Stabilization effect of frictions in three-dimensional steady

compressible Euler flows

Qin Zhao

Wouhan University of Technology

Joint with Prof. Hairong Yuan(ECNU)

The 7th Young Researchers PDE Forum
CAMIS, South China Normal University
11.27-12.01, 2020



R
Outline

@ Physical Background

© Mathematical Formulation
© Main Results

@ Sketch of Proof

© Further Discussions

Qin Zhao (WHUT) Stabilization effect of frictions 1/ 49



Physical Ba

A bow shock generated by a solar explosion

Qin Zhao (WHU

FIG. 50: SOLAR EXPLOSION

A shock wave in space generated by a solar eruption. The sketch shows the fully ionized
nucleons attached to the solar magnetic field lines acting as the driving piston for the
shock wave. (Courtesy: UTIAS, after Gold, 1962).
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Physical Background

A small scale X-15 placed in a supersonic wind tunnel (from
NASA)
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Physical Background

Diffraction of a shock wave inside a box (Van Dyke: An
album of fluid motion)

240. Diffraction of a shock wave inside a box. A shock at the right are slip lines generated as the diffracted shock
wave in nitrogen is diffracted through a window at one wave oscillated in shape moving across the box, which
end of a rectangular box and reflected from the other end. have been perturbed by shock waves passing over them
A shadowgraph shows a remarkable pattern of shock roughly at right angles. Several examples of separated
waves, slip lines, and vortices, but one that is altogether boundary-layer flow are also evident. Photograph by Russell
determinate and reproducible. The three rope-like traces E. Duff in Laporte's laboratory
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Physical Background

Transonic shocks in nozzles (Van Dyke: An album of fluid
motion)

225. Normal shock wave at M=1.5. A pattern of pairs straight and normal shock wave, showing that the flow is
of weak oblique shock waves (the N-waves of figures 265 subsonic d . U.S. Air Force ph h, courtesy
and 269) is produced by strips of tape on the floor and ceil- of Amold Engineering Development Center

ing of a supersonic nozzle. They terminate at an almost
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Physical Background

Transonic shocks in nozzles

For an uniform supersonic flow entering a de Laval nozzle, Courant and
Friedrichs proposed the following problem on transonic shock phenomena:
no How does the flow, after having attained supersonic speed behind
the throat, adjust itself to the prescribed receiver pressure p,?.. .. .. but at
a certain place in the diverging part of the nozzle a shock front intervenes,
the gas is compressed and slow down to subsonic speed. From there on the
gas is further compressed and slow down; . .. ... The position and strength
of the shock front are automatically adjusted so that the end pressure at
the exit becomes p,."

Supersonic Shock —=| ¥ Subsonic
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Unsteady compressible Euler equations

Unsteady Euler equations for compressible fluids in R¢:

d;p +div(pu) =0,
d;(pu)+div(pu®u)+Vp =0, (1.1)
3,(pE) +div (pE + p)u) = O,

@ Piecewise smooth solution: Majda (1983); Alinhac(1989);

Coulombel-Secchi(2008); ...
@ Persistence of shocks in ducts: Yuan (2012); Fang-Xiang-Xiao (2019)

\ 1
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Physical Background

Quasi-one dimensional model
Quasi-one dimensional model including frictions and heating:

(Ap): + (Apu), =,
@m&+(Mmf+mL=Am—a%%M%

(4PE):+ (A(PE +p)u) = BAQ() — av/Apulul,

A(x) > 0 is the cross section of the nozzle, Q(x) is a given function
representing the heating effect, a, > 0 is the coefficient of frictions and
heating, B =0 is called Fanno flows, while & = 0 is called Rayleigh flows.

