

CAMIS-SCNU Conference

流体和固体中的界面问题国际会议 International Conference on Interface Problem in Fluid and Solid

Brochure 会议手册

South China Research Center for Applied Mathematics and Interdisciplinary Studies (CAMIS), South China Normal University 华南师范大学华南数学应用与交叉研究中心

> Guangzhou, China June 18-21, 2019

Address: Zhong Shan Avenue West 55, Tianhe District, Guangzhou 510631, China 地址: 广东省广州市天河区中山大道西55号 邮编: 510631 Website: http://camis.scnu.edu.cn/ E-mail: jczx1@m.scnu.edu.cn

1. Useful Information

(1) Timetable

International Conference on Interface Problem in Fluid and Solid					
June 18-21, 2019					
Time	June 18 th (Tuesday)	June 19 th (Wednesday)	June 20 th (Thursday)	June 21 st (Friday)	
8:30-9:15	8:309:05 Registration 9:05 –9:15 Opening remarks	David Srolovitz	Sijue Wu	Christian Ratsch	
9:15-10:00	Fanghua Lin	Lei Xu	Xianming Xu	Richard Tasi	
10:00-10:30	Coffee break	Coffee break & Photos	Coffee break	Coffee break	
10:30-11:15	Tim Laux	Tiezhen Qian	Juncheng Wei	Yang Xiang	
11:15-12:00	Qiang Du	Wenjun Ying	Kazifumi Ito	Weicheng Wang	
12:00-14:00	Lunch	Lunch	Lunch	Closing Remarks &.Lunch	
14:00-14:45	Qi Wang	Xiaochuan Tian	Eugene Rabkin		
14:45-15:30	Suchuan Dong	Xiaofan Li	Dong Wang		
15:30-16:00	Coffee break	Coffee break	Coffee break	Dementerine	
16:00-16:45	Zhilin Li	Jie Shen	Tao Lin	Departure	
16:45-17:30	Zhenli Xu	Weiqing Ren	Poster Session		
17:30-20:00	Dinner	Banquet	Dinner		

(2) Address

①Accommodation: Huashi Hotel (华师大厦酒店)

2 Hotel Address: Zhongshan Avenue West No. 69, Tianhe District, Guangzhou 510631, China

(广州市中山大道西 69 号华师大厦酒店 (原华师粤海酒店))

(3) Talk venue: South China Research Center for Applied Mathematics and Interdisciplinary Studies (CAMIS),

South China Normal University (华南师范大学华南数学应用与交叉研究中心)

(3) Map: Huashi Hotel-- CAMIS

(4) Map: CAMIS-- Taoyuan

2.Programme

Date	Time	Activity		
	9:00-18:00 11:30-13:30	Desistantian		
Juno		Registration	CAMIS	
June 17th		Lymph		
17 Mon		Lunch		
	18.00-20.30	Dinner	Huashi Hotel	
	10:00 20:00		Buffet	
	08:30-09:05	Registration		
	09:05-09:15	Opening remark by Prof. Zhouping XIN		
	Session 1. Ch	airman: Prof. Zhouping XIN		
	09:15-10:00	Liquid Crystal Droplet and Its Orientation Configuration		
		Prof. Fangnua LIN		
	10:00-10:30	Coffee break	Room 111 of	
	Session 2. Chairman: Prof. Xiaoping WANG			
	10:30-11:15	Weak-strong uniqueness for multiphase mean curvature flow Prof.Tim Laux		
	11:15-12:00	Nonlocal gradient operators in peridynamics and SPH Prof. Qiang DU		
June	12:00-14:00	Lunch	Huashi Hotel	
18 th Tues.	Session 3. Chairman: Prof. Zhilin LI			
	14:00-14:45	Thermodynamically consistent modeling and simulation for interfacial dynamics using phase field models Prof. Qi WANG		
	14:45-15:30	Multiphase Flows of N (N>=2) Immiscible Incompressible Fluids: Modeling and Algorithms Prof. Suchuan DONG		
	15:30-16:00	Coffee break		
	Session 4. Chairman: Prof.Qi WANG			
	16:00-16:45	Some progress on Maxwell & anisotropic interface problems Prof.Zhilin LI		
	16:45-17:30	Mathematical model for charge transport in nanofluidic problems Prof.Zhenli XU		
	17:30	Dinner	Taoyuan restaurant	

