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A stipulation

In the following, unless otherwise claimed, φ, ψ
and so on are used to denote a sentence, and Γ, Σ, T
and so on are used to denote a set of sentences.
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Gödel’s Completeness Theorem

Gödel (1929)
Let Γ be a set of sentences of L and σ be a sentence of L. If Γ |= σ,
then Γ ⊢ σ.

Note. This result also holds for any set Γ of formulas and any
formula σ. However, we usually state and prove this result for
sentences.
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An equivalent statement

A set Γ of formulas is consistent, if it is not the case Γ ⊢ ⊥,
otherwise, it is inconsistent.

Let Γ be a set of sentences of L and σ be a sentence of L. If Γ is
consistent, then Γ has a model.

Proof of equivalence.
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The sketch of the proof

Let Γ be a set of sentences of L and σ be a sentence of L. If Γ is
consistent, then Γ has a model.

Sketch of Proof.
Step 1: extend Γ to a maximally consistent and Henkin set Tm.

Step 2: “construct a model of Tm using Tm itselt.”
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Definition

A set Γ of sentences is closed under derivability, if whenever
Γ ⊢ φ, we always have φ ∈ Γ.

A theory is a set of sentences that is closed under derivability.

Let T = {φ|Γ ⊢ φ}. Then, T is a theory. Usually, Γ is called an
axiom set of T . The elements of Γ are called axioms.
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Axioms for Peano arithmetic

∀x(¬Sx=̇0)

∀x1∀x2(Sx1=̇Sx2 → x1=̇x2)

∀x(x+ 0=̇x)

∀x1∀x2(x1 + Sx2=̇S(x1 + x2))

∀x(x× 0=̇0)

∀x1∀x2(x1 × Sx2=̇(x1 × x2)+ x1)

and all instances from the following schema (induction
schema):

φ(0/x) ∧ ∀x(φ(x) → φ(Sx/x)) → ∀xφ(x)
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Peano arithmetic

Let Γ be the set of the above-mentioned axioms, and let

PA = {φ|Γ ⊢ φ}

where φ is a sentence in the first-order arithmetic language LA.

PA is the theory called Peano arithmetic.
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Example

Prove: PA ⊢ 0 + S0=̇S0.
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Definition

A set Γ of sentences is inconsistent if Γ ⊢ ⊥; otherwise, it is
consistent.
A set Γ of sentences is maximally consistent if

Γ is consistent, and
provided that Γ ⊊ Γ′, then Γ′ is inconsistent.

12 / 29



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Definition

A set Γ of sentences is inconsistent if Γ ⊢ ⊥; otherwise, it is
consistent.
A set Γ of sentences is maximally consistent if

Γ is consistent, and
provided that Γ ⊊ Γ′, then Γ′ is inconsistent.

12 / 29



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Facts about (in)consistency

The following three conditions are equivalent:
Γ is inconsistent,
For some φ, Γ ⊢ φ and Γ ⊢ ¬φ,
For any φ, Γ ⊢ φ.
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Facts about (in)consistency

Γ ∪ {¬φ} is inconsistent, iff Γ ⊢ φ
Γ ∪ {φ} is inconsistent, iff Γ ⊢ ¬φ.
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Example

Prove. PA is consistent. (Hint: by the soundness theorem)
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Facts about maximal consistency

Let Γ be a maximally consistent set of sentences.
Γ is closed under derivability, and thus is a theory.
for any φ, ¬φ ∈ Γ, iff φ /∈ Γ.
for any φ, φ→ ψ ∈ Γ, iff either φ /∈ Γ, or ψ ∈ Γ.

16 / 29



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Facts about maximal consistency

Let Γ be a maximally consistent set of sentences.
Γ is closed under derivability, and thus is a theory.
for any φ, ¬φ ∈ Γ, iff φ /∈ Γ.
for any φ, φ→ ψ ∈ Γ, iff either φ /∈ Γ, or ψ ∈ Γ.