@ Piecewise smooth solution: Embid-Goodman-Majda (1984);
Rauch-Xie-Xin (2013)

@ L~ solution: Tsuge (2015); Chen-Schrecker (2018); Cao-Huang-Yuan
(2019)

e BV solution: Liu (1982); Chou-Hong-Huang-Quita (2018)
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Steady flows

@ Steady compressible Euler equations
— free boundary problem of elliptic-hyperbolic composite system

@ Isentropic steady irrotational flows (potential flows)
— free boundary problem of elliptic equation
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Physical Background

Subsonic flows

For the 2-D steady case:

e Potential flows: Xie-Xin(2007); Wang-Xin(2019, Smooth transonic
flows)

o Euler flows: Chen-Deng-Xiang(2012); Du-Xie-Xin(2014, Large
vorticity); Chen-Huang-Wang-Xiang(2019, Large vorticity)

For the M-D steady case:

e Potential flows: Du-Xin-Yan(2011); Liu-Yuan(2014, Largely-open
nozzles); Liu(2010, Global uniqueness)

o Euler flows: Chen-Xie(2014); Weng(2015); Du-Duan(2011, Axially
symmetric); Deng-Wang-Xiang(2018, Nontrivial swirl);
Liu-Xu-Yuan(2016, Spherically symmetric); Chen-Huang-Wang(2016,
Subsonic-sonic limt)
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Transonic shocks(potential flows)

For the M-D steady case:

@ Stability
Canic-Keyfitz-Lieberman (2000);
Chen-Feldman (2003; 2004 etc.);
Xin-Yin (2005; 2008 etc.);
Bae-Feldman (2011)

@ Uniqueness of special solutions
Chen-Yuan (2009); Liu-Yuan (2009)
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Physical Background

Transonic shocks(Euler flows)

For the 2-D steady case:
@ Stability
Chen (2005; 2009); Yuan (2006); Chen-Chen-Song (2006);
Chen-Chen-Feldman (2007); Xin-Yan-Yin (2009); Li-Xin-Yin (2009;
2013); Fang-Xin(2019); Gao-Liu-Yuan(2020) etc.
@ Uniqueness of transonic shocks
Fang-Liu-Yuan (2013)
For the 3-D case:
@ Stability
3-D axisymmetric: Li-Xin-Yin(2010); Park-Ryu(2019); Park(2019);
Weng-Xie-Xin(2019); Fang-Gao(2020)
3-D: Chen (2008); Chen-Yuan (2008); Liu-Xu-Yuan (2016)
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Mathematical Formulation

Mathematical model

Three-dimensional steady non-isentropic compressible Euler system
with frictions is governed by

div(pu) =0
div(pu®@u)+gradp = pb, (2.1)
div(puB) = pb-u,

Velocity : u= (uo,u1 uz)T, Pressure p, Density : p,
Bernoulli constant : B = 1|u>+ -1 7
Adiabatic exponent : y> 1,
Frictions: b= (—u(u®)?,0,0)7.

p
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Mathematical model

For the polytropic gas, the equation of state are given by
p=RpT, e=c,T, y=1+4+R/c,>1,

and

_ — en¥S/e _ Ky S/ _ R
p=p(p,S)=kp’e’ ™, e P e T

where R, K, ¢, and ¥ are all positive constants. Then the sonic speed is

given by ¢ =+/yp/p.
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Mathematical Formulation

Elliptic-hyperbolic composite-mixed type
Symmetric form:
Ao(U)AU +A1(U)WU +Ay(U)U =W(U), U= (p,u,s)’ €R.

If u® € (0,¢) and |u| < ¢, then for any (§,1) € R?\ {(0,0)}, Ap(U) is
nonsingular and det(AAg — A& —A;1) =0 has a real eigenvalue

Ao = M of multiplicity three, and a pair of complex eigenvalues
Ay = le: v/—1A; of multiplicity one. Here

u0

Ar = m(”lé +u’n)

and

2= /(2= (0)?)(E2+n?) — (' +uPn)?

