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Physical Background

A bow shock generated by a solar explosion
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Physical Background

A small scale X-15 placed in a supersonic wind tunnel (from
NASA)
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Physical Background

Diffraction of a shock wave inside a box (Van Dyke: An
album of fluid motion)
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Physical Background

Transonic shocks in nozzles (Van Dyke: An album of fluid
motion)
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Physical Background

Transonic shocks in nozzles

For an uniform supersonic flow entering a de Laval nozzle, Courant and
Friedrichs proposed the following problem on transonic shock phenomena:
". . . . . . How does the flow, after having attained supersonic speed behind
the throat, adjust itself to the prescribed receiver pressure pr?. . . . . . but at
a certain place in the diverging part of the nozzle a shock front intervenes,
the gas is compressed and slow down to subsonic speed. From there on the
gas is further compressed and slow down; . . . . . . The position and strength
of the shock front are automatically adjusted so that the end pressure at
the exit becomes pr."

Qin Zhao (WHUT) Stabilization effect of frictions 6 / 49



Physical Background

Unsteady compressible Euler equations

Unsteady Euler equations for compressible fluids in Rd :
∂tρ +div(ρu) = 0,
∂t(ρu)+div(ρu⊗u)+∇p = 0,
∂t(ρE)+div((ρE + p)u) = 0,

(1.1)

Piecewise smooth solution: Majda (1983); Alinhac(1989);
Coulombel-Secchi(2008); ...
Persistence of shocks in ducts: Yuan (2012); Fang-Xiang-Xiao (2019)
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Physical Background

Quasi-one dimensional model

Quasi-one dimensional model including frictions and heating:

(Aρ)t +(Aρu)x = 0,

(Aρu)t +
(

A(ρu2 + p)
)

x
= Ax p−α

√
Aρu|u|,

(AρE)t +
(

A(ρE + p)u
)

x
= βAQ(x)−α

√
Aρu2|u|,

A(x)> 0 is the cross section of the nozzle, Q(x) is a given function
representing the heating effect, α,β > 0 is the coefficient of frictions and
heating, β = 0 is called Fanno flows, while α = 0 is called Rayleigh flows.

Piecewise smooth solution: Embid-Goodman-Majda (1984);
Rauch-Xie-Xin (2013)
L∞ solution: Tsuge (2015); Chen-Schrecker (2018); Cao-Huang-Yuan
(2019)
BV solution: Liu (1982); Chou-Hong-Huang-Quita (2018)
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Physical Background

Steady flows

Steady compressible Euler equations
– free boundary problem of elliptic-hyperbolic composite system
Isentropic steady irrotational flows (potential flows)
– free boundary problem of elliptic equation
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Physical Background

Subsonic flows

For the 2-D steady case:
Potential flows: Xie-Xin(2007); Wang-Xin(2019, Smooth transonic
flows)
Euler flows: Chen-Deng-Xiang(2012); Du-Xie-Xin(2014, Large
vorticity); Chen-Huang-Wang-Xiang(2019, Large vorticity)

For the M-D steady case:
Potential flows: Du-Xin-Yan(2011); Liu-Yuan(2014, Largely-open
nozzles); Liu(2010, Global uniqueness)
Euler flows: Chen-Xie(2014); Weng(2015); Du-Duan(2011, Axially
symmetric); Deng-Wang-Xiang(2018, Nontrivial swirl);
Liu-Xu-Yuan(2016, Spherically symmetric); Chen-Huang-Wang(2016,
Subsonic-sonic limt)
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Physical Background

Transonic shocks(potential flows)

For the M-D steady case:
Stability
Canic-Keyfitz-Lieberman (2000);
Chen-Feldman (2003; 2004 etc.);
Xin-Yin (2005; 2008 etc.);
Bae-Feldman (2011)
Uniqueness of special solutions
Chen-Yuan (2009); Liu-Yuan (2009)
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Physical Background

Transonic shocks(Euler flows)

For the 2-D steady case:
Stability
Chen (2005; 2009); Yuan (2006); Chen-Chen-Song (2006);
Chen-Chen-Feldman (2007); Xin-Yan-Yin (2009); Li-Xin-Yin (2009;
2013); Fang-Xin(2019); Gao-Liu-Yuan(2020) etc.
Uniqueness of transonic shocks
Fang-Liu-Yuan (2013)

