Simple properties of predicate logic

Ming Hsiung

School of Philosophy and Social Development South China Normal University

Contents

Some valid schemata

2 About substitution

Additional valid schemata

Contents

Some valid schemata

About substitution

Additional valid schemata

- $\forall x \varphi \rightarrow \exists x \varphi$ is a **schema** (of formulas).
- $\forall x_0 \exists x_1 (x_0 \doteq Sx_1) \rightarrow \exists x_0 \exists x_1 (x_0 \doteq Sx_1)$ is an instance of the above schema (in \mathcal{L}_A).
- $\forall x_5 Q(a,x_5) \to \exists x_5 Q(a,x_5)$ is an instance of the above schema (in the toy language \mathcal{L}).
- $\forall x_5 Q(a,x_5) \rightarrow \exists x_6 Q(a,x_6)$ is **not** an instance of the above schema.
- $\forall x_5 Q(a,x_5) \to \exists x_5 Q(b,x_5)$ is **not** an instance of the above schema.

- $\forall x \varphi \rightarrow \exists x \varphi$ is a **schema** (of formulas).
- $\forall x_0 \exists x_1 (x_0 \doteq Sx_1) \rightarrow \exists x_0 \exists x_1 (x_0 \doteq Sx_1)$ is an instance of the above schema (in \mathcal{L}_A).
- $\forall x_5 Q(a,x_5) \to \exists x_5 Q(a,x_5)$ is an instance of the above schema (in the toy language \mathcal{L}).
- $\forall x_5 Q(a,x_5) \rightarrow \exists x_6 Q(a,x_6)$ is **not** an instance of the above schema.
- $\forall x_5 Q(a,x_5) \rightarrow \exists x_5 Q(b,x_5)$ is **not** an instance of the above schema.

- $\forall x \varphi \rightarrow \exists x \varphi$ is a **schema** (of formulas).
- $\forall x_0 \exists x_1 (x_0 \doteq Sx_1) \rightarrow \exists x_0 \exists x_1 (x_0 \doteq Sx_1)$ is an instance of the above schema (in \mathcal{L}_A).
- $\forall x_5 Q(a,x_5) \to \exists x_5 Q(a,x_5)$ is an instance of the above schema (in the toy language \mathcal{L}).
- $\forall x_5 Q(a, x_5) \rightarrow \exists x_6 Q(a, x_6)$ is **not** an instance of the above schema.
- $\forall x_5 Q(a,x_5) \to \exists x_5 Q(b,x_5)$ is **not** an instance of the above schema.

- $\forall x \varphi \rightarrow \exists x \varphi$ is a **schema** (of formulas).
- $\forall x_0 \exists x_1 (x_0 \doteq Sx_1) \rightarrow \exists x_0 \exists x_1 (x_0 \doteq Sx_1)$ is an instance of the above schema (in \mathcal{L}_A).
- $\forall x_5 Q(a,x_5) \to \exists x_5 Q(a,x_5)$ is an instance of the above schema (in the toy language \mathcal{L}).
- $\forall x_5 Q(a, x_5) \rightarrow \exists x_6 Q(a, x_6)$ is **not** an instance of the above schema.
- $\forall x_5 Q(a,x_5) \rightarrow \exists x_5 Q(b,x_5)$ is **not** an instance of the above schema.

- $\forall x \varphi \rightarrow \exists x \varphi$ is a **schema** (of formulas).
- $\forall x_0 \exists x_1 (x_0 \doteq Sx_1) \rightarrow \exists x_0 \exists x_1 (x_0 \doteq Sx_1)$ is an instance of the above schema (in \mathcal{L}_A).
- $\forall x_5 Q(a,x_5) \to \exists x_5 Q(a,x_5)$ is an instance of the above schema (in the toy language \mathcal{L}).
- $\forall x_5 Q(a, x_5) \rightarrow \exists x_6 Q(a, x_6)$ is **not** an instance of the above schema.
- $\forall x_5 Q(a,x_5) \to \exists x_5 Q(b,x_5)$ is **not** an instance of the above schema.

Validity

- A schema is valid, if any of its instances is valid.
- A formula is valid, if the universal closure of it is valid.
- A sentence is valid, if it is true for all structures (of the appropriate similarity type).

Validity

- A schema is valid, if any of its instances is valid.
- A formula is valid, if the universal closure of it is valid.
- A sentence is valid, if it is true for all structures (of the appropriate similarity type).

Validity

- A schema is valid, if any of its instances is valid.
- A formula is valid, if the universal closure of it is valid.
- A sentence is valid, if it is true for all structures (of the appropriate similarity type).

