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Introduction

3-D isentropic compressible Navier-Stokes equations:

pt + V- (pu) =0,
{(P”)t+v'(pU®u)+vp:v. T (0.1)

Space and time variables:
x = (x1,x2,x3) €R3, t>0,
density and velocity of fluid:
p, U= (u(l), u(z), u(3)) e R3.
viscous stress tensor:
T = p(p)(Vu+ (Vu) ") + A(p)divuls,

where I3 is 3 X 3 matrix.



Introduction

Based on the law of Boyle and Gay-Lussac, it holds

1(p) = eap®, Mp) = eBp’,

e € (0,1] is a constant, u(p), A(p) are shear and bulk viscosity
coefficient, respectively. a, 8 are constants, satisfying
a>0, 2a+35>0.

3-D isentropic compressible Euler equations (¢ = 0):

pt+ V- (pu) =0,
{(pu)t+v.(pu® u) +Vp=0. (0.2)
Given the same initial data to (0.1), (0.2)
(9 u)|e=0 = (po(x) > 0, up(x)),
{ (p,u) — (0,0),as |x| — +oo. (0.3)



Introduction

We consider the equation of state
p=Ap", A>0,v> 1
Thus the momentum equation becomes

p(us 4 u-Vu)+ Ayp " Vp = —ep’Lu+ eV’ - S(u),
—_—— ——
Hyperbolic Elliptic Source

where
Lu=—alu— (a+ B)Vdivu, S(v) = o(Vu+ (Vu) ") + Bdivuls.

Two kinds of degeneracy caused by vacuum or the decay in the far
field:

@ Degeneracy of time involution;

@ Degeneracy of viscosities.



Introduction

For smooth solution (p, u) away from the vacuum, the momentum
equation could be written as

de

5-1
6_1Vp S(u)

A
ur+u-Vu+ 71Vp771—

Lower order
= —ep‘S*lLu .

Higher order

As p — 0, the above equality formally becomes
u+u-Vu=0, d>1,v>1,

and which implies that the velocity u can be governed by a
nonlinear parabolic system if density contains vacuum.
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Theorem

(Makino-Ukai-Kawshima, 1986, Existence of Regular solution
of Euler equations, ) Let v > 1. If the initial data (po, ug) satisfy

y—1

PO > 07 (pOT7 UO) € H3(R3)7

then there exists a time To > 0 and a unique regular solution
(p, u) to Cauchy problem (0.2) with (0.5) satisfying

1 -1
(p’YT) U) € C([07 TO]v H3)7 ((p%)t7 ut) € C([07 TO]: H2)7
where the regular solution (p, u) to (0.2) with (0.5) is defined by
(4)) p20, (0’7, u) € C((0, Tol: R?),
(B) us+u-Vu=0 as p(t,x)=0.




Main Results

Definition

(Regular solution of N-S equations) Let T > 0 be a finite
constant. A solution (p, u) to the Cauchy problem (0.1) with (0.5)
is called a regular solution in [0, T] x R3 if (p, u) satisfies this
problem in the sense of distributions and:

(&) p=0, (o7, ) € C(I0, T H?);

(B) wue C([0, T]; H*) n L*([0, T]; H?),
p"T V4 e L3([0, T]; L?);
(C) ur+u-Vu=0 as p(t,x)=0,

where s’ € [2,3) is an arbitrary constant.




Main Results

( Geng-Li-Zhu, ARMA 2019, Uniform regularity to N-S
equations) If the initial data satisfies

5—1 ~—1

po = 0, (Po2 7p(JTa UO) S H37 (06)

then there exists a time T, > 0 independent of ¢, and a unique
regular solution (p, u) to Cauchy problem (0.1) with (0.5)
satisfying following estimates:

ol | 61 61
sup_ (110" I + 1o"Z 13 + el 25 + [|ull3) (2)
0<t<Tx

T.
+ess sup |u(t)|Ds +/ e\p%V“u\%ds < CO,
0<t<T. 0

for positive constant C° = C%(a, B, A, 7, 6, po, o).