(MO)Z —c?

are real.
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Mathematical Formulation

Problem (T)

Let Q = {(x%,x!,x%) : x% € (0,L),x' = (x',x?) € T?} be the duct with
Yo = {0} x T? and £; = {L} x T?. For the velocity vector u = (u°,u',u?)7,
we call u° the normal velocity and «’ = (u',u?)" the tangential velocity.
Suppose that

SY={(x)eQ: X =y(), ¥ eT?

is a surface, where y: T? — Q is a C! function. The normal vector field on
SY is given by

n= (17_81W7_82W)'
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Mathematical Formulation

Definition 2.1 (Transonic shock)

Let w € C1(T?) and U* = (p*,s*, B, (1)) € cl(Qi)mC( ). We say
that U = (U~,U™;y) is a transonic shock solution, |f

1) U* solve the system (2.1) in Qj, in the classical sense;
2) U~ is supersonic, and U™ is subsonic;

3) the Rankine—Hugoniot jump conditions hold across SY:

[p(u-n)u-+pn] =0,
p(u-n)] =0,
[p(u-n)B] =0,

4) there holds the physical entropy condition

[p] = p*lsv —p~lsv > 0. (2.5)
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Problem (T)

We prescribe the following Cauchy data:
U=U; (x) on Xo. (2.6)
Here (u”); > c,. On the exit, we propose the pressure

p=pi1(¥) on X. (2.7)

Problem (T): Find a transonic shock solution in Q which satisfies the
boundary conditions (2.6) and (2.7) pointwisely.
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Main Results

Background Solution

Suppose that the flow depends only on x°, then

d
d 2 2
@(Pu +p) = —upu,

d 1 D
@<p(§u2—|— (yzl)p)u> =—ppu’.

For Mach number M # 1, we could solve that

du  um? dp  uMm? dp  uyM?
_—= u _— = _— = .
W 1-mt - wr—1P a0 T w1t

Qin Zhao (WHUT) Stabilization effect of frictions 19 / 49



Background Solution

and

4B _ _2m(y—DM* o ds
dx® (y—1)ME+277 A0 7
dr uM?

ao =T

If the flow is subsonic in the duct, namely M < 1 for x° € [0, L],

du dp dp dmM dr
@>0, @<0, @<0, @>O, @<0

Qin Zhao (WHUT) Stabilization effect of frictions 20 / 49



Main Results

Background Solution

The equation satisfied by the Mach number is decoupled:

dM  y+1 uM?

0 2 1-M? (31)

Let the Mach number of the flow at the entry {x” =0} and the exit

{x®=L} be My and My, and 0 < My < M; < 1. Then integrating (3.1) for
10 from 0 to [ yields

- Ming%erlnMg—lanz 62
u(r+1) '
Therefore, the maximal length of a duct for a subsonic flow is
Ly, = M >0 (3.3)
T ulr+) | |
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Main Results

Background Solution

Let L; < Ly, be the distance from the entry to the transonic shock
front. Utilizing (3.2), by

7H(Y+ 1) ’ 34

we could solve M_. Then by R-H conditions, we get M. So the maximal
length from the transonic shock front to the exit is

iz M —1
p(r+1)

Hence for given My > 1, suppose that L < L; + Ly, we may construct a
family of special transonic shock solutions.

Ly=Ly, = (3.5)

Qin Zhao (WHUT) Stabilization effect of frictions 22 / 49



Main Results

Theorem 3.1 (Stability of transonic Fanno flow, Yuan-Z., 2020)

Suppose that U, satistfies the S-Condition, and a € (0,1). There exist &
and C, depending only on U, and y,a,L such that if

105 =05 sy e <en 1p1=f s Se <00 (36)

then there exists a transonic shock solution U = (U~,U*;y) to Problem
(T), so that U~ € C*(Qy), p* € C3(Qy), ut,pt,st € C2*(Qy),
(ut,pt,st)|sv € C> O‘(TZ) v € CH%(T?), and

U™ = Uy (s ) < €8s (3.7)
1T 50 - UbJr’SWHCla(’]I‘Z)_’_ [UT =0y [|; < Cee, (38)
Hl//—rbHC4,a(T2) SC*E. (39)
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Main difficulties

@ System of elliptic-hyperbolic composite type

e No general theory
e Choosing suitable boundary conditions

@ The variable background solution

@ New phenomena: Nonlocal elliptic problems
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Sketch of Proof

The theorem is proved by solving the following problems:
@ A transport equation of Bernoulli constant
@ A transport equation of entropy
A second-order nonlocal elliptic equation of pressure
Transport equations of tangential velocity

A div-curl system of the tangential velocity u/|sv on T?

