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A equivalence relation

Let Tm be a maximally consistent Henkin set in a language
Lm. We define:

A is the set of all closed terms in Lm.
∼ is a binary relation on A such that t ∼ s, iff Tm ⊢ t=̇s.
Claim: ∼ is an equivalence relation on A.
Proof of Claim.
Since Tm ⊢ t=̇t, ∼ is reflexive: for any t ∈ A, t ∼ t.
And, since Tm ⊢ t=̇s implies Tm ⊢ s=̇t, ∼ is symmetric: for

any s, t ∈ A, t ∼ s implies s ∼ t.
Third, since Tm ⊢ t=̇s and Tm ⊢ s=̇u implies Tm ⊢ t=̇u, ∼ is

transitive: for any s, t, u ∈ A, t ∼ s and s ∼ u implies t ∼ u.
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Claim:
If ti ∼ si (1 ≤ i ≤ p), then Tm ⊢ P (t1, . . . , tp) iff
Tm ⊢ P (s1, . . . , sp).
If ti ∼ si (1 ≤ i ≤ q), then f(t1, . . . , tq) ∼ f(s1, . . . , sq).
Proof of Claim. If ti ∼ si (1 ≤ i ≤ p), then Tm ⊢ ti=̇si for all

1 ≤ i ≤ p. By a lemma of the text, we can deduce
Tm ⊢ P (t1, . . . , tp) from Tm ⊢ P (s1, . . . , sp), and the converse.
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Canonical Structure ( )

For any t ∈ A, let [t], or precisely [t]∼, be the set
{s ∈ A|s ∼ t}. [t] is called the equivalence class of t under
∼.
Let A/ ∼ be the set {[t]|t ∈ A}. A/ ∼ is called the quotient
set of A by ∼.

We now build the quotient structure A as follows:

A =
⟨
A/ ∼, PA

1 , . . . , P
A
n , f

A
1 , . . . , f

A
m, {cAk |k ∈ K}

⟩
where

PA
i ([t1], . . . , [tri ]) holds, iff Tm ⊢ Pi(t1, . . . , tri).
fA
j

(
[t1], . . . , [taj ]

)
= [fj(t1, . . . , taj)].

cA = [c].
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Claim: PA
i and fA

j are well-defined, that is, their definitions
are independent of the particular elements (reprensentive
elements) chosen from the equivalence classes.

PA
i ([t1], . . . , [tri ]) holds, iff Tm ⊢ Pi(t1, . . . , tri)

PA
i

(
[t′1], . . . , [t

′
ri
]
)
holds, iff Tm ⊢ Pi(t

′
1, . . . , t

′
ri
), where

[t′1] = [t1], . . ., [t′ri ] = [tri ].
When [t′1] = [t1] (i.e., t′1 ∼ t1), . . ., [t′ri ] = [tri ] (i.e., t′ri ∼ tri),

we have:
Tm ⊢ Pi(t

′
1, . . . , t

′
ri
), iff Tm ⊢ Pi(t1, . . . , tri).
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Claim: For any closed term t in Lm, tA = [t].
Proof of Claim. (1) if t = c, then by tA = [c].
(2) Suppose t = fj(t1, . . . , taj), then

tA = (fj(t1, . . . , taj))
A

= fA
j

(
tA1 , . . . , t

A
aj

)
= fA

j

(
[t1], . . . , [taj ]

)
(by IH tA1 = [t1] and so on)

= [fj(t1, . . . , taj)]

= [t].
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Claim: For any sentence φ in Lm, A |= φ, iff Tm ⊢ φ.
We prove this claim by induction on φ.
Case (i): φ is atomic.
Case (i)-a: φ is Pi(t1, . . . , tri). We want A |= Pi(t1, . . . , tri), iff

Tm ⊢ Pi(t1, . . . , tri). That is, PA
i

(
tA1 , . . . , t

A
ri

)
, iff Tm ⊢ Pi(t1, . . . , tri).

Equivalently, PA
i ([t1], . . . , [tri ]), iff Tm ⊢ Pi(t1, . . . , tri). We are

done.
Case (i)-b: φ is t1=̇t2. We want A |= t1=̇t2, iff Tm ⊢ t1=̇t2.

