Completeness for First-order Logic II

Ming Hsiung

School of Philosophy and Social Development South China Normal University

2 The Compactness Theorem

2 The Compactness Theorem

A equivalence relation

Let T_m be a maximally consistent Henkin set in a language \mathcal{L}_m . We define:

- A is the set of all closed terms in \mathcal{L}_m .
- ~ is a binary relation on A such that t ~ s, iff T_m ⊢ t ≐s.
 Claim: ~ is an equivalence relation on A.
 Proof of Claim.

Since $T_m \vdash t \doteq t$, ~ is reflexive: for any $t \in A$, $t \sim t$.

And, since $T_m \vdash t \doteq s$ implies $T_m \vdash s \doteq t$, \sim is symmetric: for any $s, t \in A$, $t \sim s$ implies $s \sim t$.

Third, since $T_m \vdash t \doteq s$ and $T_m \vdash s \doteq u$ implies $T_m \vdash t \doteq u$, \sim is transitive: for any $s, t, u \in A$, $t \sim s$ and $s \sim u$ implies $t \sim u$.

Claim:

- If $t_i \sim s_i$ ($1 \leq i \leq p$), then $T_m \vdash P(t_1, \ldots, t_p)$ iff $T_m \vdash P(s_1, \ldots, s_p)$.
- If $t_i \sim s_i$ ($1 \leq i \leq q$), then $f(t_1, \ldots, t_q) \sim f(s_1, \ldots, s_q)$. Proof of Claim. If $t_i \sim s_i$ ($1 \leq i \leq p$), then $T_m \vdash t_i \doteq s_i$ for all

 $1 \le i \le p$. By a lemma of the text, we can deduce

 $T_m \vdash P(t_1, \ldots, t_p)$ from $T_m \vdash P(s_1, \ldots, s_p)$, and the converse.

Canonical Structure (典范结构)

- For any t ∈ A, let [t], or precisely [t]_~, be the set {s ∈ A|s ~ t}. [t] is called the equivalence class of t under ~.
- Let A/ ~ be the set {[t]|t ∈ A}. A/ ~ is called the quotient set of A by ~.

We now build the **quotient structure** \mathfrak{A} as follows: $\mathfrak{A} = -\frac{4}{2} \sim P^{\mathfrak{A}} = P^{\mathfrak{A}} + f^{\mathfrak{A}} + f^{\mathfrak{A} + f^{\mathfrak{A}} + f^{\mathfrak{A}} + f^{\mathfrak{A}} + f^{\mathfrak{A} + f^{\mathfrak{A}} + f^{\mathfrak{A}} + f^{\mathfrak{A} + f^{\mathfrak{A}$

where

• $P_i^{\mathfrak{A}}([t_1], \dots, [t_{r_i}])$ holds, iff $T_m \vdash P_i(t_1, \dots, t_{r_i})$. • $f_j^{\mathfrak{A}}([t_1], \dots, [t_{a_j}]) = [f_j(t_1, \dots, t_{a_j})]$. • $c^{\mathfrak{A}} = [c]$.

Canonical Structure (典范结构)

- For any *t* ∈ *A*, let [*t*], or precisely [*t*]_~, be the set {*s* ∈ *A*|*s* ∼ *t*}. [*t*] is called the equivalence class of *t* under ~.
- Let A/ ~ be the set {[t]|t ∈ A}. A/ ~ is called the quotient set of A by ~.

We now build the **quotient structure** \mathfrak{A} as follows: $\mathfrak{A} = \langle A / \sim, P_1^{\mathfrak{A}}, \dots, P_n^{\mathfrak{A}}, f_1^{\mathfrak{A}}, \dots, f_m^{\mathfrak{A}}, \{c_k^{\mathfrak{A}} | k \in K\} \rangle$

where

• $P_i^{\mathfrak{A}}([t_1], \dots, [t_{r_i}])$ holds, iff $T_m \vdash P_i(t_1, \dots, t_{r_i})$. • $f_j^{\mathfrak{A}}([t_1], \dots, [t_{a_j}]) = [f_j(t_1, \dots, t_{a_j})]$. • $c^{\mathfrak{A}} = [c]$.

Canonical Structure (典范结构)

- For any *t* ∈ *A*, let [*t*], or precisely [*t*]_~, be the set {*s* ∈ *A*|*s* ∼ *t*}. [*t*] is called the equivalence class of *t* under ~.
- Let A/ ~ be the set {[t]|t ∈ A}. A/ ~ is called the quotient set of A by ~.

We now build the **quotient structure** \mathfrak{A} as follows:

$$\mathfrak{A} = \left\langle A / \sim, P_1^{\mathfrak{A}}, \dots, P_n^{\mathfrak{A}}, f_1^{\mathfrak{A}}, \dots, f_m^{\mathfrak{A}}, \{c_k^{\mathfrak{A}} | k \in K\} \right\rangle$$

where

•
$$P_i^{\mathfrak{A}}([t_1], \dots, [t_{r_i}])$$
 holds, iff $T_m \vdash P_i(t_1, \dots, t_{r_i})$.
• $f_j^{\mathfrak{A}}([t_1], \dots, [t_{a_j}]) = [f_j(t_1, \dots, t_{a_j})]$.
• $c^{\mathfrak{A}} = [c]$.