Main Results

Corollary

Actually, (p, u) satisfies Cauchy problem (0.1) with (0.5) classically
in positive time (0, T].
Moreover, if the following condition holds:

5
1 <min{d,~v} < 3’ 0=23, v=23
we still have

pe C(0, T.; H?), p: € C((0, T]; H?).




Main Results

Theorem

(Geng-Li-Zhu, ARMA 2019, Inviscid limit) Let (p, u¢) and
(p, u) are the regular solutions to the Cauchy problem of N-S and
Euler equations, respectively. If (p§, u§) = (po, uo), then (p, u®)
converges to (p, u) as € — 0 in the sense

S R
im sup (1597 = 0 e + [l — ) =0

e=00<t<T,
—1 —1
sup_ (116)F = o7 [ + [lu = ully) <Ce,
0<t< T,
sup_ (1097 — 0% oz + |uf — ulpe) <CVE,
0<t<Tx

for s’ € 0,3) and positive constant C = C(«, 8, A, 7,9, Tk, po, Uo)-




Main Results

Corollary

If the following condition holds
. 5

1 <min{d,v} < 3 0=2,3, v=2,3,

then (p©, u®) converges to (p,u) as € — 0 in the sense

i sup (6" = plls + 1o = ulls) <0
e—0 0<t<

sup (Jlp* = pll + luf — ull) <Ce
0<t<T.

sup (Ipe — plpz + uf — U|D2) <CVe,
0<t< T,

2

for positive constant C = C(a, 3, A, 7,9, Ty, po, Up) and p = @3-1




Step I: Symmetric Reformulation. Introducing
o-1 -1
p=pz, o=p7,
it holds

0—1
gat—}—u.chﬂ—Tgodivu:O,
3
AWe + > A(W)OW = —e®L(W)  + eH(£%) - Q(W),
j=1

Degenerated Elliptic  Lower Order Source

Symmetric:rHyperboIic
(0.7)
where W = (¢, u) and

Lw) = ( b ) ) = ( o ) ,



oW 0 0 A 1 0
( ) - 0 alg__g(lu) » 0 — 0 als )

) =1 b,

u > oe .

Aj = ( 16(e)T 2wl ) =123
> > 1u~713

ej = (01, 02, 93;), djj is Kroneckek symbol satisfying
§j=1,i=j,6;=0,i#j. For any £ € R3, we have

Y
€7 Aog = al¢?, a2 = min {1, (”4A,1) 3



Step I: Linearization with an artificial strong elliptic operator.
If w, 1) are known functions and v = (v(1), v(®) v(3)) is a known
vector function, we consider

0—1
<pt+v-V<p+deivv:O,

AoW; + ZA YW + e(? + 1P )L(W) = eH(p) - Q(V),
j=1
(907 W)‘t:O = (@07 W0)7 (()07 W) - (070)7 as |X’ — +00.
(0.8)
where n € (0,1] is a constant, W = (¢, u), V = (¢, v),
(wﬂ/}a V)|t:0 = (9007 ¢07 UO)-



Lemma

Under the assumptions

we C([0, T]; H?), wr e C([0, T H?), ¢ € ([0, T]; H);
v € C([0, T]; H?), v e C([0, T]; H¥) N L>=([0, T]; H),
wV* e L2([0, T]; L), v € C([0, T]; HY) n L2([0, T]; D?),
v0 >0, ¢o>0, (po, Wo) € H> s'€[2,3).
then there exists a strong solution to this linearization problem
when 1 > 0, such that
p e C([0, T H*), ¢ < C([0, T]; H*);
u e C([o, TI; H*) n L*([o, T]; DY),
u € C([0, T]; HY) N L3([0, T]; D?).




