline{n}/x)]_{\mathfrak{N}} = 1$.
- \bullet $[(\exists x)\varphi]_{\mathfrak{N}} = 1$, iff

 $[\cdot]_{\mathfrak{N}}$ is a mapping from the set of sentences of $\mathcal{L}_A(\mathfrak{N})$ to $\{1,0\}$, which is usually **an interpretation (evaluation) of sentences of** *LA*(N) **in** N.

```
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
                                                                15 / 29
```
- \bullet [\perp]_N = 0 (another notation: $\mathcal{V}_{\mathfrak{N}}(\perp) = 0$)
- $[t_1 \dot{=} t_2]$ _{$\mathfrak{N} = 1$, iff $t_1^{\mathfrak{N}} = t_2^{\mathfrak{N}}$; otherwise, $[t_1 \dot{=} t_2]$ _{$\mathfrak{N} = 0$.}}
- \bullet $[\neg \varphi]_{\mathfrak{N}} = 1$, iff $[\varphi]_{\mathfrak{N}} = 0$.
- \bullet [$\varphi \to \psi$]_{$\mathfrak{N} = 0$, iff [φ] $\mathfrak{N} = 1$ and [ψ] $\mathfrak{N} = 0$; ...}
- \bullet $[(\forall x)\varphi]_{\mathfrak{N}} = 1$, iff for all $n \in \mathbb{N}$, $[\varphi(\overline{n}/x)]_{\mathfrak{N}} = 1$.
- \bullet $[(\exists x)\varphi]_{\mathfrak{N}} = 1$, iff

 $[\cdot]_{\mathfrak{N}}$ is a mapping from the set of sentences of $\mathcal{L}_A(\mathfrak{N})$ to $\{1,0\}$, which is usually **an interpretation (evaluation) of sentences of** *LA*(N) **in** N.

- \bullet [\perp]_N = 0 (another notation: $\mathcal{V}_{\mathfrak{N}}(\perp) = 0$)
- $[t_1 \dot{=} t_2]$ _{$\mathfrak{N} = 1$, iff $t_1^{\mathfrak{N}} = t_2^{\mathfrak{N}}$; otherwise, $[t_1 \dot{=} t_2]$ _{$\mathfrak{N} = 0$.}}
- \bullet $[\neg \varphi]_{\mathfrak{N}} = 1$, iff $[\varphi]_{\mathfrak{N}} = 0$.
- \bullet [$\varphi \to \psi$]_{$\mathfrak{N} = 0$, iff [φ] $\mathfrak{N} = 1$ and [ψ] $\mathfrak{N} = 0$; ...}
- \bullet $[(\forall x)\varphi]_{\mathfrak{N}} = 1$, iff for all $n \in \mathbb{N}$, $[\varphi(\overline{n}/x)]_{\mathfrak{N}} = 1$.
- \bullet $[(\exists x)\varphi]_{\mathfrak{N}} = 1$, iff

 $[\cdot]_{\mathfrak{N}}$ is a mapping from the set of sentences of $\mathcal{L}_A(\mathfrak{N})$ to $\{1,0\}$, which is usually **an interpretation (evaluation) of sentences of** *LA*(N) **in** N.

Eg.

- $\bullet\;\left[\mathbf{0}\dot=\overline{0}\right]_{\mathfrak{N}}=% \mathbf{0}$
- \bullet $[S0 \dot{=} \overline{1}]_{\mathfrak{N}} =$
- $[\forall x(x \times 0 \dot{=} 0)]_{\mathfrak{N}} =$
- $[\forall x_1 \exists x_2 (x_1 \doteq S x_2)]_{\mathfrak{N}} =$

Formulas of $\mathcal{L}_{A}(\Re)$

 $A \Box B + A \Box B + A \Xi B + A \Xi B + A \Xi = 0.9 \, \text{A} \, \text{A} \, \text{A} \, \text{B} \, \text{B} \, \text{A} \, \text{C} \, \text{A} \, \text{C} \, \text{A} \, \text{D} \, \$

Eg.

 $\bullet\;\left[\mathbf{0}\dot=\overline{0}\right]_{\mathfrak{R}}=$

$$
\quad \bullet \ \left[S0\dot{=} \overline{1} \right]_{\mathfrak{R}} =
$$

$$
\bullet\;\left[S^{\overline{2}\dot{=}\overline{\sqrt{2}}}\right]_{\mathfrak{R}}=
$$

$$
\bullet \ [\forall x (x \times 0 \dot = 0)]_{\Re} =
$$

$$
\bullet \ [\forall x_1 \exists x_2 (x_1 \dot{=} S x_2)]_{\mathfrak{R}} =
$$

- Usually, we use $\Re \models \phi$ instead of $[\phi]_{\Re} = 1$.
- We use $\models \phi$ to denote that for all structure $\mathfrak A$ of the same type as $\mathfrak{N}, \mathfrak{A} \models \phi$ always holds.
- **•** $\Gamma \models \phi$: whenever $\mathfrak{A} \models \Gamma$, we have $\mathfrak{A} \models \phi$.
- **■** If ϕ is a formula (not necessarily a sentence), by $\mathfrak{A} \models \phi$, we always mean $\mathfrak{A} \models Cl(\phi)$, where $Cl(\phi)$ is the universal closure of ϕ .