Claim: $P_i^{\mathfrak{A}}$ and $f_j^{\mathfrak{A}}$ are well-defined, that is, their definitions are independent of the particular elements (representive elements) chosen from the equivalence classes.

 $\begin{array}{l} P_i^{\mathfrak{A}}\left([t_1],\ldots,[t_{r_i}]\right) \text{ holds, iff } T_m \vdash P_i(t_1,\ldots,t_{r_i}) \\ P_i^{\mathfrak{A}}\left([t_1'],\ldots,[t_{r_i}']\right) \text{ holds, iff } T_m \vdash P_i(t_1',\ldots,t_{r_i}'), \text{ where} \\ [t_1'] = [t_1],\ldots,[t_{r_i}'] = [t_{r_i}]. \\ \text{ When } [t_1'] = [t_1] \text{ (i.e., } t_1' \sim t_1\text{), } \ldots, [t_{r_i}'] = [t_{r_i}] \text{ (i.e., } t_{r_i}' \sim t_{r_i}\text{),} \\ \text{we have:} \end{array}$

$$T_m \vdash P_i(t'_1,\ldots,t'_{r_i})$$
, iff $T_m \vdash P_i(t_1,\ldots,t_{r_i})$.

Claim: For any closed term t in \mathcal{L}_m , $t^{\mathfrak{A}} = [t]$. Proof of Claim. (1) if t = c, then by $t^{\mathfrak{A}} = [c]$. (2) Suppose $t = f_j(t_1, \dots, t_{a_j})$, then $t^{\mathfrak{A}} = (f_j(t_1, \dots, t_{a_j}))^{\mathfrak{A}}$ $= f_j^{\mathfrak{A}} \left(t_1^{\mathfrak{A}}, \dots, t_{a_j}^{\mathfrak{A}} \right)$ $= f_j^{\mathfrak{A}} \left([t_1], \dots, [t_{a_j}] \right)$ (by IH $t_1^{\mathfrak{A}} = [t_1]$ and so on) $= [f_j(t_1, \dots, t_{a_j})]$

= [t].

Case (i): φ is atomic.

Case (i)-a: φ is $P_i(t_1, \ldots, t_{r_i})$. We want $\mathfrak{A} \models P_i(t_1, \ldots, t_{r_i})$, iff $T_m \vdash P_i(t_1, \ldots, t_{r_i})$. That is, $P_i^{\mathfrak{A}}(t_1^{\mathfrak{A}}, \ldots, t_{r_i}^{\mathfrak{A}})$, iff $T_m \vdash P_i(t_1, \ldots, t_{r_i})$. Equivalently, $P_i^{\mathfrak{A}}([t_1], \ldots, [t_{r_i}])$, iff $T_m \vdash P_i(t_1, \ldots, t_{r_i})$. We are done.

Case (i)-b: φ is $t_1 \doteq t_2$. We want $\mathfrak{A} \models t_1 \doteq t_2$, iff $T_m \vdash t_1 \doteq t_2$. That is, $t_1^{\mathfrak{A}} = t_2^{\mathfrak{A}}$, iff $T_m \vdash t_1 \doteq t_2$. Equivalently, $[t_1] = [t_2]$, iff $T_m \vdash t_1 \doteq t_2$. In other words, $t_1 \sim t_2$, iff $T_m \vdash t_1 \doteq t_2$. We are done.

Case (ii): $\varphi = \neg \psi$. We want $\mathfrak{A} \models \neg \psi$, iff $T_m \vdash \neg \psi$. In other words, $\mathfrak{A} \not\models \psi$, iff $T_m \vdash \neg \psi$. By IH, $\mathfrak{A} \not\models \psi$, iff $T_m \not\vdash \psi$. Now, we need to prove $T_m \not\vdash \psi$, iff $T_m \vdash \neg \psi$.

Case (iii): $\varphi = \sigma \rightarrow \tau$.

Claim: For any sentence φ in $\mathcal{L}_m, \mathfrak{A} \models \varphi$, iff $T_m \vdash \varphi$. We prove this claim by induction on φ . Case (iv): $\varphi = \forall x \psi(x)$. We want $\mathfrak{A} \models \forall x \psi(x)$, iff $T_m \vdash \forall x \psi(x)$. $\mathfrak{A} \models \forall x \psi(x), \text{ iff } \mathfrak{A} \models \psi(\overline{a}) \text{ for all } a \in A/\sim$ iff $T_m \vdash \psi(\overline{a})$ for all $a \in A / \sim$ iff $T_m \vdash \psi(\overline{a})$ for all $a = [t] \in A / \sim$ iff $T_m \vdash \psi\left(\overline{[t]}\right)$ for all closed term t

To prove the original result, we only need to prove $T_m \vdash \forall x \psi(x)$, iff $T_m \vdash \psi(\overline{a})$ holds for all $a \in A/\sim$.