The equations for the profile and the position of the surface S¥
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Sketch of Proof

Proposition 4.1

Suppose that p € C2(Q)NCY(Q), p,u € CY(Q), and p > 0,u’ #0 in Q.
Then p,p,u solve the system (2.1) in Q if and only if they satisfy

D,B—b-u=0,
D,A(s) =0,

1 1 .
D, Dup> —div <gradp> — k! +divb =0, (4.3
(YP P ! (43)

1
Duuﬁ—l-ﬁaﬁp:(), B=1,2, (4.4)

and the boundary condition:

1
—D,p+divu = 0. 45
= (4.5)
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Sketch of Proof

Divergence of tangential velocity field on SY

Using the commutator relation for a function f on Q,
Ip(flsv) = pw(dof)lsv + (9 f)lsv, B =12,
Then the boundary condition (4.5) on SY becomes
{3015 +y1p+ 105 (uP \SW)HSW +g=0.
which is equivalent to

I (uP |sv) = pis (Gop)|sv + Mo WP + e (¥ — 1)
+85(U,U”,¥,DU,Dy), (4.6)

if we replace p|sv by .
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Sketch of Proof

Decomposition of R-H conditions

Let m= p(u-n)|sv =p~ (u -n)|sv # 0 be the mass flux, then the
R-H conditions (2.2)-(2.4) may be written as

m] =0, [B]=0, (4.7)
and
m + p) =0, (4.8)
muP —pdgy] =0,  B=1,2. (4.9)
If [p] >0, from (4.9), we solve that
B
mlu
oy =" ) + b, (4.10)
[P g,
with
0
Mo = (fu )ll > 0.
Py = Pp o=,
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Sketch of Proof

Decomposition of R-H conditions
It is necessary that d,d| W — d1hw = 0, which implies
1
2 (u'sv) = I (u[sv) = —%(92&1)—318%)- (4.11)
Since v is well defined on T? , then

2
| (o) + ) (vls.®)s.5%)ds =

o (4.12)
/0 (NO(”2|SV) +g(2)) (w(x!,s),x',5)ds = 0.

On the contrary, (4.11)-(4.12) are also sufficient for the existence of a
function w” on T? so that (4.10) holds, and 1. yPdx'dx* = 0.
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Linearization of R-H conditions

We linearize the R—H conditions:

Gi(V.V")=¥i(U,U",Dy), =123,

with
Gi = [p(u’)*+pl, W1 = o1 ylpu’u']+ dylpu’i?],
G = [pu’], W) = dylpu'] + drylpu’,
G; = [B], Y3 =0.
One can obtain
WOlsy = (W +1” — 1) +1(U.U~, v, Dy), (4.13)
Plsv = o (WP +77 — 1) +8(U,U, y,Dy), (4.14)
Plsv = s (WP +r" —ry,) +g3(U, U, w,Dy). (4.15)

Using A(S) = pp~7, we also obtain
AS)lsv = 1a (W"+ 7" —ry) +8a(U,U .DY).
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Problem (T1)

Problem (T1): Find y = y?++” and U =U — U, in Qy, solving the
following problems (4.16)—(4.19).

The Cauchy problem of transport equations for B :

. o2uu® o —  2uu® .
D.B+2uu’B = TAGs) + p+h(U) in QF,
B=B" on SY.
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Problem (T1)

A second order elliptic equation for p:

L(p) = f(U,DU,D*p) in QF,
p=p1—p; on X, (4.17)

ﬁ:‘le(l[/p—F}’p—l"b)+g2(U,U_,l[/,Dl[/) on SW’

where

L(p) = (t—1)95p—dip—d3p+udi(t)dop+ u>da(t)p
+ICPyds (1)B+ 1P da(1)A(s).
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Problem (T1)

—

The Cauchy problems of transport equations for A(s) and
uP(B=1,2):

D,A(s) =0 in Q7
_ v (4.18)
A(S) = ps (WP +17 —ry) +g4(U,U",y,Dy) on SY,

and |
DuP =——0gp in QF,
p P v (4.19)

ub = ug on SY.
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Problem (T1)