For the 3-D case:
Stability
3-D axisymmetric: Li-Xin-Yin(2010); Park-Ryu(2019); Park(2019);
Weng-Xie-Xin(2019); Fang-Gao(2020)
3-D: Chen (2008); Chen-Yuan (2008); Liu-Xu-Yuan (2016)
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Mathematical Formulation

Mathematical model

Three-dimensional steady non-isentropic compressible Euler system
with frictions is governed by

div(ρu) = 0,

div(ρu⊗u)+grad p = ρb,

div(ρuB) = ρb ·u,
(2.1)

Velocity : u = (u0,u1,u2)>, Pressure : p, Density : ρ ,
Bernoulli constant : B = 1

2 |u|
2 + γ

γ−1
p
ρ
,

Adiabatic exponent : γ > 1,
Frictions: b= (−µ(u0)2,0,0)>.
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Mathematical Formulation

Mathematical model

For the polytropic gas, the equation of state are given by

p = RρT, e = cvT, γ = 1+R/cv > 1,

and
p = p(ρ,S) = κρ

γeS/cv , e =
κ

γ−1
ρ

γ−1eS/cv =
RT

γ−1
,

where R, κ , cv and γ are all positive constants. Then the sonic speed is
given by c =

√
γ p/ρ .
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Mathematical Formulation

Elliptic-hyperbolic composite-mixed type

Symmetric form:

A0(U)∂0U +A1(U)∂1U +A2(U)∂2U =W (U), U = (p,u,s)> ∈ R5.

If u0 ∈ (0,c) and |u|< c, then for any (ξ ,η) ∈ R2 \{(0,0)}, A0(U) is
nonsingular and det(λA0−A1ξ −A2η) = 0 has a real eigenvalue
λ0 =

u1ξ+u2η

u0 of multiplicity three, and a pair of complex eigenvalues
λ± = λR±

√
−1λI of multiplicity one. Here

λR =
u0

(u0)2− c2 (u
1
ξ +u2

η)

and

λI =
c
√

(c2− (u0)2)(ξ 2 +η2)− (u1ξ +u2η)2

(u0)2− c2

are real.
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Mathematical Formulation

Problem (T)

Let Ω = {(x0,x1,x2) : x0 ∈ (0,L),x′ = (x1,x2) ∈ T2} be the duct with
Σ0 = {0}×T2 and Σ1 = {L}×T2. For the velocity vector u = (u0,u1,u2)>,
we call u0 the normal velocity and u′ = (u1,u2)> the tangential velocity.

Suppose that

Sψ = {(x0,x′) ∈Ω : x0 = ψ(x′), x′ ∈ T2}

is a surface, where ψ : T2→Ω is a C1 function. The normal vector field on
Sψ is given by

n = (1,−∂1ψ,−∂2ψ).
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Mathematical Formulation

Definition 2.1 (Transonic shock)

Let ψ ∈C1(T2) and U± = (p±,s±,B±,(u′)±) ∈C1(Ω±ψ)∩C(Ω±ψ). We say
that U = (U−,U+;ψ) is a transonic shock solution, if
1) U± solve the system (2.1) in Ω±ψ in the classical sense;
2) U− is supersonic, and U+ is subsonic;
3) the Rankine–Hugoniot jump conditions hold across Sψ :

[ρ(u ·n)u+ pn] = 0, (2.2)
[ρ(u ·n)] = 0, (2.3)

[ρ(u ·n)B] = 0, (2.4)

4) there holds the physical entropy condition

[p] = p+|Sψ − p−|Sψ > 0. (2.5)
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Mathematical Formulation

Problem (T)

We prescribe the following Cauchy data:

U =U−0 (x′) on Σ0. (2.6)

Here (u0)−0 > c−0 . On the exit, we propose the pressure

p = p1(x′) on Σ1. (2.7)

Problem (T): Find a transonic shock solution in Ω which satisfies the
boundary conditions (2.6) and (2.7) pointwisely.
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Main Results

Background Solution

Suppose that the flow depends only on x0, then

d
dx0 (ρu) = 0,

d
dx0 (ρu2 + p) =−µρu2,

d
dx0

(
ρ(

1
2

u2 +
γ p

(γ−1)ρ
)u
)
=−µρu3.