The side from left to right is obvious owing to the fact $\vdash \forall x \psi(x) \rightarrow \psi(\overline{a}).$

Case (iv): $\varphi = \forall x \psi(x)$. We prove $T_m \vdash \forall x \psi(x)$ from $T_m \vdash \psi(\overline{a})$ holds for all $a \in A/\sim$. We suppose $T_m \not\vdash \forall x \psi(x)$, by maximal consistency of T_m , $T_m \vdash \neg \forall x \psi(x)$, then $T_m \vdash \exists x \neg \psi(x)$. Since T_m is a Henkin theory, $T_m \vdash \exists x \neg \psi(x) \rightarrow \neg \psi(c)$ for some constant c in \mathcal{L}_m . Thus, $T_m \vdash \neg \psi(c)$ for some constant c in \mathcal{L}_m . $T_m \vdash c \doteq \overline{[c]}$, iff $\mathfrak{A} \models c \doteq \overline{[c]}$, iff $c^{\mathfrak{A}} = \overline{[c]}^{\mathfrak{A}}$. Since $\overline{[c]}^{\mathfrak{A}} = [c]$, $c^{\mathfrak{A}} = \overline{[c]}^{\mathfrak{A}}$. Hence, $T_m \vdash c \doteq \overline{[c]}$. Therefore, $T_m \vdash \neg \psi\left(\overline{[c]}\right)$ for some constant c in \mathcal{L}_m . That is, $T_m \vdash \neg \psi\left(\overline{[c]}\right)$ for some $[c] \in A/\sim$. We are done.

Proof of the completeness theorem

Let Γ be a set of sentences of \mathcal{L} and σ be a sentence of \mathcal{L} . If Γ is consistent, then Γ has a model.

Proof. We extend Γ to a maximally consistent Henkin set T_m . Let T_m is contained in the language \mathcal{L}_m .

Then, we have known that the quotient structure \mathfrak{A} is a model of T_m . Let $\mathfrak{A} \upharpoonright_{\mathcal{L}}$ be the structure obtained from \mathfrak{A} by dismissing the interpretations of those constant symbols occurring in \mathcal{L}_m but not in \mathcal{L} . Then, clearly, $\mathfrak{A} \upharpoonright_{\mathcal{L}}$ is a model of Γ . QED

Canonical Construction

2 The Compactness Theorem

Gödel (1929)

Let Γ be a set of sentences of \mathcal{L} . Γ has a model, iff each finite subset of Γ has a model.

Proof.

An application

Let $Th(\mathfrak{N})$ be the set of all sentences φ satisfying $\mathfrak{A} \models \varphi$. It is called the **true arithmetic**.

Let \mathcal{L}_A^+ be $\mathcal{L}_A \cup \{c\}$, where c is a new constant. Consider the set of \mathcal{L}_A^+ :

 $Th(\mathfrak{N}) \cup \{c > \overline{n} | n \in \mathbb{N}\}$

Claim. The above set has a model. Proof.

An application

Let $Th(\mathfrak{N})$ be the set of all sentences φ satisfying $\mathfrak{A} \models \varphi$. It is called the **true arithmetic**.

Let \mathcal{L}_A^+ be $\mathcal{L}_A \cup \{c\}$, where *c* is a new constant. Consider the set of \mathcal{L}_A^+ :

$$Th(\mathfrak{N}) \cup \{c > \overline{n} | n \in \mathbb{N}\}\$$

Claim. The above set has a model. Proof. Let \mathfrak{A} be the model that we just claim. Then, we can pick \mathfrak{A} such that it is also countable. Let $\mathfrak{A} \upharpoonright_{\mathcal{L}_A}$ be the structure obtained from \mathfrak{A} by dismissing the interpretation of c. Then, $\mathfrak{A} \upharpoonright_{\mathcal{L}_A}$ is a structure of \mathcal{L}_A , which have the same true sentences as \mathfrak{N} , since $\mathfrak{A} \upharpoonright_{\mathcal{L}_A} \models \varphi$, iff $\mathfrak{N} \models \varphi$. However, $\mathfrak{A} \upharpoonright_{\mathcal{L}_A}$ contains an infinitely large "number". $\mathfrak{A} \upharpoonright_{\mathcal{L}_A}$ is a **non-standard**

model for true arithmetic.

Overspill lemma

If $\varphi(\overline{n})$ holds in a non-standard model for infinitely many (finite) numbers *n*, then $\varphi(\overline{a})$ holds for at least one infinite number *a*.

Proof.

Thanks for your attention! Q & A

(日)

20/20