Soundness for First-order Logic

Ming Hsiung

School of Philosophy and Social Development South China Normal University

Let Γ be a set of **formulas** of \mathcal{L} , and let σ be a **formulas** of \mathcal{L} . Suppose all formulas in $\Gamma \cup \varphi$ contain only free variables $x_1, ..., x_n$.

- For a structure 𝔅 (for the language ℒ(𝔅)) and for a₁, ..., a_n ∈ A, we use 𝔅 ⊨ Γ(a₁,..., a_n) to denote 𝔅 ⊨ φ(a₁,..., a_n) holds for all φ ∈ Γ.
- By $\Gamma \models \sigma$, we mean that for any structure \mathfrak{A} , and for any $a_1, ..., a_n \in A$, $\mathfrak{A} \models \Gamma(a_1, ..., a_n)$ implies $\mathfrak{A} \models \sigma(a_1, ..., a_n)$.

Let Γ be a set of **formulas** of \mathcal{L} , and let σ be a **formulas** of \mathcal{L} . Suppose all formulas in $\Gamma \cup \varphi$ contain only free variables $x_1, ..., x_n$.

- For a structure 𝔅 (for the language ℒ(𝔅)) and for a₁, ..., a_n ∈ A, we use 𝔅 ⊨ Γ(a₁,..., a_n) to denote 𝔅 ⊨ φ(a₁,..., a_n) holds for all φ ∈ Γ.
- By $\Gamma \models \sigma$, we mean that for any structure \mathfrak{A} , and for any $a_1, \ldots, a_n \in A$, $\mathfrak{A} \models \Gamma(a_1, \ldots, a_n)$ implies $\mathfrak{A} \models \sigma(a_1, \ldots, a_n)$.

Soundness Theorem and its proof

The soundness theorem

Let Γ and σ be as above. If $\Gamma \vdash \sigma$, then $\Gamma \models \sigma$.

Proof. It suffices to show that for each derivation \mathcal{D} with conclusion σ and hypotheses in Γ , we have $\Gamma \models \sigma$. We prove this result by induction on \mathcal{D} .

(basis)

(∧l)

(It suffices to show that for each derivation \mathcal{D} with conclusion σ and hypotheses in Γ , we have $\Gamma \models \sigma$. We prove this result by induction on \mathcal{D} .)

(∧E)

(It suffices to show that for each derivation \mathcal{D} with conclusion σ and hypotheses in Γ , we have $\Gamma \models \sigma$. We prove this result by induction on \mathcal{D} .)

 $(\rightarrow I)$

(It suffices to show that for each derivation \mathcal{D} with conclusion σ and hypotheses in Γ , we have $\Gamma \models \sigma$. We prove this result by induction on \mathcal{D} .)

 $(\rightarrow \mathsf{E})$

(It suffices to show that for each derivation \mathcal{D} with conclusion σ and hypotheses in Γ , we have $\Gamma \models \sigma$. We prove this result by induction on \mathcal{D} .)

(⊥)

(It suffices to show that for each derivation \mathcal{D} with conclusion σ and hypotheses in Γ , we have $\Gamma \models \sigma$. We prove this result by induction on \mathcal{D} .)

(RAA)

(It suffices to show that for each derivation \mathcal{D} with conclusion σ and hypotheses in Γ , we have $\Gamma \models \sigma$. We prove this result by induction on \mathcal{D} .)

(∀I)

(It suffices to show that for each derivation \mathcal{D} with conclusion σ and hypotheses in Γ , we have $\Gamma \models \sigma$. We prove this result by induction on \mathcal{D} .)

(∀E)

(It suffices to show that for each derivation \mathcal{D} with conclusion σ and hypotheses in Γ , we have $\Gamma \models \sigma$. We prove this result by induction on \mathcal{D} .)

 (RI_1)

 (RI_2)

(It suffices to show that for each derivation \mathcal{D} with conclusion σ and hypotheses in Γ , we have $\Gamma \models \sigma$. We prove this result by induction on \mathcal{D} .)

 (RI_3)

(It suffices to show that for each derivation \mathcal{D} with conclusion σ and hypotheses in Γ , we have $\Gamma \models \sigma$. We prove this result by induction on \mathcal{D} .)

 (RI_4)

(It suffices to show that for each derivation \mathcal{D} with conclusion σ and hypotheses in Γ , we have $\Gamma \models \sigma$. We prove this result by induction on \mathcal{D} .)

 (RI_5)

Thanks for your attention! Q & A

(日)

15/15