16 / 29



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Facts about maximal consistency

Let Γ be a maximally consistent set of sentences.
Γ is closed under derivability, and thus is a theory.
for any φ, ¬φ ∈ Γ, iff φ /∈ Γ.
for any φ, φ→ ψ ∈ Γ, iff either φ /∈ Γ, or ψ ∈ Γ.

16 / 29



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Facts about maximal consistency

Let Γ be a maximally consistent set of sentences.
for any φ, φ ∧ ψ ∈ Γ, iff φ ∈ Γ, and ψ ∈ Γ.
for any φ, φ ∨ ψ ∈ Γ, iff either φ ∈ Γ, or ψ ∈ Γ.
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Lemma

Each consistent set can be extended to be a maximally
consistent theory.

Proof.

18 / 29



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Contents

1 The Completeness Theorem

2 Maximally Consistent Sets

3 Henkin Extension

19 / 29



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Definition

A theory T in a language L is called a Henkin theory if for
each sentence ∃xφ(x), there is a constant c in L such that
∃xφ(x) → φ(c) ∈ T (such a c is called a witness for ∃xφ(x)).
Let Ti be a theory in the language Li, i = 0, 1.

T1 is an extension of T0, if T0 is a subset of T1.
T1 is an conservative extension of T0, if the sentences in both T1

and L0 are exactly those in T0.
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Definition

Let T be a theory in the language L. Let L∗ be the language
obtained from L by adding infinite new constants:

L∗ = L ∪ {cφ|∃xφ ∈ L}.

Let T ∗ be the theory whose axiom set are

T ∪ {∃xφ(x) → φ(cφ)|∃xφ ∈ L}.
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Lemma

If T is consistent, so is T ∗.
Proof.
If T is consistent, T ∪ {∃xφ(x) → φ(c)} is consistent.
Suppose T ∪ {∃xφ(x) → φ(c)} is inconsistent, that is,

T ∪ {∃xφ(x) → φ(c)} ⊢ ⊥. Then, T ⊢ ¬(∃xφ(x) → φ(c)), and so

T ⊢ ∃xφ(x) ∧ ¬φ(c).

Since T ⊢ ¬φ(c), it follows that T ⊢ ∀x¬φ(x). On the other
hand, T ⊢ ∃xφ(x), that is, T ⊢ ¬∀x¬φ(x). Thus, T is
inconsistent.

T ∗ = {φ|T ∪ {∃xφ(x) → φ(cφ)|∃xφ ∈ L} ⊢ φ}
To prove T ∗ is consistent, we only need to prove

T ∪ {∃xφ(x) → φ(cφ)|∃xφ ∈ L} is consistent.
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Lemma

If T is consistent, so is T ∗.
Proof.
If T is consistent, T ∪ {∃xφ(x) → φ(c)} is consistent.

T ∗ = {φ|T ∪ {∃xφ(x) → φ(cφ)|∃xφ ∈ L} ⊢ φ}
To prove T ∗ is consistent, we only need to prove

T ∪ {∃xφ(x) → φ(cφ)|∃xφ ∈ L} is consistent.
Suppose T ∪ {∃xφ(x) → φ(cφ)|∃xφ ∈ L} is inconsistent,

then T ∪ {∃xφ(x) → φ(cφ)|∃xφ ∈ L} ⊢ ⊥, and so, there exists N
such that T ∪ {∃xφi(x) → φi(cφ)|∃xφi ∈ L, 1 ≤ i ≤ N} ⊢ ⊥.
Therefore, By the result that we just prove, T is inconsistent. A
contradiction!
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Lemma

Suppose T0 is a consistent. For any n ∈ N, let Tn+1 = (Tn)
∗.

Let Tω =
∪

n∈N Tn. Then Tω is a consistent Henkin theory.
Proof. Note that T ∗ is not necessarily a Henkin theory in L∗.

