Natural Deduction II

Ming Hsiung

School of Philosophy and Social Development South China Normal University

Contents

Definition of derivation for FOL

② Derived rules for ∃

Rules for identity

Contents

Definition of derivation for FOL

② Derived rules for ∃

Rules for identity

Rules for ∀

 $\forall I$

$$\frac{\varphi(x)}{\forall x \varphi(x)} \forall \mathbf{I}$$

where the variable x does not occur free in any uncanceled hypothesis in the derivation of $\varphi(x)$.

∀E

$$\frac{\forall x \varphi(x)}{\varphi(t)} \, \forall \mathsf{E}$$

where t is free for x in φ .

Rules for ∀

 \forall

$$\frac{\varphi(x)}{\forall x \varphi(x)} \, \forall \mathbf{I}$$

where the variable x does not occur free in any uncanceled hypothesis in the derivation of $\varphi(x)$.

∀E

$$\frac{\forall x \varphi(x)}{\varphi(t)} \forall \mathsf{E}$$

where t is free for x in φ .

Why restriction for $\forall I$

$$\begin{aligned} &\frac{[x \dot{=} \mathbf{0}]}{\forall x (x \dot{=} \mathbf{0})} \, \forall \mathbf{I?} \\ &\frac{x \dot{=} \mathbf{0} \rightarrow \forall x (x \dot{=} \mathbf{0})}{x \dot{=} \mathbf{0} \rightarrow \forall x (x \dot{=} \mathbf{0}))} \, \forall \mathbf{I} \\ &\frac{\forall x (x \dot{=} \mathbf{0} \rightarrow \forall x (x \dot{=} \mathbf{0}))}{\mathbf{0} \dot{=} \mathbf{0} \rightarrow \forall x (x \dot{=} \mathbf{0})} \, \forall \mathbf{E} \end{aligned}$$

Why restriction for ∀E

$$\frac{\frac{[\forall x \neg \forall y (x \doteq y)]}{\neg \forall y (y \doteq y)}}{\forall x \neg \forall y (x \doteq y) \rightarrow \neg \forall y (y \doteq y)} \rightarrow I$$

Derivation

Definition

- A one-element tree φ is a derivation, whose hypothesis and conclusion are both φ .
- ullet If both $\displaystyle rac{\mathcal{D}}{arphi}$ and $\displaystyle rac{\mathcal{D}'}{arphi'}$ are derivations, so is

$$\begin{array}{ccc}
\mathcal{D} & \mathcal{D}' \\
\varphi & \varphi'
\end{array}$$

$$\varphi \wedge \varphi'$$

whose conclusion is $\varphi \wedge \varphi'$, and whose hypotheses are the union of those in $\frac{\mathcal{D}}{\varphi}$ and those in $\frac{\mathcal{D}'}{\varphi'}$.

Derivation

Definition

- A one-element tree φ is a derivation, whose hypothesis and conclusion are both φ .
- ullet If both $\displaystyle rac{\mathcal{D}}{arphi}$ and $\displaystyle \displaystyle rac{\mathcal{D}'}{arphi'}$ are derivations, so is

$$\frac{\mathcal{D}}{\varphi} \qquad \qquad \frac{\mathcal{D}'}{\varphi'}$$
 $\frac{\varphi \wedge \varphi'}{\varphi'}$

whose conclusion is $\varphi \wedge \varphi'$, and whose hypotheses are the union of those in $\frac{\mathcal{D}}{\varphi}$ and those in $\frac{\mathcal{D}'}{\varphi'}$.

Definition

• If $\frac{\mathcal{D}}{\varphi \wedge \psi}$ is a derivation, then the following two items are also derivations

$$rac{\mathcal{D}}{rac{arphi \wedge \psi}{arphi}}$$
 , $rac{\mathcal{D}}{rac{arphi \wedge \psi}{\psi}}$

whose conclusions are respective φ and ψ , and whose hypotheses are exactly the same as those in $\frac{\mathcal{D}}{\varphi \wedge \psi}$

Definition

 φ

• If both \mathcal{D} is a derivation, so is

$$\begin{array}{c}
[\varphi] \\
\mathcal{D} \\
\psi \\
\hline
\varphi \to \psi
\end{array}$$

whose conclusion is $\varphi \to \psi,$ and whose hypotheses are those in

 φ

 \mathcal{D} minus φ .