For Mach number M 6= 1, we could solve that

du
dx0 =

µM2

1−M2 u,
dρ

dx0 =
µM2

M2−1
ρ,

dp
dx0 =

µγM2

M2−1
p.
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Main Results

Background Solution

and

dB
dx0 =− 2µ(γ−1)M2

(γ−1)M2 +2
B,

ds
dx0 = 0,

dT
dx0 = (γ−1)

µM2

M2−1
T,

If the flow is subsonic in the duct, namely M < 1 for x0 ∈ [0,L],

du
dx0 > 0,

dρ

dx0 < 0,
dp
dx0 < 0,

dM
dx0 > 0,

dT
dx0 < 0.

Qin Zhao (WHUT) Stabilization effect of frictions 20 / 49



Main Results

Background Solution

The equation satisfied by the Mach number is decoupled:

dM
dx0 =

γ +1
2

µM3

1−M2 . (3.1)

Let the Mach number of the flow at the entry {x0 = 0} and the exit
{x0 = L} be M0 and M1, and 0 < M0 < M1 < 1. Then integrating (3.1) for
x0 from 0 to l yields

l =
1

M2
0
− 1

M2
1
+ lnM2

0 − lnM2
1

µ(γ +1)
. (3.2)

Therefore, the maximal length of a duct for a subsonic flow is

LM0 =

1
M2

0
+ lnM2

0 −1

µ(γ +1)
> 0. (3.3)
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Main Results

Background Solution

Let L1 < LM0 be the distance from the entry to the transonic shock
front. Utilizing (3.2), by

L1 =

1
M2

0
− 1

M2
−
+ lnM2

0 − lnM2
−

µ(γ +1)
, (3.4)

we could solve M−. Then by R-H conditions, we get M+. So the maximal
length from the transonic shock front to the exit is

L2 = LM+ =

1
M2

+
+ lnM2

+−1

µ(γ +1)
. (3.5)

Hence for given M0 > 1, suppose that L < L1 +L2, we may construct a
family of special transonic shock solutions.
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Main Results

Theorem 3.1 (Stability of transonic Fanno flow, Yuan-Z., 2020)

Suppose that Ub satisfies the S-Condition, and α ∈ (0,1). There exist ε0
and C∗ depending only on Ub and γ,α,L such that if∥∥U−0 −U−b

∥∥
C4(Σ0)

≤ ε ≤ ε0,
∥∥p1− p+b

∥∥
C3,α (Σ1)

≤ ε ≤ ε0, (3.6)

then there exists a transonic shock solution U = (U−,U+;ψ) to Problem
(T), so that U− ∈C4(Ω−ψ), p+ ∈C3,α(Ω+

ψ), u+,ρ+,s+ ∈C2,α(Ω+
ψ),

(u+,ρ+,s+)|Sψ ∈C3,α(T2), ψ ∈C4,α(T2), and∥∥U−−U−b
∥∥

C4(Ω−ψ )
≤C∗ε, (3.7)∥∥U+

∣∣
Sψ −U+

b

∣∣
Sψ

∥∥
C3,α (T2)

+
∥∥U+−U+

b

∥∥
3 ≤C∗ε, (3.8)

‖ψ− rb‖C4,α (T2) ≤C∗ε. (3.9)
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Main Results

Main difficulties

System of elliptic-hyperbolic composite type

No general theory
Choosing suitable boundary conditions

The variable background solution
New phenomena: Nonlocal elliptic problems
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Sketch of Proof

Sketch of Proof

The theorem is proved by solving the following problems:
A transport equation of Bernoulli constant
A transport equation of entropy
A second-order nonlocal elliptic equation of pressure
Transport equations of tangential velocity
A div-curl system of the tangential velocity u′|Sψ on T2

The equations for the profile and the position of the surface Sψ
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Sketch of Proof

Proposition 4.1

Suppose that p ∈C2(Ω)∩C1(Ω), ρ,u ∈C1(Ω), and ρ > 0,u0 6= 0 in Ω.
Then p,ρ,u solve the system (2.1) in Ω if and only if they satisfy

