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Reaction-diffusion equation

∂tu −∆u = f (u), 0 < u < 1 in Rn × R. (1)

Travelling wave u(x , t) = v(x + κten), speed κ in direction −en.

−∆v + κ∂nv = f (v) in Rn. (2)

(a) Monostable (b) Combustion (c) Bistable
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Double well structure

∂tu = ∆u −W ′(u)

with W an unbalanced double well potential:

(a) Double well
potential (b) Travelling wave

Travelling waves in 1D:

−g ′′ + κ∗g
′ = f (g).
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Propagation phenomena

Theorem (Aronson-Weinberger, Adv. Math. 1978)

Suppose u is a solution to the Cauchy problem for (1) with a
compactly supported initial value u0 ≥ 0.
If f is monostable, then for any δ > 0, as t →∞,

u → 1 uniformly in {|x | < (κ∗ − δ)t};
u → 0 uniformly in {|x | > (κ∗ + δ)t}.

Along the travelling front {|x | = κ∗t}, locally u looks like the 1D
travelling wave with minimal speed κ∗ (with a log shift, [Bramson,
Mem. A.M.S. 1983]).

Fact: 1 represents a more stable state than 0 =⇒ Invading,
spreading or propagation.
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Bistable case?

In the monostable case, 0 is unstable =⇒ Hair trigger effect.

The bistable case is more complicated, because 0 is locally
stable.

Assume the initial value is still compactly supported, then as
t →∞,

Spreading: u → 1 locally uniformly;
Vanishing: u → 0 locally uniformly;
Transition: u converges to an equilibrium state

−∆w = f (w) in Rn.

Zlatos, Matano-Du, Polacik, Du-Lou ...
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Front motion

{u = 1/2}: transition layer between 0 and 1. Geometric motion?

Setting uε(x , t) := u(ε−1x , ε−1t), we get

∂tuε − ε∆uε =
1

ε
f (uε). (3)

The ε→ 0 limit gives the large time, large scale asymptotic
behavior for the motion of transition layer.

[Fife, CBMS Note 1988], [Evans-Souganidis, Indiana 1989],
[Barles-Evans-Souganidis, Duke 1990],
[Barles-Bronsard-Souganidis, Poincare N.A. 1992],
[Barles-Soner-Souganidis, SIAM. C.O. 1993]...
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Viscosity approach to front motion

Following Barles-Bronsard-Souganidis, define Φε by uε := g
(

Φε
ε

)
.

∂tΦε − ε∆Φε = κ∗ +
g ′′(ε−1Φε)

g ′(ε−1Φε)

(
|∇Φε|2 − 1

)
. (4)

Φε → Φ∞ locally uniformly.{
∂tΦ∞ − κ∗ − β+

(
1− |∇Φ∞|2

)
= 0 in {Φ∞ > 0},

∂tΦ∞ − κ∗ + β−
(
1− |∇Φ∞|2

)
= 0 in {Φ∞ > 0}

Assume Φε(x , 0) converges to the signed distance d(x) to a
smooth hypersurface ∂Ω0 =⇒
{Φ∞(x , t) > 0} = {d(x) > −κ∗t}.
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Entire solutions and curved TWs

Figure: Conical shaped front, from
[Taniguchi, SIAM. M.A. 2015]

(1) [Hamel-Nadirashvili, CPAM
1999 and ARMA 2001] studied
entire solutions: qualitative
properties, classification ...

(2)
Berestycki, Hamel, Monneau,
Roquejoffre, Taniguchi...
In particular, the notion
of “transition fronts” from
[Berestycki-Hamel, Contemp.
Math. 2007 and CPAM 2012].

(3)
Propagation in heterogenous
media, nonlocal diffusions, ...
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A conjecture of Hamel and Nadirashvili

Reformulate a conjecture in [Hamel-Nadirashvili, ARMA 2001]:

Σ(t) := {u(t) = 1/2} is an approximate viscosity solution at
large scales of the forced mean curvature flow

VΣ(t) =
[
κ∗ − HΣ(t)

]
νΣ(t). (5)

Fife [CBMS Note, 1988]: formal derivation.