 ψ

Definition

 $\bullet \ \ \text{If both} \ \ \frac{\mathcal{D}}{\varphi} \ \ \text{and} \ \ \frac{\mathcal{D}}{\varphi \to \psi} \ \ \text{are derivations, so is}$

$$\begin{array}{ccc}
\mathcal{D} & \mathcal{D}' \\
\varphi & \varphi \to \psi \\
\hline
\psi & \end{array}$$

whose conclusion is ψ , and whose hypotheses are union of those

in
$$egin{array}{ccc} \mathcal{D} & & \mathcal{D} \\ arphi & & arphi & & arphi
ightarrow \psi \end{array}$$

Definition

ullet If $\frac{\mathcal{D}}{\mathbf{I}}$ is a derivation, so is

$$\mathcal{D}$$

whose conclusion is $\varphi,$ and whose hypotheses are exactly the same as those in ${}^{\mathcal{D}}$

Definition

$$\neg \varphi$$

ullet If $\mathcal D$ is a derivation, so is

$$\begin{bmatrix} \neg \varphi \end{bmatrix}$$

$$\mathcal{D}$$

$$\underline{\bot}$$

 $\neg \varphi$

whose conclusion is φ , and whose hypotheses are those in

ν

minus $\neg \varphi$.

Definition

• If $\frac{\mathcal{D}}{\varphi(x)}$ is a derivation and x does not occur free in any (uncanceled) hypothesis of \mathcal{D} , so is

$$\frac{\mathcal{D}}{\forall x \varphi(x)}$$

whose conclusion is $\forall x \varphi$, and whose hypotheses are exactly the same as those in $\frac{\mathcal{D}}{\wp(x)}$

Definition

• If $\frac{\mathcal{D}}{\forall x \varphi(x)}$ is a derivation and t is free for x in $\varphi(x)$, so is

$$\frac{\mathcal{D}}{\forall x \varphi(x)}$$

whose conclusion is $\varphi(t)$, and whose hypotheses are exactly the same as those in $\begin{tabular}{c} \mathcal{D} \\ \forall x \varphi(x) \end{tabular}$

Definition

• Only the trees obtained by the above rules are the derivations.

• $\Gamma \vdash \varphi$: there is a derivation with conclusion φ and with all (unconceled) hypotheses in Γ .

In this case, we also say: φ is derivable from Γ .

We use ⊢ φ instead of Ø ⊢ φ.
 In this case, we say, φ is a theorem (provable).

- Γ ⊢ φ: there is a derivation with conclusion φ and with all (unconceled) hypotheses in Γ.
 In this case, we also say: φ is derivable from Γ.
- We use ⊢ φ instead of Ø ⊢ φ.
 In this case, we say, φ is a theorem (provable).

- Γ ⊢ φ: there is a derivation with conclusion φ and with all (unconceled) hypotheses in Γ.
 In this case, we also say: φ is derivable from Γ.
- We use ⊢ φ instead of Ø ⊢ φ.
 In this case, we say, φ is a theorem (provable).

- Γ ⊢ φ: there is a derivation with conclusion φ and with all (unconceled) hypotheses in Γ.
 In this case, we also say: φ is derivable from Γ.
- We use $\vdash \varphi$ instead of $\varnothing \vdash \varphi$. In this case, we say, φ is a theorem (provable).

 $\bullet \vdash \forall x \forall y \varphi(x,y) \to \forall y \forall x \varphi(x,y)$

 $\bullet \vdash \forall x (\varphi \land \psi) \leftrightarrow (\forall x \varphi \land \forall x \psi)$

ullet $\vdash \forall x(\varphi \to \psi) \leftrightarrow (\varphi \to \forall x\psi)$, where x does not occur free in φ .

Contents

Definition of derivation for FOL

② Derived rules for ∃

Rules for identity

Definition

In (Van Dalen's) derivations, we use the following definitions:

$$\neg \varphi =_{\mathsf{df}} \varphi \to \bot$$

$$\varphi \lor \psi =_{\mathsf{df}} \neg (\neg \varphi \land \neg \psi)$$

$$\varphi \leftrightarrow \psi =_{\mathsf{df}} (\varphi \to \psi) \land (\psi \to \varphi)$$

$$\exists x \varphi =_{\mathsf{df}} \neg \forall x \neg \varphi$$

• If t is free for x in $\varphi(x)$, then $\varphi(t) \vdash \exists x \varphi(x)$

Note: This can be used as a derived rule.

∃I

$$\frac{\varphi(t)}{\exists x \varphi(x)} \exists 1$$

• If x is not free in ψ or any formula of Γ , and $\Gamma, \varphi \vdash \psi$, then

$$\Gamma, \exists x\varphi \vdash \psi$$

Note: This can be used as a derived rule.



