Completeness for First-order Logic I

Ming Hsiung

School of Philosophy and Social Development South China Normal University

The Completeness Theorem

2 Maximally Consistent Sets

3 Henkin Extension

 In the following, unless otherwise claimed, φ , ψ and so on are used to denote a sentence, and Γ , Σ , Tand so on are used to denote a set of sentences.

Gödel's Completeness Theorem

Gödel (1929)

Let Γ be a set of sentences of \mathcal{L} and σ be a sentence of \mathcal{L} . If $\Gamma \models \sigma$, then $\Gamma \vdash \sigma$.

Note. This result also holds for any set Γ of formulas and any formula σ . However, we usually state and prove this result for sentences.

An equivalent statement

 A set Γ of formulas is consistent, if it is not the case Γ ⊢ ⊥, otherwise, it is inconsistent.

Let Γ be a set of sentences of \mathcal{L} and σ be a sentence of \mathcal{L} . If Γ is consistent, then Γ has a model.

Proof of equivalence.

The sketch of the proof

Let Γ be a set of sentences of \mathcal{L} and σ be a sentence of \mathcal{L} . If Γ is consistent, then Γ has a model.

Sketch of Proof.

Step 1: extend Γ to a maximally consistent and Henkin set T_m .

Step 2: "construct a model of T_m using T_m itselt."

The sketch of the proof

Let Γ be a set of sentences of \mathcal{L} and σ be a sentence of \mathcal{L} . If Γ is consistent, then Γ has a model.

Sketch of Proof.

Step 1: extend Γ to a maximally consistent and Henkin set T_m .

Step 2: "construct a model of T_m using T_m itselt."

The Completeness Theorem

2 Maximally Consistent Sets

Henkin Extension

- A set Γ of sentences is closed under derivability, if whenever Γ ⊢ φ, we always have φ ∈ Γ.
- A theory is a set of sentences that is closed under derivability.

Let $T = \{\varphi | \Gamma \vdash \varphi\}$. Then, *T* is a theory. Usually, Γ is called an **axiom set** of *T*. The elements of Γ are called **axioms**.

- A set Γ of sentences is closed under derivability, if whenever Γ ⊢ φ, we always have φ ∈ Γ.
- A theory is a set of sentences that is closed under derivability.

Let $T = \{\varphi | \Gamma \vdash \varphi\}$. Then, *T* is a theory. Usually, Γ is called an **axiom set** of *T*. The elements of Γ are called **axioms**.

- A set Γ of sentences is closed under derivability, if whenever Γ ⊢ φ, we always have φ ∈ Γ.
- A theory is a set of sentences that is closed under derivability.

Let $T = \{\varphi | \Gamma \vdash \varphi\}$. Then, *T* is a theory. Usually, Γ is called an **axiom set** of *T*. The elements of Γ are called **axioms**.

Axioms for Peano arithmetic

- $\forall x(\neg Sx \doteq 0)$
- $\forall x_1 \forall x_2 (\mathbf{S} x_1 \doteq \mathbf{S} x_2 \rightarrow x_1 \doteq x_2)$
- $\forall x(x + \mathbf{0} \doteq x)$
- $\forall x_1 \forall x_2 (x_1 + \boldsymbol{S} x_2 \doteq \boldsymbol{S} (x_1 + x_2))$
- $\forall x(x \times \mathbf{0} \doteq \mathbf{0})$
- $\forall x_1 \forall x_2 (x_1 \times \mathbf{S} x_2 \doteq (x_1 \times x_2) + x_1)$

and all instances from the following schema (induction schema):

•
$$\varphi(\mathbf{0}/x) \land \forall x(\varphi(x) \to \varphi(\mathbf{S}x/x)) \to \forall x\varphi(x)$$

Let Γ be the set of the above-mentioned axioms, and let

 $\mathbf{P}\mathbf{A} = \{\varphi | \Gamma \vdash \varphi\}$

where φ is a sentence in the first-order arithmetic language \mathcal{L}_A .

PA is the theory called Peano arithmetic.

Let Γ be the set of the above-mentioned axioms, and let

 $\mathbf{PA} = \{\varphi | \Gamma \vdash \varphi\}$

where φ is a sentence in the first-order arithmetic language \mathcal{L}_A .

PA is the theory called Peano arithmetic.

Prove: $\mathbf{PA} \vdash \mathbf{0} + S\mathbf{0} \doteq S\mathbf{0}$.