Proof Line

Step Il: A priori estimate independent of 7, ¢. Fixing T >0
and a positive constant ¢y large enough such that

lloll3 + [l¢oll3 + [[uoll3 < co,

T*
sup_ (lw(B)IF + l(D)115 + Iv(D)7) +6/ lWwV2v[3dt < ¢f,
0<t<T* 0

T*
sup  (|lw(t)[52 + [(t)[Be + |[v(t)[3:) + e/ lWwV3v[3dt < c3,
0<t<T* 0

T*
ess sup (|00 + OB+ (@) + [ wT*vBde < &,
0<t<T* 0
(0.9)
for some T* € (0, T) and constants ¢;(i = 1,2, 3) such that
o<ca<ao<la

The constants ¢; and T* will be determined later and dependent
on ¢y and the fixed constants o, 3,7, A, 4, T.



Proof: Applying the operator 85(0 <[¢] £ 3) to (9); and
multiplying both sides by 8§g0 and integrating over R3 by parts, we
obtain
1d
2dt
AL =105V - V) = v VOl NS =104wY V)l
Based on Garliardo-Nirenberg inequality, Holder inequality and
Gronwall’s inequality, it holds

le()ll2 < (Igoll + c3t) exp(Cest) < C,
for 0 <t < Ty =min{T* (1+c3) 2}

105013 < CIV - v]oo|05p 3 + C AS [850]2 + C AS 10502,

d

Z1elos < C(IVVll2lelps + wV*vlo + wlislivls),
Using Gronwall's inequality, for t < T7, one gets

lp(t)|ps < Clco + €71/2) that is e|p(t)[35 < CcG.



Similarly, for (9),, one gets

1d
5 | (W) ALW) + arealV/@? + PV ul3

+are(a+ B[V 92 + nPdivagul3
- / (W) TdivA(V)OEW + are / (Ve Q@) - o

e [ (V064 Q) - 3

3
j=1

-3 f
- 316/ (¥ +n°)Lu) — (<p2+772)L3§U) X
/(o

LV Q) ~ Vi - Q%) ) - k.

Ai(V)OW) — Aj(V)9;05W) - O W

+ aie



Using Young inequality, Holder inequality and Gronwall’s inequality,
one gets

Iw(t H1+e/ Vo T PV 2ul2ds
<C(||Wol13 + c3et) exp(C(c3 + c3e)t) < Ccf,

Wt roz+e/ Ve PV u2ds

<C(|Wol3: + c2(1 + €)t) exp(Cciet) < Ccd,

Wit |Ds+e/ Ve PV ul3ds

SC(\Wong + ¢ )exp(Cc3 t) < Ce2,

for 0 <t < To=min{Ty, (14 c3)~*}.



Proof Line

Similarly, to get the continuity of solution, for
0<t< Tp=min{Ty,(1+c3)"*}, we have the following
estimates

‘Spt(t)g < CCf, ‘@t(t) 2D1 < chv E‘QDt(t)’zD? SCC???

t
We(£) B+ [6e(6) B + / Ve 2ds <Cc,
0
t
|ue(£)[ B + |02 (1) 5o +/ |V2u:|3ds <Cc3,
0

In other words, given fixed ¢y and T, there exist positive constants
T* and ¢; (i = 1,2,3), depending only on ¢y, T and the generic

constant C, independent of €,7, such that if (0.10) holds for w and
V, then the following holds for the strong solution in [0, T*] x R3.



T*
sup () + 65 + [u(t)]2) + / wVuldt < &,
0<t<T* 0

T*
(19003 + 1900 + u(0)Ee) + < | dovtuor <
t 0

T*
ess sup  (|p(t)[Ds + u(t)|hs + elo(t)|5s) + e/ elwV*ul3dt < 3,
0<t< T+ 0

T*
ess sup (IWOIF +16(6)3e + lioe(t)fpe) + [ clucfbuce < o
0<t<T* 0
(0.10)

where we defined

a=o=c=Ciq, T'= min{T,(1+ c3)"*}.



Proof Line

Thus, we have the existence to the Cauchy problem: (7 — 0).

5—
<pt+v-V<p+ wdivv = 0,
AoW, +ZA YW + e L(W) = eH(p) - Q(V),
j=1
(o, W)|t=0 = (0, Wo), (¢, W) —(0,0), as |x| — +oo.