Solutions of (2) � solutions of TW equation of (5),

div

(
∇h√

1 + |∇h|2

)
= κ∗ −

κ√
1 + |∇h|2

. (6)

Solutions of (6) � nonnegative Borel measures on Sn−1.
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Our goal

Geometric property and its large scale motion
law for {u(t) = 1/2}?
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Half Lipschitz property

Theorem

Travelling waves: v is a solution of (2), satisfying supRn v = 1.
∃ b0 ∈ (0, 1), ∀ λ ∈ [1− b0, 1), {v = λ} is a globally
Lipschitz graph in the en direction.

Entire solutions: u is an entire solution such that ∀ t ∈ R,
supx∈Rn u(x , t) = 1. Then for any λ ∈ [1− b0, 1),
{u = λ} is a globally Lipschitz graph in the time
direction.

There exist “localized” entire solutions: u(x , t)→ 0 as |x | → +∞
(say, for t ≤ 0), whose qualitative properties are very different, see
[Hamel-Ninomiya, arXiv:2005.07420].
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An example

[Hamel-Roquejoffre. Heteroclinic connections for multidimensional
bistable reaction-diffusion equations. DCDS. Series S., 2011].

Theorem

There exists a travelling wave v in R2, monotone in x1,{
v(x1, x2)→ 1 uniformly as x1 → +∞.
v(x1, x2)→ ϕ(x2) locally uniformly as x1 → −∞,

where ϕ is an L-periodic solution of

−ϕ′′ = f (ϕ) in R.

For λ close to 0, {v = λ} is the graph of an L-periodic function
hλ, hλ(kL) = −∞ for any k ∈ Z. Not globally Lipschitz.
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Full Lipschitz property

Theorem

Travelling waves: Assume that as dist(x , {v = 1− b0})→ +∞,
v(x)→ 0 uniformly. ∀λ ∈ (0, 1), {v = λ} is a
globally Lipschitz graph in the en direction.

Entire solutions: Assume as dist((x , t), {u = 1− b0})→ +∞,
u(x , t)→ 0 uniformly. If f is bistable or combustion
type, then ∀λ ∈ (0, 1), {u = λ} is a globally
Lipschitz graph in the time direction.

Question 1: Does a suitable “stability condition” for travelling
waves or entire solutions imply the full Lipschitz property?
Question 2: Is an entire solution always monotone in t? (Cf.
[Guo-Hamel, J. Elliptic Parabol. Equ. 2016].)
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Lipschitz property and cone of monotonicity

Given λ > 0, denote the cone

C+
λ (x , t) := {(y , s) : s > t, |y − x | < λ(s − t)} .

Lemma (Characterization of Lipschitz graphs)

Suppose Σ ⊂ Rn × R satisfies the cone condition:

∀(x , t) ∈ Σ, C+
λ (x , t) ∩ Σ = ∅.

Then Σ lies on a Lipschitz graph {t = h(x)}.
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Large scale Lipschitz property

Lemma

∃ D > 0, 0 < b2 < 1, ∀ (x , t) ∈ {u = 1− b2},

u > 1− b2 in C+
κ∗−δ(x , t + D).

A cone of monotonicity condition with time delay, and only for
one level set.

u(x , t) ∼ 1 =⇒ u(·, t) > 1− b in a large BR(x).

Comparison function which spreads to 1:{
∂tw −∆w = f (w) in Rn × (0,+∞),

w(0) = (1− b)χBR
,

where b � 1, R ≥ R(b, δ), then

w(x , t) > 1− b in C+
κ∗−δ(0,D).
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Blowing down analysis

Set Ψ := g−1 ◦ v and Ψε(x) := εΨ(ε−1x). They are globally
Lipschitz and satisfies

−ε∆Ψε + κ∂nΨε = κ∗ +
g ′′(ε−1Ψε)

g ′(ε−1Ψε)

(
|∇Ψε|2 − 1

)
.

Take a subsequence Ψε → Ψ∞, then

Lemma

{Ψ∞ > 0} = {xn > h∞(x ′)}, with h∞ globally Lipschitz.

Idea: Scaling the cone property with time delay gives a cone of
monotonicity for {Ψ∞ > 0}:

x ∈ {Ψ∞ > 0} =⇒ C+
κ∗/κ

(x) ⊂ {Ψ∞ > 0}.
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Propagation of cone of monotonicity

Step 1. In the open set {Ψ∞ > 0}, Ψ∞ is a viscosity solution of

κ∂nΨ∞ − κ∗ + β+

(
|∇Ψ∞|2 − 1

)
= 0.