DuB−b ·u = 0, (4.1)
DuA(s) = 0, (4.2)

Du

(
1

γ p
Du p

)
−div

(
1
ρ

grad p
)
−∂ juk

∂ku j +divb= 0, (4.3)

Duuβ +
1
ρ

∂β p = 0, β = 1,2, (4.4)

and the boundary condition:

1
γ p

Du p+divu = 0. (4.5)
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Sketch of Proof

Divergence of tangential velocity field on Sψ

Using the commutator relation for a function f on Ω,

∂β ( f |Sψ ) = ∂β ψ(∂0 f )|Sψ +(∂β f )|Sψ , β = 1,2,

Then the boundary condition (4.5) on Sψ becomes{
∂0 p̂+ γ1 p̂+ γ2∂β (u

β |Sψ )
}∣∣∣

Sψ
+g = 0.

which is equivalent to

∂β (u
β |Sψ ) = µ5 (∂0 p̂)|Sψ +µ6 ψ

p +µ6 (rp− rb)

+ g5(U,U−,ψ,DU,Dψ), (4.6)

if we replace p̂|Sψ by ψ .
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Sketch of Proof

Decomposition of R-H conditions

Let m , ρ(u ·n)|Sψ = ρ−(u− ·n)|Sψ 6= 0 be the mass flux, then the
R-H conditions (2.2)-(2.4) may be written as

[m] = 0, [B] = 0, (4.7)

and

[mu0 + p] = 0, (4.8)
[muβ − p∂β ψ] = 0, β = 1,2. (4.9)

If [p]> 0, from (4.9), we solve that

∂β ψ =
m[uβ ]

[p]

∣∣∣∣∣
Sψ

= µ0(uβ |Sψ )+gβ

0 , (4.10)

with

µ0 =
(ρu0)b

p+b − p−b

∣∣∣∣
x0=rb

> 0.
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Sketch of Proof

Decomposition of R-H conditions

It is necessary that ∂2∂1ψ−∂1∂2ψ = 0, which implies

∂2(u1|Sψ )−∂1(u2|Sψ ) =− 1
µ0

(∂2g1
0−∂1g2

0). (4.11)

Since ψ is well defined on T2 , then
∫ 2π

0

(
µ0(u1|Sψ )+g1

0

)
(ψ(s,x2),s,x2)ds = 0,∫ 2π

0

(
µ0(u2|Sψ )+g2

0

)
(ψ(x1,s),x1,s)ds = 0.

(4.12)

On the contrary, (4.11)-(4.12) are also sufficient for the existence of a
function ψ p on T2 so that (4.10) holds, and

∫
T2 ψ pdx1dx2 = 0.
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Sketch of Proof

Linearization of R-H conditions

We linearize the R–H conditions:

Gi(V,V−) = Ψi(U,U−,Dψ), i = 1,2,3,

with

G1 = [ρ(u0)2 + p], Ψ1 = ∂1ψ[ρu0u1]+∂2ψ[ρu0u2],

G2 = [ρu0], Ψ2 = ∂1ψ[ρu1]+∂2ψ[ρu2],

G3 = [B], Ψ3 = 0.

One can obtain

û0|Sψ = µ1 (ψ
p + rp− rb)+g1(U,U−,ψ,Dψ), (4.13)

p̂|Sψ = µ2 (ψ
p + rp− rb)+g2(U,U−,ψ,Dψ), (4.14)

ρ̂|Sψ = µ3 (ψ
p + rp− rb)+g3(U,U−,ψ,Dψ). (4.15)

Using A(S) = pρ−γ , we also obtain

Â(S)|Sψ = µ4 (ψ
p + rp− rb)+g4(U,U−,ψ,Dψ).
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Sketch of Proof

Problem (T1)

Problem (T1): Find ψ = ψ p+ rp and Û =U−U+
b in Ω+

ψ solving the
following problems (4.16)–(4.19).

The Cauchy problem of transport equations for B̂ :DuB̂+2µu0B̂ =
2µu0

γ−1
ρ

γ−1
b Â(s)+

2µu0

ρb
p̂+h(U) in Ω

+
ψ ,

B = B− on Sψ .