The equation for the surface S¥ and the div-curl system of the
tangential velocity u'|sv on T?;

(aﬁ‘l/:ﬂo(uﬁ|sw)+g§(U,U_,Dy/), B=1,2,
9p (P sv) = s (Soplsv) + o W + e (" — 1)
+g5(U,U",y,DU,Dy),

1
O (u'sv) = i (u[sv) = —%(928(1)—915’3), (4.20)
27
| (ol sv) + 8b) (w(s.2)s2)ds =0,

\/OM (M(H2\sv) +g8> (w(x',s),x",s)ds = 0.
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Sketch of Proof

Problem (T2)

Acting the divergence operator to the first equation in (4.20) and
using the second equation, we derive that

+6(U,U™, w,DU~,DU. Dy, D*y),

Here A’ is the standard Laplace operator on T2.
Then we get

A (Plsv) + 7 (Plsv) + us(dopsv)
= g(U,U",y,DU,DU",Dy,D*U,D*U~,D*y,D’y),

if we replace y by plsv.
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Problem (T2)

By the second equation in (4.20), using the divergence theorem, and
recall that [1. yPdx!dx*> =0, we have

1
P 6/11‘2 (.US (8Oﬁ|SW)+85(U,U_71I/’DU’DW)> doldi2.

T i

Then we obtain

1 R R _
yr = s ((Psw)—#9/T2(90P\s'ﬂ')dxld~x2+g9(U7U 7W7DW)>‘
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Sketch of Proof

Problem (T2)

Problem (T2): Find = y”+r” and U =U — U, that solve (4.16),
(4.21), (4.22), (4.18), (4.23) and (4.19).

The mixed boundary value problem of a second order elliptic equation

with a Venttsel boundary condition for p:

L(p)=f &)
pP=pi—py on X, (4.21)
on SY.

A (plsw) + 17 (plsv) + 1g(doplsv) = g3
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Problem (T2)

The position r” and the profile y? of the surface SY is determined by

1
Y2 - N 1 2
=~ [ (s @l +5) ac'ae
1/, . R .
Yy = 7((1”9")_.“9/ (‘90P‘S‘V)dx]dx2+g9>7 (4.22)
5] T2
y=y"+r
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Problem (T2)

The div-curl system of the tangential velocity u'|sw on T2:

( 1
o (u'sv) — Iy (u?|sv) = —%(92&1) —dig}),
aﬁ(uﬁh‘ﬂ') = s (Aop|sv) + s W’ + s (r’ —rp) + g5,

2n
| (ol 90) + ) (wls.)s.5%)ds =

/OM (“0(”‘2’5"’) +g%> (w(x',s),x',s)ds = 0.

(4.23)
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Problem (T3)

Let A = (ry,L) x T2, .My = {ry} x T2,.41 = {L} x T>. We consider
the transport equations of Bernoulli constant and the entropy:

A A 0 —
DuB+2uuoB_2y#ulpb ()+2“p—;‘ﬁ+h in ., (4.24)
E’:B_—B; on .#y;
DuA(s) =0 in A,

_ 4.25
i*(A(s)) = (2" (D) +8a— 152 on M. (425)

For the vector field %; 15 (x0,x') defined for x' = (x x?) € T? and x° € [0, 1],
we write the |ntegra| curve passing (0,%) as ¥’ = @(xY,%),% € T2. For fixed
1, the map @, : T? = T2, ¥+ x' = @(x%, %).
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Sketch of Proof

Problem (T3)

We write the unique solution to the linear transport equation as
follows:

A A

Bly) = B Y)=e*")(B"—B,)(5)
+/y ( p,, ()+i‘:ﬁ+uloh> (7,9:(5))dr.
and

A(s)(y) =A(s)0",Y) = ("A(9) (7).