A set Γ of sentences is inconsistent if Γ ⊢ ⊥; otherwise, it is consistent.

- A set Γ of sentences is maximally consistent if
 - Γ is consistent, and
 - provided that $\Gamma \subsetneq \Gamma'$, then Γ' is inconsistent.

- A set Γ of sentences is inconsistent if Γ ⊢ ⊥; otherwise, it is consistent.
- A set Γ of sentences is maximally consistent if
 - Γ is consistent, and
 - provided that $\Gamma \subsetneq \Gamma'$, then Γ' is inconsistent.

Facts about (in)consistency

The following three conditions are equivalent:

- Γ is inconsistent,
- For some φ , $\Gamma \vdash \varphi$ and $\Gamma \vdash \neg \varphi$,
- For any φ , $\Gamma \vdash \varphi$.

Facts about (in)consistency

Γ ∪ {¬φ} is inconsistent, iff Γ ⊢ φ
Γ ∪ {φ} is inconsistent, iff Γ ⊢ ¬φ.

Prove. PA is consistent. (Hint: by the soundness theorem)

- Γ is closed under derivability, and thus is a theory.
- for any φ , $\neg \varphi \in \Gamma$, iff $\varphi \notin \Gamma$.
- for any $\varphi, \varphi \to \psi \in \Gamma$, iff either $\varphi \notin \Gamma$, or $\psi \in \Gamma$.

- Γ is closed under derivability, and thus is a theory.
- for any φ , $\neg \varphi \in \Gamma$, iff $\varphi \notin \Gamma$.
- for any $\varphi, \varphi \to \psi \in \Gamma$, iff either $\varphi \notin \Gamma$, or $\psi \in \Gamma$.

- Γ is closed under derivability, and thus is a theory.
- for any φ , $\neg \varphi \in \Gamma$, iff $\varphi \notin \Gamma$.
- for any $\varphi, \varphi \to \psi \in \Gamma$, iff either $\varphi \notin \Gamma$, or $\psi \in \Gamma$.

- for any $\varphi, \varphi \land \psi \in \Gamma$, iff $\varphi \in \Gamma$, and $\psi \in \Gamma$.
- for any $\varphi, \varphi \lor \psi \in \Gamma$, iff either $\varphi \in \Gamma$, or $\psi \in \Gamma$.

- for any $\varphi, \varphi \land \psi \in \Gamma$, iff $\varphi \in \Gamma$, and $\psi \in \Gamma$.
- for any $\varphi, \varphi \lor \psi \in \Gamma$, iff either $\varphi \in \Gamma$, or $\psi \in \Gamma$.

Each consistent set can be extended to be a maximally consistent theory.

Proof.

The Completeness Theorem

2 Maximally Consistent Sets

<ロ>

- A theory *T* in a language *L* is called a Henkin theory if for each sentence ∃*x*φ(*x*), there is a constant *c* in *L* such that ∃*x*φ(*x*) → φ(*c*) ∈ *T* (such a *c* is called a witness for ∃*x*φ(*x*)).
- Let T_i be a theory in the language \mathcal{L}_i , i = 0, 1.
 - T_1 is an **extension** of T_0 , if T_0 is a subset of T_1 .
 - T₁ is an conservative extension of T₀, if the sentences in both T₁ and L₀ are exactly those in T₀.

- A theory *T* in a language *L* is called a Henkin theory if for each sentence ∃*x*φ(*x*), there is a constant *c* in *L* such that ∃*x*φ(*x*) → φ(*c*) ∈ *T* (such a *c* is called a witness for ∃*x*φ(*x*)).
- Let T_i be a theory in the language \mathcal{L}_i , i = 0, 1.
 - T_1 is an extension of T_0 , if T_0 is a subset of T_1 .
 - T_1 is an **conservative extension** of T_0 , if the sentences in both T_1 and \mathcal{L}_0 are exactly those in T_0 .

- A theory *T* in a language *L* is called a Henkin theory if for each sentence ∃*x*φ(*x*), there is a constant *c* in *L* such that ∃*x*φ(*x*) → φ(*c*) ∈ *T* (such a *c* is called a witness for ∃*x*φ(*x*)).
- Let T_i be a theory in the language \mathcal{L}_i , i = 0, 1.
 - T_1 is an extension of T_0 , if T_0 is a subset of T_1 .
 - T_1 is an **conservative extension** of T_0 , if the sentences in both T_1 and \mathcal{L}_0 are exactly those in T_0 .

