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Reaction-diffusion equation

Oiu—Au="f(u), 0<u<l inR"xR. (1)
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Reaction-diffusion equation

Oiu—Au="f(u), 0<u<l inR"xR. (1)

Travelling wave u(x, t) = v(x + kte,), speed & in direction —e,.

— Av+ k0pv = f(v) inR". (2)
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Reaction-diffusion equation

Oiu—Au="f(u), 0<u<l inR"xR. (1)

Travelling wave u(x, t) = v(x + kte,), speed & in direction —e,.

— Av+ k0pv = f(v) inR". (2)

(a) Monostable (b) Combustion (c) Bistable
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Double well structure

Oru = Au— W'(u)

with W an unbalanced double well potential:

(a) Double well
potential (b) Travelling wave

Travelling waves in 1D:

—g" + r.g' = f(g).
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Propagation phenomena

Theorem (Aronson-Weinberger, Adv. Math. 1978)

Suppose u is a solution to the Cauchy problem for (1) with a
compactly supported initial value ug > 0.
If f is monostable, then for any § > 0, as t — oo,

e u — 1 uniformly in {|x| < (k« — J)t};
e u — 0 uniformly in {|x| > (k« + J)t}.
Along the travelling front {|x| = k.t}, locally u looks like the 1D

travelling wave with minimal speed s, (with a log shift, [Bramson,
Mem. A.M.S. 1983]).
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Propagation phenomena

Theorem (Aronson-Weinberger, Adv. Math. 1978)

Suppose u is a solution to the Cauchy problem for (1) with a
compactly supported initial value ug > 0.
If f is monostable, then for any § > 0, as t — oo,

e u — 1 uniformly in {|x| < (k« — J)t};

e u — 0 uniformly in {|x| > (k« + J)t}.

Along the travelling front {|x| = k.t}, locally u looks like the 1D
travelling wave with minimal speed s, (with a log shift, [Bramson,
Mem. A.M.S. 1983]).

Fact: 1 represents a more stable state than 0 = Invading,
spreading or propagation.
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Bistable case?

@ In the monostable case, 0 is unstable = Hair trigger effect.
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Bistable case?

@ In the monostable case, 0 is unstable = Hair trigger effect.

@ The bistable case is more complicated, because 0 is locally
stable.
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Bistable case?

@ In the monostable case, 0 is unstable = Hair trigger effect.
@ The bistable case is more complicated, because 0 is locally
stable.

@ Assume the initial value is still compactly supported, then as
t — oo,

e Spreading: u — 1 locally uniformly;
e Vanishing: v — 0 locally uniformly;
o Transition: u converges to an equilibrium state

—Aw = f(w) inR"

@ Zlatos, Matano-Du, Polacik, Du-Lou ...
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{u =1/2}: transition layer between 0 and 1. Geometric motion?
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{u =1/2}: transition layer between 0 and 1. Geometric motion?

Setting u.(x, t) := u(e x,e71t), we get

Otz — eAu, = éf(ug). (3)
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{u =1/2}: transition layer between 0 and 1. Geometric motion?

Setting u.(x, t) == u(e~1x,e71t), we get
1
Orue —eAu, = gf(ug). (3)

The ¢ — 0 limit gives the large time, large scale asymptotic
behavior for the motion of transition layer.
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{u =1/2}: transition layer between 0 and 1. Geometric motion?

Setting u.(x, t) == u(e~1x,e71t), we get
1
Orue —eAu, = gf(ug). (3)
The ¢ — 0 limit gives the large time, large scale asymptotic

behavior for the motion of transition layer.

[Fife, CBMS Note 1988], [Evans-Souganidis, Indiana 1989],
[Barles-Evans-Souganidis, Duke 1990],
[Barles-Bronsard-Souganidis, Poincare N.A. 1992],
[Barles-Soner-Souganidis, SIAM. C.0O. 1993]...

Kelei Wang Lipschitz property for level sets



Viscosity approach to front motion

Following Barles-Bronsard-Souganidis, define &, by u. := g (%)

atd)a — EACDE = Ky + m

Kelei Wang Lipschitz property for level sets



Viscosity approach to front motion

Following Barles-Bronsard-Souganidis, define ®. by u. := g (%)

atd)a — EACDE = Ky + m

o . — d, locally uniformly.
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Viscosity approach to front motion

Following Barles-Bronsard-Souganidis, define ®. by u. := g (%)

atha — EACDE = Ky + m

o . — d, locally uniformly.