(4.16)
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Sketch of Proof

Problem (T1)

A second order elliptic equation for p̂:
L(p̂) = f (U,DU,D2 p) in Ω

+
ψ ,

p̂ = p1− p+b on Σ1,

p̂ = µ2 (ψ
p + rp− rb)+g2(U,U−,ψ,Dψ) on Sψ ,

(4.17)

where

L(p̂) , (t−1)∂ 2
0 p̂−∂

2
1 p̂−∂

2
2 p̂+µd1(t)∂0 p̂+µ

2d2(t)p̂

+µ
2
ρbd3(t)B̂+µ

2
ρ

γ

b d4(t)Â(s).
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Sketch of Proof

Problem (T1)

The Cauchy problems of transport equations for Â(s) and
uβ (β = 1,2) :{

DuA(s) = 0 in Ω
+
ψ ,

Â(S) = µ4 (ψ
p + rp− rb)+g4(U,U−,ψ,Dψ) on Sψ ,

(4.18)

and 
Duuβ =− 1

ρ
∂β p in Ω

+
ψ ,

uβ = uβ

0 on Sψ .

(4.19)
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Sketch of Proof

Problem (T1)

The equation for the surface Sψ and the div-curl system of the
tangential velocity u′|Sψ on T2;

∂β ψ = µ0(uβ |Sψ )+gβ

0 (U,U−,Dψ), β = 1,2,

∂β (u
β |Sψ ) = µ5 (∂0 p̂|Sψ )+µ6 ψ

p +µ6 (rp− rb)

+g5(U,U−,ψ,DU,Dψ),

∂2(u1|Sψ )−∂1(u2|Sψ ) =− 1
µ0

(∂2g1
0−∂1g2

0),∫ 2π

0

(
µ0(u1|Sψ )+g1

0

)
(ψ(s,x2),s,x2)ds = 0,∫ 2π

0

(
µ0(u2|Sψ )+g2

0

)
(ψ(x1,s),x1,s)ds = 0.

(4.20)
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Sketch of Proof

Problem (T2)

Acting the divergence operator to the first equation in (4.20) and
using the second equation, we derive that

∆
′
ψ

p +µ7ψ
p = µ0µ6(rp− rb)+µ0µ5 (∂0 p̂|Sψ )

+ g6(U,U−,ψ,DU−,DU,Dψ,D2
ψ),

Here ∆′ is the standard Laplace operator on T2.
Then we get

∆
′(p̂|Sψ )+µ7(p̂|Sψ )+µ8(∂0 p̂|Sψ )

= g8(U,U−,ψ,DU,DU−,Dψ,D2U,D2U−,D2
ψ,D3

ψ),

if we replace ψ by p̂|Sψ .
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Sketch of Proof

Problem (T2)

By the second equation in (4.20), using the divergence theorem, and
recall that

∫
T2 ψ pdx1dx2 = 0, we have

rp− rb =−
1

4π2µ6

∫
T2

(
µ5 (∂0 p̂|Sψ )+g5(U,U−,ψ,DU,Dψ)

)
dx1dx2.

Then we obtain

ψ
p =

1
µ2

(
(p̂|Sψ )−µ9

∫
T2
(∂0 p̂|Sψ )dx1dx2 +g9(U,U−,ψ,Dψ)

)
.
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Sketch of Proof

Problem (T2)

Problem (T2): Find ψ = ψ p+ rp and Û =U−U+
b that solve (4.16),

(4.21), (4.22), (4.18), (4.23) and (4.19).

The mixed boundary value problem of a second order elliptic equation
with a Venttsel boundary condition for p̂:

L(p̂) = f in Ω
+
ψ ,

p̂ = p1− p+b on Σ1,

∆
′(p̂|Sψ )+µ7(p̂|Sψ )+µ8(∂0 p̂|Sψ ) = g8 on Sψ .

(4.21)
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Sketch of Proof

Problem (T2)

The position rp and the profile ψ p of the surface Sψ is determined by
rp− rb =−

1
4π2µ6

∫
T2

(
µ5 (∂0 p̂|Sψ )+g5

)
dx1dx2,

ψ
p =

1
µ2

(
(p̂|Sψ )−µ9

∫
T2
(∂0 p̂|Sψ )dx1dx2 +g9

)
,

ψ = ψ
p + rp.