- A theory *T* in a language *L* is called a Henkin theory if for each sentence ∃*x*φ(*x*), there is a constant *c* in *L* such that ∃*x*φ(*x*) → φ(*c*) ∈ *T* (such a *c* is called a witness for ∃*x*φ(*x*)).
- Let T_i be a theory in the language \mathcal{L}_i , i = 0, 1.
 - T_1 is an extension of T_0 , if T_0 is a subset of T_1 .
 - T₁ is an conservative extension of T₀, if the sentences in both T₁ and L₀ are exactly those in T₀.

 Let T be a theory in the language L. Let L* be the language obtained from L by adding infinite new constants:

$$\mathcal{L}^* = \mathcal{L} \cup \{ c_{\varphi} | \exists x \varphi \in \mathcal{L} \}.$$

Let T^* be the theory whose axiom set are

$$T \cup \{ \exists x \varphi(x) \to \varphi(c_{\varphi}) | \exists x \varphi \in \mathcal{L} \}.$$

If T is consistent. so is T^* . Proof.

If T is consistent, $T \cup \{\exists x \varphi(x) \rightarrow \varphi(c)\}$ is consistent. Suppose $T \cup \{\exists x \varphi(x) \rightarrow \varphi(c)\}$ is inconsistent, that is, $T \cup \{\exists x \varphi(x) \rightarrow \varphi(c)\} \vdash \bot$. Then, $T \vdash \neg (\exists x \varphi(x) \rightarrow \varphi(c))$, and so $T \vdash \exists x \varphi(x) \land \neg \varphi(c).$

Since $T \vdash \neg \varphi(c)$, it follows that $T \vdash \forall x \neg \varphi(x)$. On the other hand, $T \vdash \exists x \varphi(x)$, that is, $T \vdash \neg \forall x \neg \varphi(x)$. Thus, T is inconsistent.

$$T^* = \{\varphi | T \cup \{ \exists x \varphi(x) \to \varphi(c_\varphi) | \exists x \varphi \in \mathcal{L} \} \vdash \varphi \}$$

22/29

To prove T^* is consistent, we only need to prove $T \cup \{\exists x \varphi(x) \to \varphi(c_{\omega}) | \exists x \varphi \in \mathcal{L}\}$ is consistent.

If T is consistent, so is T^* . Proof.

If T is consistent, $T \cup \{\exists x \varphi(x) \rightarrow \varphi(c)\}$ is consistent.

$$T^* = \{\varphi | \underline{T} \cup \{\exists x \varphi(x) \to \varphi(c_\varphi) | \exists x \varphi \in \mathcal{L}\} \vdash \varphi\}$$

To prove T^* is consistent, we only need to prove $T \cup \{\exists x \varphi(x) \rightarrow \varphi(c_{\varphi}) | \exists x \varphi \in \mathcal{L}\}$ is consistent. Suppose $T \cup \{\exists x \varphi(x) \rightarrow \varphi(c_{\varphi}) | \exists x \varphi \in \mathcal{L}\}$ is inconsistent, then $T \cup \{\exists x \varphi(x) \rightarrow \varphi(c_{\varphi}) | \exists x \varphi \in \mathcal{L}\} \vdash \bot$, and so, there exists Nsuch that $T \cup \{\exists x \varphi_i(x) \rightarrow \varphi_i(c_{\varphi}) | \exists x \varphi_i \in \mathcal{L}, 1 \le i \le N\} \vdash \bot$. Therefore, By the result that we just prove, T is inconsistent. A contradiction!

Suppose T_0 is a consistent. For any $n \in \mathbb{N}$, let $T_{n+1} = (T_n)^*$. Let $T_{\omega} = \bigcup_{n \in \mathbb{N}} T_n$. Then T_{ω} is a consistent Henkin theory. Proof. Note that T^* is not necessarily a Henkin theory in \mathcal{L}^* .

$$T_0 \subseteq (T_0)^* = T_1 \subseteq (T_1)^* = T_2 \subseteq (T_2)^* = T_3 \subseteq \dots$$

$$\mathcal{L}_0 \subseteq (\mathcal{L}_0)^* = \mathcal{L}_1 \subseteq (\mathcal{L}_1)^* = \mathcal{L}_2 \subseteq (\mathcal{L}_2)^* = \mathcal{L}_3 \subseteq \dots$$

$$T_{\omega} = T_0 \cup T_1 \cup T_2 \cup T_3 \cup \dots$$

By the finiteness of derivation, we can see T_{ω} is consistent from every T_n is consistent. Suppose T_{ω} is inconsistent, then $T_{\omega} \vdash \bot$. Thus, $\varphi_1, \ldots, \varphi_N \vdash \bot$, where $\varphi_1, \ldots, \varphi_N \in T_{\omega}$. For any $1 \le i \le N, \varphi_i \in T_{\omega}$, then there exists m_i such that $\varphi_i \in T_{m_i}$.