	Session 1. Chairman: Prof.Weizhu BAO			
	08:30-9:15	Evolution of Microstructure in Polycrystalline Materials Prof. David Srolovitz		
	09:15-10:00	Diffusion-dominated pinch-off of ultralow surface tension fluids Prof. Lei XU		
	10:00-10:30	Coffee break &.Photos		
	Session 2. Chairman: Prof.David Srolovitz			
	10:30-11:15	Onsager's variational principle and its applications to interfacial dynamics in fluid and solid Prof.Tiezhen QIAN		
June	11:15-12:00	Analysis on the potential theory based Cartesian grid method for interface problems Prof.Wenjun YING		
19th Wed. 12:00-14:00 Lunch		Lunch	Huashi Hotel	
	Session 3. Chairman: Prof.Jie SHEN			
	14:00-14:45	Prof.Xiaochuan TIAN		
	14:45-15:30	Motion of particles in unsteady Stokes and linear viscoelastic fluids Prof. Xiaofan LI		
	15:30-16:00	Coffee break		
	Session 4. Chairman: Prof. Qiang DU			
	16:00-16:45	Structure preserving schemes for complex nonlinear systems Prof. Jie SHEN		
	16:45-17:30	Interface Profile Near the Contact Line in Electro-wetting on Dielectric Prof. Weiqing REN		
	17:30	Banquet	Taoyuan restaurant	
	Session 1. Chairman: Prof.Fanghua LIN			
June 20 th	08:30-9:15	On the motion of water waves with angled crests Prof. Sijue WU		
Thurs.	09:15-10:00	Modeling and Analysis for contact angle hysteresis on rough surfaces Prof. Xianming XU		
	10:00-10:30	Coffee break		

	Session 2. Chairman: Prof.Shijin DING		
	Finite time singularity of the nematic liquid crystal flow in dimension10:30-11:15two		
		Prof. Juncheng WEI	
	11:15-12:00	Optimal control of PDEs with pointwise state constraint Prof. Kazifumi Ito	
12:00-14:00 Lunch			Huashi Hotel
	Session 3. Chairman: Prof. Yang XIANG		
	14:00-14:45	Kangaroo-type Ni-Cr2O3 nanoparticles obtained by solid state dewetting of Ni-Cr multilayers Prof. Eugene Rabkin	
	14:45-15:30	Prof.Dong WANG	
	15:30-16:00	Coffee break	
	Session 4. Ch	airman: Prof.Xiaofan LI	
	16:00-16:45	Some Applications of Immersed Finite Element Methods Prof.Tao LIN	
	16:45-17:30	Poster Session	
	17:30	Dinner	Taoyuan restaurant
	Session 1. Ch	airman: Prof. Jinkai LI	
	08:30-9:15	Mound Formation during Epitaxial Growth studied by Kinetic Monte Carlo and Island Dynamics Simulations Prof.Christian Ratsch	
	09:15-10:00	Implicit boundary integral methods and applications Prof.Richard Tasi	
June 21 th	10:00-10:30	Coffee break	
Eri.	Session 2. Chairman: Prof. Christian Ratsch		
	10:30-11:15	Energy and Dynamics of Grain Boundaries Based on Underlying Mircrostructure Prof. Yang XIANG	
	11:15-12:00	An efficient solver for the coupled Darcy-Stokes system Prof.Weicheng WANG	
	12:00-14:00	Closing Remarks &.Lunch	Huashi Hotel