Hence, recall that the entropy is a constant behind the shock-front for the
background solution, we have

A = FAE)) + (AE)G) - (FAW))
P e ((MA)0) - (FAW)L)).
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Sketch of Proof

Problem (T3)

The second order nonlocal elliptic equation of pressure subjected to a
Venttsel boundary condition on .#:

£(p) :e6(y0)E7+F in A,
p=pi—p} on ., (4.26)
ANp+urp+ugoop=G on M.

where
() 2 e(y)dgp—0fp—3p+ex(y)dop+es(y0)p

+es”) [ bl TPl T+ es07) (Pl

A strong solution p in Sobolev space H?(.#) with i*p € H*(.#)) to
problem (4.26) is unique ?
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Sketch of Proof

Uniqueness of solutions in Sobolev spaces

We consider the homogeneous problem

£(5) =0 in .,
p=0 on .4, (4.27)
AN p)+ w1 (i*p) + ug(i*dop) =0 on 4.

Denote m = (my,m;), we could write

Z A {P1m(y") cos(myy D cos(may?) 4 pam(¥°) sin(myy') cos(may?)

my,my=0

+p3.m (yO) cos(myy!) sin(myy?®) + Dém (yo) sin(my') sin(m2y2)} ,
where
if m=mpy=0,
Ap =

if only one of my,my is O,

— = e

if my; > 0,my > 0.
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Uniqueness of solutions in Sobolev spaces

For y° € [rp,L], each p;,(y°) solves the following nonlocal ordinary
differential equation

e1(0°) Pl +e20°) Pl + (€3°) + [m[*) pim
yO
+es(°) [ b(,T) pim(T) dT+es(Y0) pim(rp) =0, (4.28)

b
subjected to the two-point boundary conditions:

p7 — |m|?

p,'7m(l"b) = 0, pi,m(L) = 0 (429)
Mg

p;’,m(rb) +
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Sketch of Proof

Uniqueness of solutions in Sobolev spaces

Supposing that pi (1) =0, we set Z;,,()°) = rf,ob(u,f)pi,m(f) dr.
Then problem (4.28) and (4.29) can be written as

a2, +a0") 2!, +&0°) P, +ea°) Pim =0,
Pim(rp) = P} (rp) = P/ (1) =0, (4.30)
L(L) =0,

1
Here we define

e 0
_ oy [ @b 2e(°) (1,)°)
ez(yo)_<b(u7y°)_ b2 (1,y0) )

55(°) = ((63(y°)+IM|2) ()b’ (1,)°) +e1(5°)b" (1,5°) n Zel(yo)(b’(wyo))z))

b(u,y°) b2 (u,)°) b3(u,y°)

esly
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S-Condition

Pim (yO)
Pim(rp) and

If pim(rp) # 0O for some i,m, we set wi,m(yo) =

Wim(3®) = [2 b(1, )wim()dT. Then it solves

e )W+ ()W + &0 W+ ea(0) Wi +es(y0) =0,

Wim() =0, W) =bt.rs), #im(r) =1 () = 2 b(u, ), (431)
WW(L) =0

Definition 4.1

We say a background solution U, satisfies the S-Condition, if for each
i=1,2,3,4 and m € 72, problem (4.31) does not have a classical solution.

Qin Zhao (WHUT) Stabilization effect of frictions 46 / 49



S-Condition

Recall that a background solution is determined by the parameters:
y>1,u>0,r,€(0,L), p) (L) >0,p, (rp) >0,M; (ry) € (0,1). Our
purpose below is to show theoretically that almost all background solutions
satisfy the S-Condition.

There exists a set . C (0,+o0) of at most countable infinite points such
that the background solutions Uy, determined by u € (0,+o0)\ .7 satisfy
the S-Condition.
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Existence

We now use Fourier series to establish a family of approximate
solutions to problem (4.26). Therefore, we proved the following lemma.

Suppose that the S-Condition holds. Then problem (4.26) has one and
only one solution in C*% (), and it satisfies the following estimate

1Bllctazy < € (Iholles-2are) + W llenaqre) + I florzacy ) (432)
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Further Discussions

@ 3-D transonic shock problem;

@ The structural stability of more complex configuration;

17 Xin: On the Courant-Friedrichs’ transonic shock wave in a nozzle, 2018.
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Thank Youl!
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