Suppose T_0 is a consistent. For any $n \in \mathbb{N}$, let $T_{n+1} = (T_n)^*$. Let $T_{\omega} = \bigcup_{n \in \mathbb{N}} T_n$. Then T_{ω} is a consistent Henkin theory. Proof.

 $T_{\omega} = T_0 \cup T_1 \cup T_2 \cup T_3 \cup \dots$

By the finiteness of derivation, we can see T_{ω} is consistent from every T_n is consistent. Suppose T_{ω} is inconsistent, then $T_{\omega} \vdash \bot$. Thus, $\varphi_1, \ldots, \varphi_N \vdash \bot$, where $\varphi_1, \ldots, \varphi_N \in T_{\omega}$. For any $1 \le i \le N$, $\varphi_i \in T_{\omega}$, then there exists m_i such that $\varphi_i \in T_{m_i}$. Let m be the largest one among m_i for all $1 \le i \le N$. Then, for all $1 \le i \le N$, $\varphi_i \in T_m$. Then, $T_m \vdash \bot$, a contradiction!

Suppose T_0 is a consistent. For any $n \in \mathbb{N}$, let $T_{n+1} = (T_n)^*$. Let $T_{\omega} = \bigcup_{n \in \mathbb{N}} T_n$. Then T_{ω} is a consistent Henkin theory. Proof. We next prove T_{ω} is a theory. Suppose $T_{\omega} \vdash \varphi$, we want $\varphi \in T_{\omega}$. By the finiteness of derivation, from $T_{\omega} \vdash \varphi$, $\varphi_1, \ldots, \varphi_N \vdash \varphi$, where $\varphi_1, \ldots, \varphi_N \in T_\omega$. For any $1 \le i \le N$, $\varphi_i \in T_{\omega}$, then there exists m_i such that $\varphi_i \in T_{m_i}$. Let m be the largest one among m_i for all $1 \le i \le N$. Then, for all $1 \le i \le N$, $\varphi_i \in T_m$. Then, $T_m \vdash \varphi$, and since T_m is a theory, $\varphi \in T_m$. Hence, $\varphi \in T_{\omega}$.

Suppose T_0 is a consistent. For any $n \in \mathbb{N}$, let $T_{n+1} = (T_n)^*$. Let $T_{\omega} = \bigcup_{n \in \mathbb{N}} T_n$. Then T_{ω} is a consistent Henkin theory. Proof. We next prove T_{ω} is a Henkin theory.

$$\mathcal{L}_{\omega} = \mathcal{L}_0 \cup \mathcal{L}_1 \cup \mathcal{L}_2 \cup \ldots ,$$

For any $\exists x \varphi(x) \in \mathcal{L}_{\omega}$, we want to prove that for some $c \in \mathcal{L}_{\omega}$,

$$\exists x \varphi(x) \to \varphi(c) \in T_\omega.$$

Since $\exists x \varphi(x) \in \mathcal{L}_{\omega}$, we know $\exists x \varphi(x) \in \mathcal{L}_N$ for some N.

 $T_0 \subseteq \ldots \subseteq T_N \subseteq (T_N)^* = T_{N+1} \subseteq \ldots$

Then, $\exists x \varphi(x) \to \varphi(c_{\varphi}) \in T_{N+1}$. Thus, $\exists x \varphi(x) \to \varphi(c_{\varphi}) \in T_{\omega}$.

Corollary

Each consistent set can be extended to be a maximally consistent theory such that it is also a Henkin theory.

Proof. Suppose Σ is a consistent set, then by the previous lemma, there exists $T \supseteq \Sigma$ such that T is a consistent Henkin Theory. Then, by Lindenbaum's lemma, T can be extended to T' such that T' is a maximally consistent theory.

We claim T' is a Henkin theory. This is easy by Lemma 4.1.10.

Thanks for your attention! Q & A

(日)

29/29