Organizing Committee		
Zhouping Xin (辛周平) (Chair)	The Chinese University of Hong Kong &. CAMIS	
Xiaoping Wan(王筱平)	Hong Kong University of Science and Technology &. CAMIS	
Weizhu Bao(包维柱)	National University of Singapore &. CAMIS	
Shijin Ding(丁时进)	South China Normal University	

Office staff (Contact persons)		
Wenjing Liang (梁文静)	jczx1@m.scnu.edu.cn, 13622866875,86-20-85210015	
Kaihua Huang (黄凯华)	jczx3@m.scnu.edu.cn, 13719046746,86-20-85210015	
Chunjie Chen(陈纯洁)	jczx5@m.scnu.edu.cn, 13533007372,86-20-85210015	

3.Abstract &. Title

Multiphase Flows of N (N>=2) Immiscible Incompressible Fluids: Modeling and Algorithms

Suchuan Dong(董素川) (Purdue University)

This talk concerns the modeling and simulation of isothermal multiphase flows consisting of N (N>=2) immiscible incompressible fluids with different physical properties (e.g. densities, viscosities, and pair-wise surface tensions). These problems are characterized by multiple types of fluid interfaces and associated surface tensions, multiple three-phase lines, density contrasts and viscosity contrasts, and multiple types of contact lines and contact angles when solid walls are present.We explore the implications of physical consistencies, in particular reduction consistency and thermodynamic consistency, on the modeling and formulation of such systems. By reduction consistency we refer to the property that if only a set of M (1<=M<=N-1) fluids are present in the system (while the other fluid components are absent) then the N-phase governing equations and boundary conditions will exactly reduce to those for the corresponding M-phase system. By thermodynamic consistency we refer to the property that the formulation honors the thermodynamic principles and rigorously satisfies the mass conservation, momentum conservation, second law of thermodynamics, and the Galilean invariance principle. We present a reduction-consistent and thermodynamically consistent formulation and an efficient numerical algorithm for simulating such problems. Numerical simulations and comparisons with physical theories will be presented to demonstrate the physical accuracies of the presented methods.

Nonlocal gradient operators in peridynamics and SPH

Qiang Du(杜强) (Columbia University)

Nonlocality has become increasingly noticeable in nature. The interest in the effective modeling of its presence motivates new mathematical studies of nonlocal operators. Nonlocal gradients are basic elements of the nonlocal vector calculus that play important roles in nonlocal modeling, analysis and computation. In this talk, we present their basic properties and discuss their applications. As illustrations, we show how they can help design stable nonlocal models of mechanics such as peridynamics for elasticity and fracture mechanics. We also discuss how they can improve the nonlocal relaxation of fluid mechanics models to get more robust numerical scheme in the spirit of smoothed particle hydrodynamics (SPH).

Optimal control of PDEs with pointwise state constraint

Kazufumi Ito (North Carolina State University)

In this talk we discuss a point-wise state constraint problem for a general class of optimal control problems. We use the penalty formulation and derive the necessary optimality condition based on the Lagrange multiplier theory. The existence of Lagrange multiplier associated with the point-wise state constraint as a measure is established. Also we develop a semi-smooth Newton method for the penalty formulation. Numerical tests are presented for parabolic, elliptic

and wave equation control problems. The results show that the state constraint optimal control method enables us to develop a much powerful and useful control law.

Weak-strong uniqueness for multiphase mean curvature flow

Tim Laux (University of California, Berkeley)

Multiphase mean curvature flow has, due to its importance in materials science, received a lot of attention over the last decades. On the one hand, there is substantial recent progress in the construction of weak solutions. On the other hand, strongsolutions are—in particular in the case of planar networks—very well understood. In this talk, I will present a weak-strong uniqueness principle: as long as a strong solution to multiphase mean curvature flow exists, any distributional solution with optimal energy dissipation rate has to coincide with this solution. In our proof we construct a suitable relative entropy functional, which in this geometric context may be viewed as a time-dependent variant of calibrations. Just like the existence of a calibration guarantees that one has found a global minimum, the existence of a "time-dependent calibration" ensures that the route of steepest descent in the energy landscape is unique and stable. This is joint work with Julian Fischer, Sebastian Hensel, and Thilo Simon.