OtPoo — ki — B+ (1 — [VO[?) =0 in {d >0},
OtPoo — ki + B (1 — [VOs[?) =0 in {d >0}

@ Assume ®.(x,0) converges to the signed distance d(x) to a
smooth hypersurface 09 —
{Poo(x, t) > 0} = {d(x) > —kut}.
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Entire solutions and curved TWs

(1) [Hamel-Nadirashvili, CPAM
1999 and ARMA 2001] studied
entire solutions: qualitative
properties, classification ...

Figure: Conical shaped front, from
[Taniguchi, SIAM. M.A. 2015]
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Entire solutions and curved TWs

(1) [Hamel-Nadirashvili, CPAM
1999 and ARMA 2001] studied
entire solutions: qualitative
properties, classification ...

(2)

Berestycki, Hamel, Monneau,
Roquejoffre, Taniguchi...

In particular, the notion

of “transition fronts" from
[Berestycki-Hamel, Contemp.
Math. 2007 and CPAM 2012].

Figure: Conical shaped front, from
[Taniguchi, SIAM. M.A. 2015]
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Entire solutions and curved TWs

(1) [Hamel-Nadirashvili, CPAM
1999 and ARMA 2001] studied
entire solutions: qualitative
properties, classification ...

(2)
Berestycki, Hamel, Monneau,
Roquejoffre, Taniguchi...

In particular, the notion

of “transition fronts" from
[Berestycki-Hamel, Contemp.
Math. 2007 and CPAM 2012].

(3)
Propagation in heterogenous Figure: Conical shaped front, from
media, nonlocal diffusions, ... [Taniguchi, SIAM. M.A. 2015]
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A conjecture of Hamel and Nadirashvili

Reformulate a conjecture in [Hamel-Nadirashvili, ARMA 2001]:
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A conjecture of Hamel and Nadirashvili

Reformulate a conjecture in [Hamel-Nadirashvili, ARMA 2001]:
@ > (t) :={u(t) =1/2} is an approximate viscosity solution at
large scales of the forced mean curvature flow

V(1) = [k« — Hy(s)] V(o) (5)
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A conjecture of Hamel and Nadirashvili

Reformulate a conjecture in [Hamel-Nadirashvili, ARMA 2001]:
@ > (t) :={u(t) =1/2} is an approximate viscosity solution at
large scales of the forced mean curvature flow

V(1) = [k« — Hy(s)] V(o) (5)
Fife [CBMS Note, 1988]: formal derivation.
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A conjecture of Hamel and Nadirashvili

Reformulate a conjecture in [Hamel-Nadirashvili, ARMA 2001]:
@ > (t) :={u(t) =1/2} is an approximate viscosity solution at
large scales of the forced mean curvature flow

V(1) = [k« — Hy(s)] V(o) (5)
Fife [CBMS Note, 1988]: formal derivation.

@ Solutions of (2) < solutions of TW equation of (5),

dv( " Voo ()
V1+|Vh]? C 1+ |VA)E

Kelei Wang Lipschitz property for level sets



A conjecture of Hamel and Nadirashvili

Reformulate a conjecture in [Hamel-Nadirashvili, ARMA 2001]:
@ > (t) :={u(t) =1/2} is an approximate viscosity solution at
large scales of the forced mean curvature flow

V(1) = [k« — Hy(s)] V(o) (5)
Fife [CBMS Note, 1988]: formal derivation.

@ Solutions of (2) < solutions of TW equation of (5),

dv( " Voo ()
V1+|Vh]? C 1+ |VA)E

e Solutions of (6) = nonnegative Borel measures on S"~ 1.
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Geometric property and its large scale motion
law for {u(t) = 1/2{L?
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Half Lipschitz property

Travelling waves: v is a solution of (2), satisfying supg, v = 1.
dby€(0,1),VAeE[Ll—bo,1), {v=A} isa globally
Lipschitz graph in the e, direction.

Entire solutions: u is an entire solution such that V t € R,
Supyepn U(x,t) = 1. Then for any X € [1 — by, 1),
{u = A} is a globally Lipschitz graph in the time
direction.
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Half Lipschitz property

Travelling waves: v is a solution of (2), satisfying supgs v = 1.
dby€(0,1),VAeE[Ll—bo,1), {v=A} isa globally
Lipschitz graph in the e, direction.