(4.22)
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Sketch of Proof

Problem (T2)

The div-curl system of the tangential velocity u′|Sψ on T2:

∂2(u1|Sψ )−∂1(u2|Sψ ) =− 1
µ0

(∂2g1
0−∂1g2

0),

∂β (u
β |Sψ ) = µ5 (∂0 p̂|Sψ )+µ6 ψ

p +µ6 (rp− rb)+g5,∫ 2π

0

(
µ0(u1|Sψ )+g1

0

)
(ψ(s,x2),s,x2)ds = 0,∫ 2π

0

(
µ0(u2|Sψ )+g2

0

)
(ψ(x1,s),x1,s)ds = 0.

(4.23)
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Sketch of Proof

Problem (T3)

Let M = (rb,L)×T2,M0 = {rb}×T2,M1 = {L}×T2. We consider
the transport equations of Bernoulli constant and the entropy:{

DuB̂+2µu0B̂ = 2µu0

γ−1 ρ
γ−1
b Â(s)+ 2µu0

ρb
p̂+h in M ,

B̂ = B−−B−b on M0;
(4.24)DuA(s) = 0 in M ,

i∗(Â(s)) = µ4
µ2

i∗(p̂)+ ḡ4− µ4
µ2

ḡ2 on M0.
(4.25)

For the vector field u′
u0 (x0,x′) defined for x′ = (x1,x2) ∈ T2 and x0 ∈ [0,L],

we write the integral curve passing (0, x̄) as x′ = ϕ(x0, x̄), x̄ ∈ T2. For fixed
x0, the map ϕx0 : T2→ T2, x̄ 7→ x′ = ϕ(x0, x̄).
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Sketch of Proof

Problem (T3)

We write the unique solution to the linear transport equation as
follows:

B̂(y) = B̂(y0,y′) = e2µ(rb−y0)(B−−B−b )(ȳ)

+
∫ y0

rb

e2µ(τ−y0)

(
2µ

γ−1
ρ

γ−1
b Â(s)+

2µ

ρb
p̂+

1
u0 h
)
(τ,ϕτ(ȳ))dτ.

and

A(s)(y) = A(s)(y0,y′) = (i∗A(s))(ȳ).

Hence, recall that the entropy is a constant behind the shock-front for the
background solution, we have

Â(s)(y) = i∗(Â(s))(y′)+
(
(i∗A(s))(ȳ)− (i∗A(s))(y′)

)
=

µ4

µ2
i∗(p̂)+ ḡ4−

µ4

µ2
ḡ2 +

(
(i∗A(s))(ȳ)− (i∗A(s))(y′)

)
.
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Sketch of Proof

Problem (T3)

The second order nonlocal elliptic equation of pressure subjected to a
Venttsel boundary condition on M0:

L(p̂) = e6(y0)Ê−+F in M ,

p̂ = p1− p+b on M1,

∆
′ p̂+µ7 p̂+µ8∂0 p̂ = G on M0.

(4.26)

where

L(p̂) , e1(y0)∂ 2
0 p̂−∂

2
1 p̂−∂

2
2 p̂+ e2(y0)∂0 p̂+ e3(y0)p̂

+e4(y0)
∫ y0

rb

b(µ,τ)p̂(τ,y′)dτ + e5(y0)(p̂|M0).

A strong solution p̂ in Sobolev space H2(M ) with i∗ p̂ ∈ H2(M0) to
problem (4.26) is unique ?
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Sketch of Proof

Uniqueness of solutions in Sobolev spaces

We consider the homogeneous problem
L(p̂) = 0 in M ,

p̂ = 0 on M1,

∆′(i∗ p̂)+µ7(i∗ p̂)+µ8(i∗∂0 p̂) = 0 on M0.