Motion of particles in unsteady Stokes and linear viscoelastic fluids

Xiaofan Li(李晓璠) (Illinois Institute of Technology)

Studying effects of moving particles on fluids is of fundamental importance for understanding particle dynamics and binding kinetics. Conventional asymptotic solutions may lead to poor accuracy for neighboring particles. We present an accurate boundary integral method to calculate forces exerted on particles for a given velocity field. The idea is to exploit a correspondence principle between the unsteady Stokes and linear viscoelasticity in the Fourier domain such that a unifying boundary integral formulation can be established for the resulting Brinkman equation.

Some progress on Maxwell & anisotropic interface problems

Zhilin Li(李治林) (North Carolina State University)

In this talk, I will discuss some progress made during my visit to CAMIS. The first topic is an augmented method to solve Maxwell equations using Yee' s scheme on a staggered grid with discontinuous media. The finite difference scheme remains the same. Only correction terms are added at grid points near or at the interface. The second topic is a finite element and finite difference method for anisotropic elliptic interface problems. We propose to combine a finite element discretization at regular grid points whose coefficient part matrix is an SPD, while at irregular grid points, a finite difference discretization based on the maximum principle preserving method whose coefficient part matrix is an M-matrix. A multigrid method based a nine-point stencil is employed to solve the linear system of equations. A scaling strategy along the interface is proposed along with the discretization. Error analysis and numerical examples will also be presented.

Liquid Crystal Droplet and Its Orientation Configuration

Fanghua Lin(林芳华) (Courant Institute of Mathematical Sciences)

Liquid crystal droplets are of great interest from physics and applications. They are important in the study of the topological defects (both in a bulk and on a surface of a droplet). Rigorous mathematical analysis are challenging; and there remains many open questions. In this lecture I shall describe some ongoing work concerning liquid crystal droplets and the associated orientation configurations in the classical Oseen-Frank model.

Some Applications of Immersed Finite Element Methods

Tao Lin (Virginia Tech)

Interface problems appear in numerical simulations over domains consisting of multiple materials that result in discontinuous coefficients in the involved partial differential equations whose solutions are often lack of regularity across the material interfaces. This deficiency of the global regularity requires traditional finite element (FE) methods to use fitted meshes in which each element essentially contains one of the materials; otherwise, their performance cannot be guaranteed. Fitted meshes are unstructured unless material interfaces have trivial geometries. Having to use unstructured meshes can negatively impact the efficiency of FE methods in some applications. The recently developed immersed finite element (IFE) methods are non-traditional FE methods that can utilize interface-independent meshes; hence, they can use structured/Cartesian meshes even for interfaces with non-trivial geometries. We present two applications to demonstration the benefits of IFE methods for moving interface problems. The first application is for incompressible interfacial flows governed by the Stokes equation whose interface is driven by the local fluid velocity. The second application is for some interface inverse problems of elliptic partial differential equations in which the approximate interface is driven by the shape optimization algorithm.

Onsager's variational principle and its applications to interfacial dynamics in fluid and solid

Tiezheng Qian(钱铁铮) (Hong Kong University of Science and Technology)

In this talk, I will first give a brief review of Onsager's variational principle, which is of fundamental importance to linear irreversible thermodynamics. I will then present a few applications of this principle to the interfacial dynamics problems in fluid and solid, including (1) thin film hydrodynamics of binary mixtures, (2) the coffee ring effect, and (3) solid-state dewetting.