Entire solutions: u is an entire solution such that V t € R,
Supyepn U(x,t) = 1. Then for any X € [1 — by, 1),
{u = A} is a globally Lipschitz graph in the time
direction.

There exist “localized” entire solutions: u(x,t) — 0 as |x| = +o0
(say, for t < 0), whose qualitative properties are very different, see
[Hamel-Ninomiya, arXiv:2005.07420].
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An example

[Hamel-Roquejoffre. Heteroclinic connections for multidimensional
bistable reaction-diffusion equations. DCDS. Series S., 2011].

Theorem

There exists a travelling wave v in R2, monotone in X1,

v(xi, x2) = 1 uniformly as x; — +00.
v(x1, x2) = p(x2) locally uniformly as x; — —oo0,

where @ is an L-periodic solution of

—¢"=f(p) in R.

For X close to 0, {v = A} is the graph of an L-periodic function
hx, ha(kL) = —oo for any k € Z. Not globally Lipschitz.
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Full Lipschitz property

Travelling waves: Assume that as dist(x,{v =1 — by}) = 400,
v(x) — 0 uniformly. YA € (0,1), {v=2A} isa
globally Lipschitz graph in the e, direction.

Entire solutions: Assume as dist((x,t),{u=1— by}) — +o0,
u(x, t) — 0 uniformly. If f is bistable or combustion
type, then VA € (0,1), {u = A} is a globally
Lipschitz graph in the time direction.
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Full Lipschitz property

Travelling waves: Assume that as dist(x,{v =1 — by}) = 400,
v(x) — 0 uniformly. YA € (0,1), {v=2A} isa
globally Lipschitz graph in the e, direction.

Entire solutions: Assume as dist((x,t),{u=1— by}) — +o0,
u(x, t) — 0 uniformly. If f is bistable or combustion
type, then VA € (0,1), {u = A} is a globally
Lipschitz graph in the time direction.

Question 1: Does a suitable “stability condition” for travelling
waves or entire solutions imply the full Lipschitz property?
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Full Lipschitz property

Theorem

Travelling waves: Assume that as dist(x,{v =1 — by}) = 400,
v(x) — 0 uniformly. YA € (0,1), {v=2A} isa
globally Lipschitz graph in the e, direction.

Entire solutions: Assume as dist((x,t),{u=1— by}) — +o0,
u(x, t) — 0 uniformly. If f is bistable or combustion
type, then VA € (0,1), {u = A} is a globally
Lipschitz graph in the time direction.

Question 1: Does a suitable “stability condition” for travelling
waves or entire solutions imply the full Lipschitz property?
Question 2: Is an entire solution always monotone in t? (Cf.
[Guo-Hamel, J. Elliptic Parabol. Equ. 2016].)
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Lipschitz property and cone of monotonicity

Given A > 0, denote the cone

Ci(x,t):={(y,s): s>t, |y—x|<A(s—1t)}.
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Lipschitz property and cone of monotonicity

Given A > 0, denote the cone

Ci(x,t):={(y,s): s>t, |y—x|<A(s—1t)}.

Lemma (Characterization of Lipschitz graphs)

Suppose = C R" x R satisfies the cone condition:
V(x,t) €L, Ci(x,t)nZ=40.

Then X lies on a Lipschitz graph {t = h(x)}.
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Large scale Lipschitz property

dD>0,0< b <1,V (x,t)e{u=1- by},

u>1—by in CI_s(x,t+ D).
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Large scale Lipschitz property

dD>0,0< b <1,V (x,t)e{u=1- by},

u>1—by in CI_s(x,t+ D).

@ A cone of monotonicity condition with time delay, and only for
one level set.
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Large scale Lipschitz property

dD>0,0< b <1,V (x,t)e{u=1- by},

u>1—>by in C:*_a(x, t+ D).
@ A cone of monotonicity condition with time delay, and only for

one level set.
o u(x,t) ~1 = u(-,t) >1—bin a large Br(x).

Kelei Wang Lipschitz property for level sets



Large scale Lipschitz property

dD>0,0< b <1,V (x,t)e{u=1- by},

u>1—by in CI_s(x,t+ D).