- $\bullet \models \forall x \varphi \leftrightarrow \neg \exists x \neg \varphi$
- $\bullet \models \exists x \varphi \leftrightarrow \neg \forall x \neg \varphi$
- $\bullet \models \forall x\varphi \rightarrow \exists x\varphi$
- $\models \forall x \varphi \leftrightarrow \varphi$, if x is not free in φ
- $\models \exists x \varphi \leftrightarrow \varphi$, if x is not free in φ

- $\bullet \models \forall x \forall y \varphi \leftrightarrow \forall y \forall x \varphi$
- $\bullet \models \exists x \exists y \varphi \leftrightarrow \exists y \exists x \varphi$
- $\bullet \models \exists x \forall y \varphi \rightarrow \forall y \exists x \varphi$

$$\bullet \models \forall x(\varphi \land \psi) \leftrightarrow \forall x\varphi \land \forall x\psi$$

- $\bullet \models \exists x (\varphi \lor \psi) \leftrightarrow \exists x \varphi \lor \exists x \psi$
- $\bullet \models \forall x \varphi \lor \forall x \psi \to \forall x (\varphi \lor \psi)$
- $\bullet \models \exists x (\varphi \land \psi) \to \exists x \varphi \land \exists x \psi$
- $\bullet \models \forall x (\varphi \lor \psi) \to \exists x \varphi \lor \forall x \psi$

$$\bullet \models \forall x(\varphi \to \psi) \to \forall x\varphi \to \forall x\psi$$

$$\bullet \models \forall x(\varphi \to \psi) \to \exists x\varphi \to \exists x\psi$$

If x is not free in ψ , then

- $\bullet \models \forall x (\varphi \land \psi) \leftrightarrow \forall x \varphi \land \psi$
- $\bullet \models \forall x (\varphi \lor \psi) \leftrightarrow \forall x \varphi \lor \psi$
- $\bullet \models \exists x (\varphi \land \psi) \leftrightarrow \exists x \varphi \land \psi$
- $\bullet \models \exists x (\varphi \lor \psi) \leftrightarrow \exists x \varphi \lor \psi$

If x is not free in ψ , then

$$\bullet \models \forall x(\psi \to \varphi) \leftrightarrow (\psi \to \forall x\varphi)$$

$$\bullet \models \exists x(\psi \to \varphi) \leftrightarrow (\psi \to \exists x\varphi)$$

$$\bullet \models \forall x(\varphi \to \psi) \leftrightarrow (\exists x\varphi \to \psi)$$

$$\bullet \models \exists x(\varphi \to \psi) \leftrightarrow (\forall x\varphi \to \psi)$$

Contents

Some valid schemata

2 About substitution

Additional valid schemata

 Let x and y be distinct variables such that x does not occur in r then

$$t[s/x][r/y] = t[r/y][s[r/y]/x].$$

- Let
 - $t = x_0 + Sx_1$
 - $s = x_0 \times Sx_1 \times Sx_2$
 - $r = SSx_3$
- Then

$$t[s/x_0][r/x_1] = (x_0 \times Sx_1 \times Sx_2 + Sx_1)[r/x_1]$$

$$= x_0 \times SSSx_3 \times Sx_2 + SSSx_3$$

•
$$t[r/x_1][s[r/x_1]/x_0]$$

= $(x_0 + SSSx_3)[(x_0 \times SSSx_3 \times Sx_2)/x_0]$
= $x_0 \times SSSx_3 \times Sx_2 + SSSx_3$

 Let x and y be distinct variables such that x does not occur in r then

$$t[s/x][r/y] = t[r/y][s[r/y]/x].$$

- Let
 - $t = x_0 + Sx_1$
 - $s = x_0 \times Sx_1 \times Sx_2$
 - \bullet $r = SSx_3$
- Then
 - $\bullet t[s/x_0][r/x_1] = (x_0 \times Sx_1 \times Sx_2 + Sx_1)[r/x_1]$ $= x_0 \times SSSx_3 \times Sx_2 + SSSx_3$
 - $t[r/x_1][s[r/x_1]/x_0]$ = $(x_0 + SSSx_3)[(x_0 \times SSSx_3 \times Sx_2)/x_0]$ = $x_0 \times SSSx_3 \times Sx_2 + SSSx_3$

Counter-example

Let x and y be distinct variables such that x does not occur in r
 then

$$t[s/x][r/y] = t[r/y][s[r/y]/x].$$

- Let
 - $t = x_0 + Sx_1$
 - $s = x_0 \times Sx_1 \times Sx_2$
 - $r' = SSx_0$
- Ther

•
$$t[s/x_0][r'/x_1]$$

= $(x_0 \times Sx_1 \times Sx_2 + Sx_1)[r'/x_1]$
= $x_0 \times SSSx_0 \times Sx_2 + SSSx_0$