Kangaroo-type Ni-Cr2O3 nanoparticles obtained by solid state dewetting of Ni-Cr multilayers

Eugene Rabkin (Israel Institute of Technology)

We employed the solid state dewetting method to produce nanoparticles from the Ni-Cr multilayers deposited on sapphire substrate. During annealing chromium oxidized and migrated towards the metal-sapphire interface. At the late stages of dewetting small nanoparticles of Cr2O3 at the metal-sapphire interface were partially embedded in the larger Ni particles, with the latter forming an overhang, so that the whole particle resembled an adult kangaroo (Ni) with a baby in a pouch (Cr2O3). We have built a kinetic model of simultaneous shape evolution of the two-phase faceted nanoparticle on substrate illustrating the development of this counter-intuitive morphology. Our model allowed estimating the energy of the Cr2O3-sapphire interface.

Mound Formation during Epitaxial Growth studied by Kinetic Monte Carlo and Island Dynamics Simulations

Christian Ratsch (University of California, Los Angeles)

We have studied the formation of mounds during epitaxial growth using kinetic Monte Carlo (KMC) simulations as well as Island Dynamics simulations that employ the level set method. We will explain the ideas behind the Island Dynamics model and some details of its numerical implementation. In the presence of a step edge barrier (that induces an uphill current) mounds form during epitaxial growth. The slopes of these mounds are stabilized by a downward transport mechanism. We study two different downward transport mechanisms, referred to as downhill funneling and transient mobility. Our results show that the scaling exponents that are associated with mound formation depend continuously on the model parameters.

Interface Profile Near the Contact Line in Electro-wetting on Dielectric

Weiqing Ren(任维清) (National University of Singapore)

We consider a charged droplet sitting on a dielectric substrate and study the static profile of the interface near the contact line. We first derive the governing equations using the principle of minimum energy, then discuss the distinguished limit of the model as the dimensionless parameters β and d go to zero with $d/\beta = O(1)$, where β is the (rescaled) square of the imposed electrical potential and d is the thickness of the insulator. Analysis of the inner problem, which governs the interface profile near the contact line, shows the existence of a well-defined apparent contact angle. Significant bending of the interface is observed near the contact line. The apparent contact angle depends on the applied electrical potential and the thickness of the insulator, and the relation agrees well with the Lippmann-Berge equation. This work was supported by Singapore MOE AcRF grants and NSFC (No.11871365, NUSRI(Suzhou)).

Structure preserving schemes for complex nonlinear systems

Jie Shen(沈捷) (Purdue University&.Xiamen University)

Many complex nonlinear systems have intrinsic structures such as energy dissipation or conservation, and/or positivity/maximum principle preserving. It is desirable, sometimes necessary, to preserve these structures in a numerical scheme.I will first present a new approach to deal with nonlinear terms in a large class of gradient flows and Hamiltonian systems. The approach is not restricted to specific forms of the nonlinear part of the free energy or Hamiltonian. It leads to linear and unconditionally energy stable schemes which only require solving decoupled linear equations with constant coefficients. Hence, these schemes are extremely efficient and very accurate when combined with higher-order BDF schemes. However, this approach, in general, will not preserve positivity or maximum principle.I will then present a strategy to construct efficient energy stable and positivity preserving schemes for certain nonlinear evolution systems, such as the Poisson-Nernst-Planck (PNP) equation and Keller-Segel equation, whose solutions remain to be positive.

Evolution of Microstructure in Polycrystalline Materials

David Srolovitz (University of Pennsylvania)

Polycrystals are ensembles of grains of the same crystal structure that are separated by interfaces across which the crystal orientation changes abruptly. While the motion of such interfaces has classically been modeled by curvature flow and/or other gradient flows, the crystal structure and the solid nature of grains strongly constrains the motion of grain boundaries (GBs). GBs migrate by the motion of line defects constrained to lie within the GB plane that have both dislocation and step character (i.e., disconnections) given by the crystallography. I will review how GBs migrate on the macro and microscopic level and examine how the microscopic (disconnection) mechanisms may be incorporated into continuum description of microstructure evolution.