 $\bullet \vdash \forall x \varphi \to \exists x \varphi$

 $\bullet \vdash \exists x \forall y \varphi \rightarrow \forall y \exists x \varphi$

 $\bullet \vdash \exists x (\varphi \lor \psi) \to \exists x \varphi \lor \exists x \psi$

Contents

Definition of derivation for FOL

② Derived rules for ∃

Rules for identity

Rules for =

 RI_2

$$\frac{x \doteq y}{y \doteq x} \operatorname{Rl}_2$$

 RI_3

$$\stackrel{\dot{=}y}{=} \stackrel{y\dot{=}z}{=} RI_3$$

Rules for =

$$\overline{x \doteq x}$$
 RI₁

 RI_2

$$\frac{x \doteq y}{y \doteq x} \operatorname{RI}_2$$

 RI_3

$$\stackrel{\dot{z}=\dot{y}}{=} \stackrel{\dot{y}=\dot{z}}{=} RI_3$$

Rules for =

$$\overline{x \doteq x}$$
 RI₁

 $\overline{\mathsf{RI}_2}$

$$\frac{x \doteq y}{y \doteq x} \operatorname{RI}_2$$

 RI_3

$$\frac{x = y}{x = z} \operatorname{RI}_3$$

Rules for \doteq (continued)

 RI_4

$$\frac{x_1 \dot{=} y_1, \dots, x_n \dot{=} y_n}{t(x_1, \dots, x_n) \dot{=} t[y_1/x_1, \dots, y_n/x_n]} \mathsf{RI}_4$$

 RI_5

$$\frac{x_1 \doteq y_1, \dots, x_n \doteq y_n}{\varphi(x_1, \dots, x_n) \leftrightarrow \varphi[y_1/x_1, \dots, y_n/x_n]} \, \mathsf{RI}_5$$

where y_1, \ldots, y_n are free for x_1, \ldots, x_n in φ .

Rules for \doteq (continued)

 RI_4

$$\frac{x_1 \doteq y_1, \dots, x_n \doteq y_n}{t(x_1, \dots, x_n) \doteq t[y_1/x_1, \dots, y_n/x_n]} \operatorname{RI}_4$$

 RI_5

$$\frac{x_1 \doteq y_1, \dots, x_n \doteq y_n}{\varphi(x_1, \dots, x_n) \leftrightarrow \varphi[y_1/x_1, \dots, y_n/x_n]} \, \mathsf{RI}_5$$

where $y_1, ..., y_n$ are free for $x_1, ..., x_n$ in φ .

• If x does not occur in t, then $\vdash \exists x(x = t)$.

• If x does not occur in t, then $\vdash \exists x(x = t)$. Proof.

$$\frac{x \doteq x}{\forall x (x \doteq x)} \forall I$$

$$\frac{t \doteq t}{\exists x (x \doteq t)} \forall E$$

The trick is in the last step: t = t is taken as (x = t)[t/x].

• If t is free for x in φ , then $x = t \vdash \varphi(x) \leftrightarrow \varphi(t)$.

Note: This can be used as a derived rule.

$$\frac{x \doteq t}{\varphi(x) \leftrightarrow \varphi(t)}$$

In general, if $t_1, ..., t_n$ are free for $x_1, ..., x_n$ in φ , then

$$x_1 \doteq t_1, \dots, x_n \doteq t_n \vdash \varphi(x_1, \dots, x_n) \leftrightarrow \varphi[t_1/x_1, \dots, t_n/x_n].$$

It is a strengthening of Rule RI_5 . We call it " RI_5^+ ".

• If t is free for x in φ , then $x = t \vdash \varphi(x) \leftrightarrow \varphi(t)$.

Note: This can be used as a derived rule.

$$\frac{x \dot{=} t}{\varphi(x) \leftrightarrow \varphi(t)}$$

In general, if $t_1, ..., t_n$ are free for $x_1, ..., x_n$ in φ , then

$$x_1 \doteq t_1, \dots, x_n \doteq t_n \vdash \varphi(x_1, \dots, x_n) \leftrightarrow \varphi[t_1/x_1, \dots, t_n/x_n].$$

It is a strengthening of Rule RI_5 . We call it " RI_5^+ ".

• If t is free for x in φ , then $x = t \vdash \varphi(x) \leftrightarrow \varphi(t)$.