Counter-example

Let x and y be distinct variables such that x does not occur in r
 then

$$t[s/x][r/y] = t[r/y][s[r/y]/x].$$

- Let
 - $t = x_0 + Sx_1$
 - $s = x_0 \times Sx_1 \times Sx_2$
 - $r' = SSx_0$
- Then
 - $t[s/x_0][r'/x_1]$ = $(x_0 \times Sx_1 \times Sx_2 + Sx_1)[r'/x_1]$ = $x_0 \times SSSx_0 \times Sx_2 + SSSx_0$
 - $t[r'/x_1][s[r'/x_1]/x_0]$ = $(x_0 + SSSx_0)[(x_0 \times SSSx_0 \times Sx_2)/x_0]$ = $x_0 \times SSSx_0 \times Sx_2 + SSS(x_0 \times SSSx_0 \times Sx_2)$

• Let x and y be distinct variables such that x does not occur in r, and let t and s be free for x and y in φ , then

$$\varphi[s/x][r/y] = \varphi[r/y][s[r/y]/x].$$

Corollary

Let c be a constant symbol.

If z does not occur in t then

$$t[c/x] = t[z/x][c/z].$$

• If z is free for x in φ and it is not free in φ either, then

$$\varphi[c/x] = \varphi[z/x][c/z].$$

Theorem

• (Change of Bound variables) If x and y are free for z in φ and neither x nor y is free in φ , then

$$\bullet \models \exists x \varphi[x/z] \leftrightarrow \exists y \varphi[y/z]$$

$$\bullet \ \models \forall x \varphi[x/z] \leftrightarrow \forall y \varphi[y/z]$$

(counter-)examples:

- $\exists x \neg (w \doteq z)[x/z] \leftrightarrow \exists y \neg (w \doteq z)[y/z]$
- $\bullet \ \exists x \neg (x = z)[x/z] \leftrightarrow \exists y \neg (x = z)[y/z]$
- $\bullet \ \forall x \exists x \neg (x = z)[x/z] \leftrightarrow \forall y \exists x \neg (x = z)[y/z]$

Theorem

- If x and y are free for z in φ and neither x nor y is free in φ , then
 - $\models \exists x \varphi[x/z] \leftrightarrow \exists y \varphi[y/z]$

Proof.

For any structure \mathfrak{A} , we have

$$\mathfrak{A} \models \exists x \varphi[x/z] \quad \text{iff} \quad \mathfrak{A} \models \varphi[x/z][\overline{a}/x] \text{ for some } a \in A$$

$$\text{iff} \quad \mathfrak{A} \models \varphi[\overline{a}/z] \text{ for some } a \in A$$

$$\text{iff} \quad \mathfrak{A} \models \varphi[y/z][\overline{a}/y] \text{ for some } a \in A$$

$$\text{iff} \quad \mathfrak{A} \models \exists y \varphi[y/z]$$

Hence, for any structure \mathfrak{A} , $\mathfrak{A} \models \exists x \varphi[x/z]$, iff $\mathfrak{A} \models \exists y \varphi[y/z]$. We thus can conclude that $\models \exists x \varphi[x/z] \leftrightarrow \exists y \varphi[y/z]$.

Corollary

 Every formula is equivalent to one in which no variable occurs both free and bound.

Substitution theorem for terms

$$\models t_1 \doteq t_2 \to s \left[t_1/x \right] \doteq s \left[t_2/x \right].$$

• If t is a closed term and s(x) is a term, then

$$(s[t/x])^{\mathfrak{A}} = \left(s\left[\overline{t^{\mathfrak{A}}}/x\right]\right)^{\mathfrak{A}}.$$

• If $t(y_1, \ldots, y_n)$ and s(x) are terms, then

$$\left(s\left[t\left[\overline{a_1}/y_1,\ldots,\overline{a_n}/y_n\right]/x\right]\right)^{\mathfrak{A}} = \left(s\left[\overline{\left(t\left[\overline{a_1}/y_1,\ldots,\overline{a_n}/y_n\right]^{\mathfrak{A}}\right)}/x\right]\right)^{\mathfrak{A}}$$

Substitution theorem for terms

$$\models t_1 \doteq t_2 \rightarrow s [t_1/x] \doteq s [t_2/x].$$

• If t is a closed term and s(x) is a term, then

$$(s[t/x])^{\mathfrak{A}} = \left(s\left[\overline{t^{\mathfrak{A}}}/x\right]\right)^{\mathfrak{A}}.$$

• If $t(y_1, \ldots, y_n)$ and s(x) are terms, then

$$\left(s\left[t\left[\overline{a_1}/y_1,\ldots,\overline{a_n}/y_n\right]/x\right]\right)^{\mathfrak{A}} = \left(s\left[\overline{\left(t\left[\overline{a_1}/y_1,\ldots,\overline{a_n}/y_n\right]^{\mathfrak{A}}\right)}/x\right]\right)^{\mathfrak{A}}$$