That is, tA1 = tA2 , iff Tm ⊢ t1=̇t2. Equivalently, [t1] = [t2], iff
Tm ⊢ t1=̇t2. In other words, t1 ∼ t2, iff Tm ⊢ t1=̇t2. We are done.
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Claim: For any sentence φ in Lm, A |= φ, iff Tm ⊢ φ.
We prove this claim by induction on φ.
Case (ii): φ = ¬ψ.
We want A |= ¬ψ, iff Tm ⊢ ¬ψ.
In other words, A ̸|= ψ, iff Tm ⊢ ¬ψ.
By IH, A ̸|= ψ, iff Tm ̸⊢ ψ.
Now, we need to prove Tm ̸⊢ ψ, iff Tm ⊢ ¬ψ.
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Claim: For any sentence φ in Lm, A |= φ, iff Tm ⊢ φ.
We prove this claim by induction on φ.
Case (iii): φ = σ → τ .
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Claim: For any sentence φ in Lm, A |= φ, iff Tm ⊢ φ.
We prove this claim by induction on φ.
Case (iv): φ = ∀xψ(x).
We want A |= ∀xψ(x), iff Tm ⊢ ∀xψ(x).

A |= ∀xψ(x), iff A |= ψ(a) for all a ∈ A/ ∼
iff Tm ⊢ ψ(a) for all a ∈ A/ ∼
iff Tm ⊢ ψ(a) for all a = [t] ∈ A/ ∼

iff Tm ⊢ ψ
(
[t]
)

for all closed term t

To prove the original result, we only need to prove
Tm ⊢ ∀xψ(x), iff Tm ⊢ ψ(a) holds for all a ∈ A/ ∼.

The side from left to right is obvious owing to the fact
⊢ ∀xψ(x) → ψ(a).
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Claim: For any sentence φ in Lm, A |= φ, iff Tm ⊢ φ.
We prove this claim by induction on φ.
Case (iv): φ = ∀xψ(x).
We prove Tm ⊢ ∀xψ(x) from Tm ⊢ ψ(a) holds for all a ∈ A/ ∼.
We suppose Tm ̸⊢ ∀xψ(x), by maximal consistency of Tm,

Tm ⊢ ¬∀xψ(x), then Tm ⊢ ∃x¬ψ(x). Since Tm is a Henkin theory,
Tm ⊢ ∃x¬ψ(x) → ¬ψ(c) for some constant c in Lm. Thus,
Tm ⊢ ¬ψ(c) for some constant c in Lm.

Tm ⊢ c=̇[c], iff A |= c=̇[c], iff cA = [c]
A
. Since [c]

A
= [c],

cA = [c]
A
. Hence, Tm ⊢ c=̇[c].

Therefore, Tm ⊢ ¬ψ
(
[c]
)
for some constant c in Lm. That is,

Tm ⊢ ¬ψ
(
[c]
)
for some [c] ∈ A/ ∼.

We are done.
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Proof of the completeness theorem

Let Γ be a set of sentences of L and σ be a sentence of L. If Γ is
consistent, then Γ has a model.

Proof. We extend Γ to a maximally consistent Henkin set
Tm. Let Tm is contained in the language Lm.

Then, we have known that the quotient structure A is a
model of Tm. Let A ↾L be the structure obtained from A by
dismissing the interpretations of those constant symbols
occurring in Lm but not in L. Then, clearly, A ↾L is a model of Γ.
QED
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Gödel (1929)
Let Γ be a set of sentences of L. Γ has a model, iff each finite
subset of Γ has a model.

Proof.
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An application

Let Th(N) be the set of all sentences φ satisfying A |= φ. It is
called the true arithmetic.

Let L+
A be LA ∪ {c}, where c is a new constant. Consider the

set of L+
A:

Th(N) ∪ {c > n|n ∈ N}
Claim. The above set has a model.

Proof.
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An application

Let A be the model that we just claim. Then, we can pick A

such that it is also countable. Let A ↾LA
be the structure obtained

from A by dismissing the interpretation of c.
Then, A ↾LA

is a structure of LA, which have the same true
sentences as N, since A ↾LA

|= φ, iff N |= φ. However, A ↾LA

contains an infinitely large “number”. A ↾LA
is a non-standard

model for true arithmetic.
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Overspill lemma
If φ(n) holds in a non-standard model for infinitely many (finite)
numbers n, then φ(a) holds for at least one infinite number a.

Proof.
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Thanks for your attention!
Q & A
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