(4.27)

Denote m = (m1,m2), we could write

p̂(y) =
∞

∑
m1,m2=0

λm
{

p1,m(y0)cos(m1y1)cos(m2y2)+ p2,m(y0)sin(m1y1)cos(m2y2)

+p3,m(y0)cos(m1y1)sin(m2y2)+ p4,m(y0)sin(m1y1)sin(m2y2)
}
,

where

λm =


1
4 if m1 = m2 = 0,
1
2 if only one of m1, m2 is 0,

1 if m1 > 0,m2 > 0.
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Sketch of Proof

Uniqueness of solutions in Sobolev spaces

For y0 ∈ [rb,L], each pi,m(y0) solves the following nonlocal ordinary
differential equation

e1(y0)p′′i,m + e2(y0)p′i,m +(e3(y0)+ |m|2)pi,m

+e4(y0)
∫ y0

rb

b(µ,τ)pi,m(τ)dτ + e5(y0)pi,m(rb) = 0, (4.28)

subjected to the two-point boundary conditions:

p′i,m(rb)+
µ7−|m|2

µ8
pi,m(rb) = 0, pi,m(L) = 0. (4.29)
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Sketch of Proof

Uniqueness of solutions in Sobolev spaces

Supposing that pi,m(rb) = 0, we set Pi,m(y0) =
∫ y0

rb
b(µ,τ)pi,m(τ)dτ .

Then problem (4.28) and (4.29) can be written as
ẽ1(y0)P ′′′

i,m + ẽ2(y0)P ′′
i,m + ẽ3(y0)P ′

i,m + e4(y0)Pi,m = 0,

Pi,m(rb) = P ′
i,m(rb) = P ′′

i,m(rb) = 0,

P ′
i,m(L) = 0.

(4.30)

Here we define

ẽ1(y0) =
e1(y0)

b(µ,y0)
< 0,

ẽ2(y0) =

(
e2(y0)

b(µ,y0)
− 2e1(y0)b′(µ,y0)

b2(µ,y0)

)
,

ẽ3(y0) =

(
(e3(y0)+ |m|2)

b(µ,y0)
− e2(y0)b′(µ,y0)+ e1(y0)b′′(µ,y0)

b2(µ,y0)
+

2e1(y0)(b′(µ,y0))2

b3(µ,y0)

)
,
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Sketch of Proof

S-Condition

If pi,m(rb) 6= 0 for some i,m, we set wi,m(y0) =
pi,m(y0)
pi,m(rb)

and

Wi,m(y0) =
∫ y0

rb
b(µ,τ)wi,m(τ)dτ . Then it solves

ẽ1(y0)W ′′′
i,m + ẽ2(y0)W ′′

i,m + ẽ3(y0)W ′
i,m + e4(y0)Wi,m + e5(y0) = 0,

Wi,m(rb) = 0, W ′
i,m(rb) = b(µ,rb), W ′′

i,m(rb) = b′(µ,rb)− µ7−|m|2
µ8

b(µ,rb),

W ′
i,m(L) = 0.

(4.31)

Definition 4.1

We say a background solution Ub satisfies the S-Condition, if for each
i = 1,2,3,4 and m ∈ Z2, problem (4.31) does not have a classical solution.
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Sketch of Proof

S-Condition

Recall that a background solution is determined by the parameters:
γ > 1, µ > 0,rb ∈ (0,L), p+b (L)> 0, ρ

+
b (rb)> 0, M+

b (rb) ∈ (0,1). Our
purpose below is to show theoretically that almost all background solutions
satisfy the S-Condition.

Lemma 4.2

There exists a set S ⊂ (0,+∞) of at most countable infinite points such
that the background solutions Ub determined by µ ∈ (0,+∞)\S satisfy
the S-Condition.
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Sketch of Proof

Existence

We now use Fourier series to establish a family of approximate
solutions to problem (4.26). Therefore, we proved the following lemma.

Lemma 4.3

Suppose that the S-Condition holds. Then problem (4.26) has one and
only one solution in Ck,α(M ), and it satisfies the following estimate

‖ p̂‖Ck,α (M ) ≤C
(
‖h0‖Ck−2,α (T2)+‖h1‖Ck,α (T2)+‖ f‖Ck−2,α (M )

)
(4.32)
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Further Discussions

Further Discussions

3-D transonic shock problem;
The structural stability of more complex configuration;
. . . . . .

1Z. Xin: On the Courant-Friedrichs’ transonic shock wave in a nozzle, 2018.
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Thank You!
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