Lemma

Assume that the initial data satisfy (0.6). Then there exists
T* > 0 and a unique strong solution (¢, W) such that

(¢ ¢) € C([0, T*]; H), we C([0, T]; H) n L([0, T*]; H?),
oV e L2([0, T*]; L?), u; € C([0, T*]; HY) N L2([0, T*]; D?),

for s’ € [2,3). Moreover, (¢, W) also satisfies (0.10).




Proof Line

Proof:
o Existence: Strong and weak convergence;
@ Uniqueness: Energy estimates to @1 — @, Wi — Wh,
e Time Continuity: Regularity of ¢, v+, @, ¢+, u, us.

I1I: The existence of nonlinear system. Consider (o<1, Wk+1)
be the unique solution as follows

it + Uk Wkt 4 Sl okdivuk = 0,

3
AOWtk+1 + ZAJ(Wk)aJ Wk+1 +€(§0k+1)2L(Wk+1)
j=1
= eH(¢") - Q(UY),
(", WK =g = (00, W),
(", WKL) —(0,0), as |x| — +o0.




To prove the convergence, let
- k41
GhL =kt _ kW 1 WKL _ WK, then one has

0—1
P4 ik VRt ok vpk 4 ——= > ( kdivuk— 1—|—<,0kd|vu):O,

3
7k —_ —_
AW T ST AW (k2L W
Jj=1

_ ZA 8 Wk k+1( k41 +g0k)L(Wk)

+6("'/(s0"+1 H($")) - Q(u) + eH(*) - Q(u").

Using energy estimate, it holds (T, € (0, min{1, T*})

o) T*
Z( sup |(gkt? Wk+1)|2 +/ ae\gpkHVZJkH@dt) <C<
k=1 t€[0,Ty] 0



Step IV: The uniform of local-in-time well-posedness

@ Existence of regular solution: The regularity estimates of
(0.10) and the strong convergence of

(¢, WX) = (o, ) in L([0, To]; H?),

(,0 7 Pz )E (0, T.) x R?), (u,Vu) € C((0, T:); xR3),

@ Smoothness of regular solutions: Sobolev imbedding theorem
and energy estimate lead to

(p,Vp,u,Vu,u,divT) € C((0, T,.) x R3).

o The proof ofpe C([0, T.]; H3) n C([0, T.]; H?):
p= <p51 597 > 3, If1<(5<5
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Step V: Vanishing viscosity limit. Denote W = We— W, it
satisfies the error system

3 3
AW e+ Y AW)GW = =" AW )W — e(°)?L(WF).
. j=1 j=1
w ’t:o = (ﬁ67 DE)|t:O = (070)
(0.11)

Lemma

If W€ and W are the regular solution to the Cauchy problem of
N-S and Euler equations, respectively, then we have

Wil < Ce, [W'p2 < CeV2.

where C is independent of e.




Applying the operator a5 on (0.11), then multiplying it by 205 W*
and integrating by parts, using the uniform regularity estimates on
We, W, ¢f, it holds
2 G IWIR <5 [@SW ) Ao(@sW)
dt L=dt ) '~ X
<C||We|]2 + Ce2, |¢| = 0,1,
| sAWiR+cl 012)
2 5o W <5 [ @) Ao(oEW)
<CIWp + Ce+ CelpVHuf3, [ = 2.

According to Grownwall's inequality, the Lemma is proved. If
s’ € (2,3), we have

w|g

7€ € B pp— s _
W ()l < CIW (t)llp * W (1)llF < Ce



1 <min{d,v} < g,

one has % > 3,p = ¢-1, from the above inequalities, so one
gets

lim sup_ ([|(p° = p)(B)lls + (" = w)(®)]|sr) =0,
e—~00<t<T,

oS (16" = (Ol + (v = u)(B)ll) <Ce,  (0.13)

s (I = p)(®)lon + I(u — )(8)|o2) <CVE

Thus, we proved the inviscid limit Theorem.
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