- Usually, we use $\Re \models \phi$ instead of $[\phi]_{\Re} = 1$.
- We use $\models \phi$ to denote that for all structure $\mathfrak A$ of the same type as $\mathfrak{N}, \mathfrak{A} \models \phi$ always holds.
- **•** $\Gamma \models \phi$: whenever $\mathfrak{A} \models \Gamma$, we have $\mathfrak{A} \models \phi$.
- **■** If ϕ is a formula (not necessarily a sentence), by $\mathfrak{A} \models \phi$, we always mean $\mathfrak{A} \models Cl(\phi)$, where $Cl(\phi)$ is the universal closure of ϕ .

- Usually, we use $\Re \models \phi$ instead of $[\phi]_{\Re} = 1$.
- We use $\models \phi$ to denote that for all structure $\mathfrak A$ of the same type as $\mathfrak{N}, \mathfrak{A} \models \phi$ always holds.
- **•** $\Gamma \models \phi$: whenever $\mathfrak{A} \models \Gamma$, we have $\mathfrak{A} \models \phi$.
- **■** If ϕ is a formula (not necessarily a sentence), by $\mathfrak{A} \models \phi$, we always mean $\mathfrak{A} \models Cl(\phi)$, where $Cl(\phi)$ is the universal closure of ϕ .

- Usually, we use $\Re \models \phi$ instead of $[\phi]_{\Re} = 1$.
- We use $\models \phi$ to denote that for all structure $\mathfrak A$ of the same type as $\mathfrak{N}, \mathfrak{A} \models \phi$ always holds.
- \bullet $\Gamma \models \phi$: whenever $\mathfrak{A} \models \Gamma$, we have $\mathfrak{A} \models \phi$.
- **■** If ϕ is a formula (not necessarily a sentence), by $\mathfrak{A} \models \phi$, we always mean $\mathfrak{A} \models Cl(\phi)$, where $Cl(\phi)$ is the universal closure of ϕ .

- Usually, we use $\Re \models \phi$ instead of $[\phi]_{\Re} = 1$.
- We use $\models \phi$ to denote that for all structure $\mathfrak A$ of the same type as $\mathfrak{N}, \mathfrak{A} \models \phi$ always holds.
- \bullet $\Gamma \models \phi$: whenever $\mathfrak{A} \models \Gamma$, we have $\mathfrak{A} \models \phi$.
- **■** If ϕ is a formula (not necessarily a sentence), by $\mathfrak{A} \models \phi$, we always mean $\mathfrak{A} \models Cl(\phi)$, where $Cl(\phi)$ is the universal closure of ϕ .

Contents

1 The arithmetic language again

² General case

Recall

A structure \mathfrak{A} :

$$
\langle A, R_1, \ldots, R_n, F_1, \ldots, F_m, \{c_k | i \in K\} \rangle,
$$

The similarity type of ${\mathfrak{A}}$

$$
\langle r_1,\ldots,r_n;a_1,\ldots,a_m;\kappa\rangle
$$

 $\mathcal{R}_i \subseteq A^{r_i}, F_j: A^{a_j} \to A$, the size of $\{c_k | k \in K\}$ is κ .

The corresponding language:

$$
\mathcal{L} = \langle P_1, \ldots, P_n, f_1, \ldots, f_m, \{\overline{c_k} | k \in K\} \rangle
$$

$\mathcal{L}(\mathfrak{A})$

$$
\mathcal{L} = \langle P_1, \dots, P_n, f_1, \dots, f_m, \{\overline{c_k} | k \in K\} \rangle
$$

$$
\mathfrak{A} = \langle A, R_1, \dots, R_n, F_1, \dots, F_m, \{c_k | i \in K\} \rangle,
$$

$$
\mathcal{L}(\mathfrak{A}) = \langle P_1, \dots, P_n, f_1, \dots, f_m, \{\overline{c_k} | k \in K\}, \{\overline{a} | a \in A\} \rangle
$$

Terms of $\mathcal{L}(\mathfrak{A})$

 $A \Box B + A \Box B + A \Xi B + A \Xi B + A \Xi = 0.9 \text{A} \text{A}$

Formulas of $\mathcal{L}(\mathfrak{A})$

Interpreting sentences of $\mathcal{L}(\mathfrak{A})$

Interpreting sentences of *L^A* **again**

Is it possible to directly interpret sentences of \mathcal{L}_A in $\mathfrak N$ without the help of the language $\mathcal{L}_A(\mathfrak{N})$?

Thanks for your attention! Q & A