Implicit boundary integral methods and applications

Yen-Hsi Tsai (University of Texas at Austin)

I will review a general framework that is called the implicit boundary integral methods, which can be applied to a variety of problems that involve non-parametrically represented surfaces. The main idea is to formulate appropriate extensions of a given problem defined on a surface to ones in the narrow band of the surface in the embedding space. The extensions is arranged so that the solutions to the extended problems are equivalent, in a strong sense, to the surface problems that we set out to solve. Such extension approaches allow us to analyze the well-posedness of the resulting system, develop systematically and in a unified fashion numerical schemes for treating a wide range of problems that involve both differential and integral operators, and deal with similar problems in which only point clouds sampling the surfaces are given. We will apply this framework to solve some surface PDE problems, boundary integral equations, and optimal control problems.

Thermodynamically consistent modeling and simulation for interfacial dynamics using phase field models

Qi Wang(王奇) (University of South Carolina)

In many applications, phase transition is induced by temperature change. To model these materials systems using a phase field formulation, care must be taken to make sure the governing system of equations obey the thermodynamical laws as well as nonequilibrium thermodynamical protocols. In this talk, I will present a systematical way to derive such equation systems for nonisothermal multiphase materials systems and discuss their consistent numerical approximations leading to entropy stable schemes. Examples will be given for crystal growth phenomena.

An efficient solver for the coupled Darcy-Stokes system

Weicheng Wang(王伟成) (National Tsinghua University)

We propose an efficient solver for the coupled Darcy-Stokes system modeling the composition of porous media region (Darcy) and free flow region (Stokes). An additional set of interface condition, known as the Beavers-Joseph-Saffman condition, is supplemented on the Darcy-Stokes interface. The coupled system is discretized based on a new weak formulationwhich incorporates the BJS condition naturally without additional regularity requirement. The proposed solver is based on a new preconditioning operator which has a nontrivial component on the interface. The preconditioned system is observed to be uniformly well conditioned independent of mesh size, viscosity or permeability.

Finite time singularity of the nematic liquid crystal flow in dimension two

Juncheng Wei(魏军城) (University of British Columbia)

In this talk I will discuss recent construction of finite time blow-up for the nematic liquid crystal flow in a two-dimensional domain. Let Omega be a two-dimensional domain. We prove that given any $k\$ points in Omega there exists a solution (u,d) to the nematic liquid crystal flow equation such that $\lambda abla d$ blows up at these $k\$ points with blow-up rate $\int \frac{T-t}{\log^2 (T-t)}$. The velocity also blows up but at a much lower rate. This is a joint work with C. Lai, Changyou Wang and Y. Zhou.

On the motion of water waves with angled crests

Sijue Wu (邬似珏) (University of Michigan)

In this talk, I will discuss recent progress concerning the solutions of the full water wave equation, for data that allows for angled crested interfaces. We will show that the water wave equation is locally well-posed in a regime that allows for angled crested interfaces. We will also

show that for any data of size ϕ shows that allows for angled crests, the life span of the solution is at least of order $O(\phi^{-3})$.

Energy and Dynamics of Grain Boundaries Based on Underlying Mircrostructure

Yang Xiang(项阳) (Hong Kong University of Science and Technology)

We present continuum models for the energy and dynamics of grain boundaries based on the continuum distribution of the line defects (dislocations or disconnections) on them. The long-range elastic interaction between the line defects is included to maintain a stable grain boundary microstructure. The continuum models is able to describe both normal motion and tangential translation of the grain boundaries due to both coupling and sliding effects that were observed in atomistic simulations and experiments.

Diffusion-dominated pinch-off of ultralow surface tension fluids

Lei Xu(徐磊) (The Chinese University of Hong Kong)

We study the breakup of a liquid thread inside another liquid at different surface tensions. In general, the pinch-off of a liquid thread is governed by the dynamics of fluid flow. However, when the interfacial tension is ultralow (2 to 3 orders lower than normal liquids), we find that the pinch-off dynamics can be governed by bulk diffusion. By studying the velocity and the profile of the pinch-off, we explain why the diffusion-dominated pinch-off takes over the conventional breakup at ultralow surface tensions.