Substitution theorem for terms

$$\models t_1 \doteq t_2 \rightarrow s [t_1/x] \doteq s [t_2/x].$$

• If t is a closed term and s(x) is a term, then

0

$$(s[t/x])^{\mathfrak{A}} = \left(s\left[\overline{t^{\mathfrak{A}}}/x\right]\right)^{\mathfrak{A}}.$$

• If $t(y_1, \ldots, y_n)$ and s(x) are terms, then

$$\left(s\left[t\left[\overline{a_1}/y_1,\ldots,\overline{a_n}/y_n\right]/x\right]\right)^{\mathfrak{A}} = \left(s\left[\overline{\left(t\left[\overline{a_1}/y_1,\ldots,\overline{a_n}/y_n\right]^{\mathfrak{A}}\right)}/x\right]\right)^{\mathfrak{A}}.$$

Substitution theorem for formulas

• If t_1 and t_2 are free for x in φ , then

$$\models t_1 \doteq t_2 \rightarrow \varphi \left[t_1/x \right] \doteq \varphi \left[t_2/x \right].$$

• If t is a closed term and $\varphi(x)$ is a formula, then

$$\mathfrak{A} \models \varphi[t/x] \iff \mathfrak{A} \models \varphi\left[\overline{t^{\mathfrak{A}}}/x\right].$$

• If $t(y_1, \ldots, y_n)$ and $\varphi(x)$ are terms, then

$$\mathfrak{A} \models \varphi \left[t \left[\overline{a_1} / y_1, \dots, \overline{a_n} / y_n \right] / x \right] \\ \iff \mathfrak{A} \models \varphi \left[\left(t \left[\overline{a_1} / y_1, \dots, \overline{a_n} / y_n \right]^{\mathfrak{A}} \right) / x \right]$$

Substitution theorem for formulas

• If t_1 and t_2 are free for x in φ , then

$$\models t_1 \doteq t_2 \rightarrow \varphi \left[t_1/x \right] \doteq \varphi \left[t_2/x \right].$$

• If t is a closed term and $\varphi(x)$ is a formula, then

$$\mathfrak{A} \models \varphi[t/x] \iff \mathfrak{A} \models \varphi\left[\overline{t^{\mathfrak{A}}}/x\right].$$

• If $t(y_1, \ldots, y_n)$ and $\varphi(x)$ are terms, then

$$\mathfrak{A} \models \varphi \left[t \left[\overline{a_1} / y_1, \dots, \overline{a_n} / y_n \right] / x \right] \\ \iff \mathfrak{A} \models \varphi \left[\left(t \left[\overline{a_1} / y_1, \dots, \overline{a_n} / y_n \right]^{\mathfrak{A}} \right) / x \right]$$

Substitution theorem for formulas

• If t_1 and t_2 are free for x in φ , then

$$\models t_1 \doteq t_2 \to \varphi \left[t_1/x \right] \doteq \varphi \left[t_2/x \right].$$

• If t is a closed term and $\varphi(x)$ is a formula, then

$$\mathfrak{A} \models \varphi[t/x] \iff \mathfrak{A} \models \varphi\left[\overline{t^{\mathfrak{A}}}/x\right].$$

• If $t(y_1, \ldots, y_n)$ and $\varphi(x)$ are terms, then

$$\mathfrak{A} \models \varphi \left[t \left[\overline{a_1} / y_1, \dots, \overline{a_n} / y_n \right] / x \right] \\ \iff \mathfrak{A} \models \varphi \left[\left(t \left[\overline{a_1} / y_1, \dots, \overline{a_n} / y_n \right]^{\mathfrak{A}} \right) / x \right]$$

Contents

Some valid schemata

About substitution

Additional valid schemata

If x does not occur in t, then

- $\bullet \models \exists x(x = t).$
- $\bullet \models \varphi[t/x] \leftrightarrow \forall x(x = t \to \varphi(x))$
- $\bullet \models \varphi[t/x] \leftrightarrow \exists x (x \dot{=} t \land \varphi(x))$

∀-introduction rules

- If t is free for x in φ and Σ , $\varphi[t/x] \models \psi$, then Σ , $\forall x \varphi(x) \models \psi$.
- If x is not free in any formula of Σ , and $\Sigma \models \psi$, then $\Sigma \models \forall x \psi$.

∃-introduction rules

- If t is free for x in φ and $\Sigma \models \varphi[t/x]$, then $\Sigma \models \exists x \varphi(x)$.
- If x is not free in any formula of $\Sigma \cup \{\varphi\}$, and $\Sigma, \varphi \models \psi$, then $\Sigma, \exists x \varphi \models \psi$.

Thanks for your attention! Q & A