@ A cone of monotonicity condition with time delay, and only for
one level set.

o u(x,t)~1= u(-,t) >1—bin a large Br(x).
@ Comparison function which spreads to 1:

Orw — Aw = f(w) in R" x (0, 400),
w(0) = (1 — b) X8y

where b < 1, R > R(b,§), then
w(x,t)>1—b in CI_(0,D).
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Blowing down analysis

Set W := g lovand V. (x):=eW(s !x). They are globally
Lipschitz and satisfies

g”(€ 1L|J6) 2
— + = Ky + ———= (|VV|*=1).
eAV, + k0,V, = K /(6 I 6) (| | )
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Blowing down analysis

Set W := g lovand V. (x) :=eW(e 1x). They are globally
Lipschitz and satisfies

g”(&flwg)

- A\UE nws = R«
FAVe o RICETS

(VWP —1).

Take a subsequence W, — W, then

Lemma
{Vs > 0} = {xn > hoo(x')}, with hy, globally Lipschitz.
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Blowing down analysis

Set W := g lovand V. (x) :=eW(e 1x). They are globally
Lipschitz and satisfies

g”(&flwg)

—eAV, OpV: = Ky
€ + K Ky + g’(eilllle)

(VWP —1).
Take a subsequence W, — W, then

Lemma
{Vs > 0} = {xn > hoo(x')}, with hy, globally Lipschitz.

Idea: Scaling the cone property with time delay gives a cone of
monotonicity for {W., > 0}:

x€{Wy >0} =C", (x) C {V, >0}

Kx /K
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Propagation of cone of monotonicity

Step 1. In the open set {W, > 0}, W, is a viscosity solution of

KOnVoo — ks + By ([VVs|> — 1) = 0.
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Propagation of cone of monotonicity

Step 1. In the open set {W, > 0}, W, is a viscosity solution of

KOnVoo — ks + By ([VVs|> — 1) = 0.

Step 2. For any x € {W, > 0}, Wo(x) equals

inf [K\/IX’ =Y+ (0 = hoo(y))? —

yIERn—l (X" - hoo(y/))

L
254
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Propagation of cone of monotonicity

Step 1. In the open set {W, > 0}, W, is a viscosity solution of

KOnVoo — ks + By ([VVs|> — 1) = 0.

Step 2. For any x € {W, > 0}, Wo(x) equals

inf [K\/]x’ — Y2+ (%0 — hoo(y'))% — (X0 — hoo(y'))

K
y'€Rn-1 28+

Step 3. 3y > 0 such that OV .(x) C {&, > v}
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Propagation of cone of monotonicity

Step 1. In the open set {W, > 0}, W, is a viscosity solution of

KOnVoo — ks + By ([VVs|> — 1) = 0.

Step 2. For any x € {W, > 0}, Wo(x) equals

inf [K\/]x’ — Y2+ (%0 — hoo(y'))% — (X0 — hoo(y'))

K
y'€Rn-1 28+

Step 3. 3y > 0 such that OV .(x) C {&, > v}
Step 4. 3L, > 0 such that for any x € {V > L},

VV(x) € {&n > v/2}.
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Propagation of cone of monotonicity

Step 1. In the open set {W, > 0}, W, is a viscosity solution of

KOnVoo — ks + By ([VVs|> — 1) = 0.

Step 2. For any x € {W, > 0}, Wo(x) equals

inf [K\/IX’ =Y+ (0 = hoo(y))? —

yIERn—l (X” - hoo(.yl))

L
254

Step 3. 3y > 0 such that OV .(x) C {&, > v}
Step 4. 3L, > 0 such that for any x € {V > L},

VV(x) € {&n > v/2}.

<= Uniform semi-concavity in the vanishing viscosity
approximation of H-J equations.
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Completion of the proof

o If v — 0 uniformly on the other side, W, < 0 below
{xn = hoo(X') }.
= In the same way we obtain monotonicity of W in
{v < —L}.
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Completion of the proof

o If v — 0 uniformly on the other side, W, < 0 below
{Xn = hoo(x")}.
= In the same way we obtain monotonicity of ¥ in
{V < —L}.

@ The cone of monotonicity is extended to {—L < W < L} by
the sliding method. (As in the proof of Gibbons conjecture for
Allen-Cahn equation.)
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Completion of the proof

o If v — 0 uniformly on the other side, W, < 0 below
{Xn = hoo(x")}.
= In the same way we obtain monotonicity of ¥ in
{V < —L}.