Step 2. For any x ∈ {Ψ∞ > 0}, Ψ∞(x) equals

inf
y ′∈Rn−1

[
K
√
|x ′ − y ′|2 + (xn − h∞(y ′))2 − κ

2β+

(
xn − h∞(y ′)

)]
.

Step 3. ∃γ > 0 such that ∂Ψ∞(x) ⊂ {ξn ≥ γ}.
Step 4. ∃L+ > 0 such that for any x ∈ {Ψ > L+},

∇Ψ(x) ∈ {ξn ≥ γ/2}.

⇐= Uniform semi-concavity in the vanishing viscosity
approximation of H-J equations.
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Completion of the proof

If v → 0 uniformly on the other side, Ψ∞ < 0 below
{xn = h∞(x ′)}.
=⇒ In the same way we obtain monotonicity of Ψ in
{Ψ < −L}.

The cone of monotonicity is extended to {−L < Ψ < L} by
the sliding method. (As in the proof of Gibbons conjecture for
Allen-Cahn equation.)

This method works well in the parabolic case if we assume the
Elliptic Harnack inequality:

sup
{v>1/2}

|∇v |+ |∂tv |
1− v

< +∞, sup
{v<1/2}

|∇v |+ |∂tv |
v

< +∞.

We need the global Lipschitz property of Φ to perform the
blowing down analysis.
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An elementary approach

The level set {u = 1− b2} belongs to the D-neighborhood of
a globally Lipschitz graph {t = h∗(x)}.

Comparison with the solution to{
∂tw

∗ −∆w∗ = f ′(1)w∗, in Ω∗ = {t > h∗(x)},
w∗ = 1 on ∂Ω∗.

|∇w∗|
w∗ + |∂tw∗|

w∗ ≤ C in Ω∗.
∂tw∗

w∗ ≤ −c in Ω∗.
b2
C ≤

1−u
w∗ ≤ Cb2 in Ω∗.

If f ′(0) < 0, the maximum principle holds for

∂tϕ−∆ϕ = f ′(u)ϕ in {t < h(x)− L}.

Relations between ut and |∇u| in {t > h(x)} can be extended
to {t < h(x)}.
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Geometric motion

Theorem

In the bistable or combustion case, if u → 0 on the negative side,
the blowing down limit h∞ is a viscosity solution of

|∇h∞|2 − κ−2
∗ = 0 in Rn. (7)

Equivalent formulation: hypersurfaces Σ(t) := {x : h∞(x) = t}
satisfies (in the viscosity sense)

VΣ(t) = κ∗νΣ(t).

⇐⇒ Global mean velocity in [Hamel, Adv. Math. 2016].

Corollary (Minimal speed)

(i) For any travelling wave v, its speed κ ≥ κ∗.
(ii) If κ = κ∗, then v(x) ≡ g (xn + b).

Kelei Wang Lipschitz property for level sets



Geometric motion

Theorem

In the bistable or combustion case, if u → 0 on the negative side,
the blowing down limit h∞ is a viscosity solution of

|∇h∞|2 − κ−2
∗ = 0 in Rn. (7)

Equivalent formulation: hypersurfaces Σ(t) := {x : h∞(x) = t}
satisfies (in the viscosity sense)

VΣ(t) = κ∗νΣ(t).

⇐⇒ Global mean velocity in [Hamel, Adv. Math. 2016].

Corollary (Minimal speed)

(i) For any travelling wave v, its speed κ ≥ κ∗.
(ii) If κ = κ∗, then v(x) ≡ g (xn + b).

Kelei Wang Lipschitz property for level sets



Geometric motion

Theorem

In the bistable or combustion case, if u → 0 on the negative side,
the blowing down limit h∞ is a viscosity solution of

|∇h∞|2 − κ−2
∗ = 0 in Rn. (7)

Equivalent formulation: hypersurfaces Σ(t) := {x : h∞(x) = t}
satisfies (in the viscosity sense)

VΣ(t) = κ∗νΣ(t).

⇐⇒ Global mean velocity in [Hamel, Adv. Math. 2016].

Corollary (Minimal speed)

(i) For any travelling wave v, its speed κ ≥ κ∗.
(ii) If κ = κ∗, then v(x) ≡ g (xn + b).

Kelei Wang Lipschitz property for level sets



Thanks for your attention!
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