Modeling and Analysis for contact angle hysteresis on rough surfaces

Xianmin Xu(许现民) (Chinese Academy of Science)

Contact angle hysteresis is a complicated wetting phenomenon induced by the inhomogeneity or roughness of the solid surface. There exist stick-slip motions of the three-phase contact line between the two-phase flow interface and the solid boundary. Both numerical simulations and analytical study are very challenging, especially to quantitatively compare with physical experiments. In this talk, we will show some mathematical analysis for the complicated problem. More precisely, we use a phase-field model to study the static and quasi-static problems. We also show that the Onsager principle can be used as a powerful approximation tool to study the dynamic contact angle hysteresis.

Mathematical model for charge transport in nanofluidic problems

Zhenli Xu(徐振礼) (Shanghai Jiaotong University)

We studied structure and dynamics of ions in nanofluidic devices, where dielectric effect plays important role. The ionic cloud surrounding a mobile ion near an interface is tunable due to the force from image charges, thus, the ionic mobility is significantly different from that in region far from the interface. We developed mathematical model to describe the so-called relaxation force by extending the Onsager-Fuoss theory of electrolytes such that the model includes the interfacial effect. Numerical results and analysis are present to show the performance of the model and related methods.

Analysis on the potential theory based Cartesian grid method for interface problems

Wenjun Ying(应文俊) (Shanghai Jiaotong University)

In the past years, we have been working on a potential theory based Cartesian grid method for interface problems. The method solves interface problems on irregular domains with Cartesian grids. It takes advantages of fast elliptic solvers on Cartesian grids and well-conditioning properties of reformulated boundary integral equations. In this talk, I will present some theoretical results on the potential theory based Cartesian grid method for interface problems of the Poisson equation and Stokes equations. Analysis on both stability and accuracy of the method are considered.

4.Participants List

No.	Name	Affiliation	Contact information
1	Weizhu Bao(包维柱)	National University of Singapore&.CAMIS	matbaowz@nus.edu.sg
2	Yana Di(邸亚娜) Institute of Computational Mathematics, CAS		yndi@lsec.cc.ac.cn
3	Shijin Ding(丁时进)	South China Normal University	dingsj@scnu.edu.cn
4	Haixia Dong(董海霞)	Hunan Normal University	hxdong@csrc.ac.cn
5	Suchuan Dong(董素川)	Purdue University	sdong@purdue.edu
6	Qiang Du(杜强)	Columbia University	qd2125@columbia.edu
7	Huajun Gong(龚华均)	Shenzhen University	huajun84@szu.edu.cn
8	Xinggan He(何兴纲)	Central China Normal University	xingganghe@163.com
9	Yeyao Hu(胡烨耀)	The University of Texas at San Antonio	yeyao.hu@utsa.edu
10	Wei Hu(胡卫)	Hong Kong University of Science and Technology	whuae@connect.ust.hk
11	Feimin Huang(黄飞敏)	Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences	fhuang@amt.ac.cn
12	Qiongao Huang(黄琼敖)	Wuhan University	huangqiongao@whu.edu.cn
13	Kazufumi Ito	North Carolina State University	kito@ncsu.edu
14	Wei Jiang(蒋维)	Wuhan University	jiangwei1007@whu.edu.cn
15	Tim Laux	University of California, Berkeley	tim.laux@math.berkeley.edu
16	Xiaofan Li(李晓璠)	Illinois Institute of Technology	lix@iit.edu
17	Xiaoli Li(李晓丽)	Xiamen University	xiaolisdu@163.com
18	Zhilin Li(李治林)	North Carolina State University	zhilin@ncsu.edu
19	Fanghua Lin(林芳华)	Courant Institute of Mathematical Sciences	linf@cims.nyu.edu
20	Tao Lin	Virginia Tech	tlin@math.vt.edu
21	Peter A. Markowich	King Abdullah University of Science and Technology	Peter.Markowich@kaust.edu.sa
22	Tiezheng Qian(钱铁铮)	Hong Kong University of Science and Technology	maqian@ust.hk