T0 ⊆ (T0)
∗ = T1 ⊆ (T1)

∗ = T2 ⊆ (T2)
∗ = T3 ⊆ . . . . . .

L0 ⊆ (L0)
∗ = L1 ⊆ (L1)

∗ = L2 ⊆ (L2)
∗ = L3 ⊆ . . . . . .

Tω = T0 ∪ T1 ∪ T2 ∪ T3 ∪ . . . . . .
By the finiteness of derivation, we can see Tω is consistent from
every Tn is consistent. Suppose Tω is inconsistent, then Tω ⊢ ⊥.
Thus, φ1, . . . , φN ⊢ ⊥, where φ1, . . . , φN ∈ Tω. For any
1 ≤ i ≤ N , φi ∈ Tω, then there exists mi such that φi ∈ Tmi

.
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Lemma

Suppose T0 is a consistent. For any n ∈ N, let Tn+1 = (Tn)
∗.

Let Tω =
∪

n∈N Tn. Then Tω is a consistent Henkin theory.
Proof.

Tω = T0 ∪ T1 ∪ T2 ∪ T3 ∪ . . . . . .
By the finiteness of derivation, we can see Tω is consistent from
every Tn is consistent. Suppose Tω is inconsistent, then Tω ⊢ ⊥.
Thus, φ1, . . . , φN ⊢ ⊥, where φ1, . . . , φN ∈ Tω. For any
1 ≤ i ≤ N , φi ∈ Tω, then there exists mi such that φi ∈ Tmi

. Let
m be the largest one among mi for all 1 ≤ i ≤ N . Then, for all
1 ≤ i ≤ N , φi ∈ Tm. Then, Tm ⊢ ⊥, a contradiction!
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Lemma

Suppose T0 is a consistent. For any n ∈ N, let Tn+1 = (Tn)
∗.

Let Tω =
∪

n∈N Tn. Then Tω is a consistent Henkin theory.
Proof. We next prove Tω is a theory. Suppose Tω ⊢ φ, we

want φ ∈ Tω. By the finiteness of derivation, from Tω ⊢ φ,
φ1, . . . , φN ⊢ φ, where φ1, . . . , φN ∈ Tω. For any 1 ≤ i ≤ N ,
φi ∈ Tω, then there exists mi such that φi ∈ Tmi

. Let m be the
largest one among mi for all 1 ≤ i ≤ N . Then, for all 1 ≤ i ≤ N ,
φi ∈ Tm. Then, Tm ⊢ φ, and since Tm is a theory, φ ∈ Tm. Hence,
φ ∈ Tω.
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Lemma

Suppose T0 is a consistent. For any n ∈ N, let Tn+1 = (Tn)
∗.

Let Tω =
∪

n∈N Tn. Then Tω is a consistent Henkin theory.
Proof. We next prove Tω is a Henkin theory.

Lω = L0 ∪ L1 ∪ L2 ∪ . . . . . . ,

For any ∃xφ(x) ∈ Lω, we want to prove that for some c ∈ Lω,

∃xφ(x) → φ(c) ∈ Tω.

Since ∃xφ(x) ∈ Lω, we know ∃xφ(x) ∈ LN for some N .

T0 ⊆ . . . . . . ⊆ TN ⊆ (TN)
∗ = TN+1 ⊆ . . . . . .

Then, ∃xφ(x) → φ(cφ) ∈ TN+1. Thus, ∃xφ(x) → φ(cφ) ∈ Tω.

27 / 29



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Corollary

Each consistent set can be extended to be a maximally
consistent theory such that it is also a Henkin theory.

Proof. Suppose Σ is a consistent set, then by the previous
lemma, there exists T ⊇ Σ such that T is a consistent Henkin
Theory. Then, by Lindenbaum’s lemma, T can be extended to T ′

such that T ′ is a maximally consistent theory.
We claim T ′ is a Henkin theory. This is easy by Lemma

4.1.10.
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Thanks for your attention!
Q & A
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