Proof. Let y be a variable that does not occur in φ . We have the following derivation:

$$\begin{array}{c} \frac{[x \dot{=} y]}{\varphi(x) \leftrightarrow \varphi[y/x]} \operatorname{RI}_5 \\ \\ \frac{x \dot{=} y \to (\varphi(x) \leftrightarrow \varphi[y/x])}{x \dot{=} y \to (\varphi(x) \leftrightarrow \varphi[y/x]))} & \forall \mathsf{I} \\ \\ \frac{x \dot{=} t}{x \dot{=} t} & \frac{\forall y (x \dot{=} y \to (\varphi(x) \leftrightarrow \varphi[y/x]))}{x \dot{=} t \to (\varphi(x) \leftrightarrow \varphi[y/x][t/y])} & \forall \mathsf{E} \\ \\ \varphi(x) \leftrightarrow \varphi[y/x][t/y] & \to \mathsf{E} \end{array}$$

Note that $\varphi[y/x][t/y]$ is exactly $\varphi[t/x]$. We thus obtain $x \dot= t \vdash \varphi(x) \leftrightarrow \varphi(t)$.

• If x does not occur in t and t is free for x in φ , then

$$\vdash \varphi[t/x] \leftrightarrow \exists x(x \dot{=} t \land \varphi).$$

• If x does not occur in t and t is free for x in φ , then

$$\vdash \varphi[t/x] \leftrightarrow \exists x (x \dot{=} t \land \varphi).$$

Proof.

$$\frac{\frac{\overrightarrow{x=x}}{\overrightarrow{\forall x(x=x)}} \ \forall \mathsf{I}}{\frac{t=t}{\forall x(x=t)} \ \forall \mathsf{E}} \frac{[\varphi[t/x]]}{\overrightarrow{\exists x(x=t \land \varphi)}} \land \mathsf{I}$$

$$\frac{\frac{t=t \land \varphi[t/x]}{\exists x(x=t \land \varphi)} \ \exists \mathsf{I}}{\varphi[t/x] \rightarrow \exists x(x=t \land \varphi)} \rightarrow \mathsf{I}$$

This shows $\vdash \varphi[t/x] \to \exists x (x = t \land \varphi)$.

• If x does not occur in t and t is free for x in φ , then

$$\vdash \varphi[t/x] \leftrightarrow \exists x(x = t \land \varphi).$$

Proof (continued).

$$\frac{\frac{[x \dot{=} t \land \varphi]^1}{x \dot{=} t} \land \mathsf{E}}{\frac{\varphi(x) \leftrightarrow \varphi[t/x]}{\varphi(x) \to \varphi[t/x]} \land \mathsf{E}} \xrightarrow{[x \dot{=} t \land \varphi]^1} \land \mathsf{E}}{\frac{\varphi(x) \to \varphi[t/x]}{\varphi(x) \to \varphi[t/x]}} \to \mathsf{E}}$$

$$\frac{[\exists x (x \dot{=} t \land \varphi)]^2}{\exists x (x \dot{=} t \land \varphi) \to \varphi[t/x]} \to \mathsf{I}}$$

This shows $\vdash \exists x (x = t \land \varphi) \rightarrow \varphi[t/x]$.

• If x does not occur in t and t is free for x in φ , then

$$\vdash \varphi[t/x] \leftrightarrow \exists x(x = t \land \varphi).$$

Proof (continued).

$$\frac{\frac{[x \dot{=} t \land \varphi]^1}{x \dot{=} t} \land \mathsf{E}}{\frac{\varphi(x) \leftrightarrow \varphi[t/x]}{\varphi(x) \to \varphi[t/x]} \land \mathsf{E}} \xrightarrow{[x \dot{=} t \land \varphi]^1} \land \mathsf{E}}{\frac{\varphi(x) \to \varphi[t/x]}{\varphi(x) \to \varphi[t/x]}} \to \mathsf{E}}$$

$$\frac{[\exists x (x \dot{=} t \land \varphi)]^2}{\frac{\varphi[t/x]}{\exists x (x \dot{=} t \land \varphi) \to \varphi[t/x]}} \to \mathsf{I}$$

This shows $\vdash \exists x(x = t \land \varphi) \rightarrow \varphi[t/x]$.

In conclusion, we obtain $\vdash \varphi[t/x] \leftrightarrow \exists x (x = t \land \varphi)$

 \bullet If x does not occur in t and t is free for x in $\varphi,$ then

$$\vdash \varphi[t/x] \leftrightarrow \forall x(x = t \to \varphi).$$

Thanks for your attention! Q & A