23	Eugene Rabkin Israel Institute of Technology		Erabkin@technion.ac.il
24	Christian Ratsch	University of California, Los Angeles	cratsch@ipam.ucla.edu
25	Weiqing Ren(任维清)	National University of Singapore	matrw@nus.edu.sg
26	Xiaofeng Ren(任晓锋)	George Washington University	ren@gwu.edu
27	Jie Shen(沈捷)	Purdue University&Xiamen University	Shen7@purdue.edu
28	David Srolovitz	University of Pennsylvania	srol@seas.upenn.edu
29	Xiaochuan Tian(田小川)	University of Texas at Austin	xtian@math.utexas.edu
30	Yen-Hsi Tsai	University of Texas at Austin	ytsai@math.utexas.edu/tsai@kt h.se
31	Changyou Wang(王长友)	Purdue University	wang2482@purdue.edu
32	Dong Wang(王东)	The University of Utah	dwang@math.utah.edu
33	Qi Wang(王奇)	University of South Carolina Columbia	qwang@math.sc.edu
34	Weicheng Wang(王伟成)	National Tsinghua University	wangwc@math.nthu.edu.tw
35	Xiaoping Wang(王筱平)	Hong Kong University of Science and Technology&.CAMIS	mawang@ust.hk
36	Yan Wang(王燕)	Central China Normal University	wang.yan@mail.ccnu.edu.cn
37	Ziqiang Wang(王自强)	Guizhou Minzu University	wangzq@lsec.cc.ac.cn
38	Juncheng Wei(魏军城)	University of British Columbia	jcwei@math.ubc.ca
39	Sijue Wu (邬似珏)	University of Michigan	sijue@umich.edu
40	Yang Xiang(项阳)	Hong Kong University of Science and Technology	maxiang@ust.hk
41	Zhouping Xin(辛周平)	The Chinese University of Hong Kong&.CAMIS	zpxin@ims.cuhk.edu.hk
42	Lei Xu(徐雷)	The Chinese University of Hong Kong	xulei@phy.cuhk.edu.hk
43	Xianmin Xu(许现民)	Chinese Academy of Science	xmxu@lsec.cc.ac.cn
44	Xinpeng Xu(徐新鹏)	Guangdong Technion - Israel Institute of Technology	xu.xinpeng@gtiit.edu.cn
45	Zhenli Xu(徐振礼)	Shanghai Jiaotong University	xuzl@sjtu.edu.cn
46	Wenjun Ying(应文俊)	Shanghai Jiaotong University	wying@sjtu.edu.cn

47	Xiaofei Zhao(赵晓飞)	Wuhan University	zhxfnus@gmail.com
48	Pengfei Chen (陈鹏飞)	CAMIS	cpfmath@163.com
49	Jinkai Li (李进开)	CAMIS	jklimath@m.scnu.edu.cn
50	Jianfang Lu (卢键方)	CAMIS	jflu@m.scnu.edu.cn
51	Binqiang Xie(解斌强)	CAMIS	xie_binqiang@m.scnu.edu.cn
52	Fanhai Zeng(曾凡海)	National University of Singapore&.CAMIS	fanhaiz@foxmail.com
53	Changjuan Zhang(张昌娟)	CAMIS	macjzhang@ust.hk
54	Xiaotao Zhang(张孝涛)	CAMIS	xtzhang@m.scnu.edu.cn
55	Xuexiu Zhong(钟学秀)	CAMIS	zhongxuexiu1989@163.com
56	Chunjie Chen(陈纯洁)	CAMIS	jczx5@m.scnu.edu.cn
57	Kaihua Huang (黄凯华)	CAMIS	jczx3@m.scnu.edu.cn
58	Wenjing Liang(梁文静)	CAMIS	jczx1@m.scnu.edu.cn