@ The cone of monotonicity is extended to {—L < W < L} by
the sliding method. (As in the proof of Gibbons conjecture for
Allen-Cahn equation.)

@ This method works well in the parabolic case if we assume the
Elliptic Harnack inequality:

[Vv[+ |0 [Vv]+ |0:v|
AT < oo, AT - b0
(w12 1—v {v<1/2} v
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Completion of the proof

o If v — 0 uniformly on the other side, W, < 0 below
{Xn = hoo(x")}.
= In the same way we obtain monotonicity of ¥ in
{V < —L}.

@ The cone of monotonicity is extended to {—L < W < L} by
the sliding method. (As in the proof of Gibbons conjecture for
Allen-Cahn equation.)

@ This method works well in the parabolic case if we assume the
Elliptic Harnack inequality:

[Vv[+ |0 [Vv]+ |0:v|
AT < oo, AT - b0
(w12 1—v {v<1/2} v

We need the global Lipschitz property of ® to perform the
blowing down analysis.
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An elementary approach

@ The level set {u =1 — by} belongs to the D-neighborhood of
a globally Lipschitz graph {t = h*(x)}.
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An elementary approach

@ The level set {u =1 — by} belongs to the D-neighborhood of
a globally Lipschitz graph {t = h*(x)}.
@ Comparison with the solution to
Oew* — Aw* = f/(1)w*, in Q" ={t > h"(x)},
w* =1 on 0N*.
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An elementary approach

@ The level set {u =1 — by} belongs to the D-neighborhood of
a globally Lipschitz graph {t = h*(x)}.
@ Comparison with the solution to

Oew* — Aw* = f/(1)w*, in Q" ={t > h"(x)},
wh =1 on 0Q*.

[Vw*| | [0w¥| O
(*] W + W S C in Q*.
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An elementary approach

@ The level set {u =1 — by} belongs to the D-neighborhood of
a globally Lipschitz graph {t = h*(x)}.
@ Comparison with the solution to

Oew* — Aw* = f/(1)w*, in Q" ={t > h"(x)},
wh =1 on 0Q*.

[Vw*| |Orw*| . %
(*] W + W S C in Q*.
° &W—"Z < —cin Q*.
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An elementary approach

@ The level set {u =1 — by} belongs to the D-neighborhood of
a globally Lipschitz graph {t = h*(x)}.
@ Comparison with the solution to

{atw* —Aw* = f(D)w*,  in Q= {t> h(x)},

w* = on O0*.

™)
olF <
AN

T

c
AN
Q)
N2

5

2
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An elementary approach

The level set {u =1 — by} belongs to the D-neighborhood of
a globally Lipschitz graph {t = h*(x)}.
Comparison with the solution to

Oew* — Aw* = f/(1)w*, in Q" ={t > h"(x)},
wh =1 on 0Q*.

b < lou < Chyin Q.
f'(0) < 0, the maximum principle holds for
Orp — Do = f'(u)p in {t<h(x)—L}.

Relations between u; and |Vu| in {t > h(x)} can be extended
to {t < h(x)}.

Kelei Wang Lipschitz property for level sets



Geometric motion

In the bistable or combustion case, if u — 0 on the negative side,
the blowing down limit h., is a viscosity solution of

|Vhoo!? —k;2=0 in R". (7)
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Geometric motion

Theorem

In the bistable or combustion case, if u — 0 on the negative side,
the blowing down limit h., is a viscosity solution of

|Vhoo!? —k;2=0 in R". (7)

Equivalent formulation: hypersurfaces ¥(t) := {x : hoo(x) = t}
satisfies (in the viscosity sense)

Ve(n) = V(e

<= Global mean velocity in [Hamel, Adv. Math. 2016].
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Geometric motion

In the bistable or combustion case, if u — 0 on the negative side,
the blowing down limit h., is a viscosity solution of

|Vhoo!? —k;2=0 in R". (7)

Equivalent formulation: hypersurfaces ¥(t) := {x : hoo(x) = t}
satisfies (in the viscosity sense)

Ve(n) = V(e

<= Global mean velocity in [Hamel, Adv. Math. 2016].

Corollary (Minimal speed)

(i) For any travelling wave v, its speed Kk > K.
(i) If k = K, then v(x) = g (x, + b).
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Thanks for your attention!
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