Sharp Interface Limits of some Diffused-interface Models
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Introduction

The phase field models are widely adopted in the description of the
evolution of interfaces in continuum mechanics. They can be
constructed to purposely reproduce a given sharp interface model
when the thickness of their diffused interface, usually denoted by e,
trends to 0.
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Ginzburg-Landau equation

The scalar Ginzburg-Landau equation under diffusive scaling
(m,t) — (ex,€%t):

Orce = Aee — e 2W'(c.). (Ginzburg-Landau)

is the gradient flow of & ( ) = 6|Vc|2 + 1W(c), where W (c) = (¢ — 1)
The energy dissipation 4% [, & (cc)dz = — fQ £|0se-|?.

o Modica-Mortola '77 (static case): [, & dg emma, HN-(D).
o De Mottoni & Schatzman ’95 (local, asymptotlc expansion),
o Evans, Soner, Souganidis '92 (global, convergence to viscosity sol.),

o Ilmanen 93, Chen ’96, Roger-Schitzle '06 (global, convergence to
Brakke flow, monotonicity formula, rectifiable varifold),

jt ¢dHN 1</ oo+ | (Vo-vH—¢H?) dHN L Vo(t,z) > 0
Iy Iy

This makes sense for a Radom measure s, generalizing H™V ~(T;).
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Barrier formulation

Consider the MMC {T';};~¢ parametrized by X = X(s,t) with s being
the local coordinate: 9;X (s,t) = —H(X(s,t),t)v(X(s,t),t). De Giorgi
proposed to work with the signed distance function r = dp(z,t)
(negative inside). Differentiating the identity

dp(X(s,t) +rv(s,t),t) = r leads to

Vdr =v, Odr =—-0,X(s,t)-v.

Let w(xz) be the projection of = on I'y and

2+
{ki}1<i<n—1 are the principal curvatures,
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Asymptotical Analysis

Inner solution is the expansion of ¢, near the interface in a stretched variable
z =dr(z,t)/e, which is introduced to relax the sharp transition of ¢. near the
interface. Outer solution determines the boundary condition of the inner
solution at z = +o0o. We use the Ansatz

calz,t) = co( ,x,t) +ecp + - -+ near Iy (inner solution)

and look for ¢4 solving Ginzburg-Landau equations up to a tail:

AL 9o + Opeo ~ 2D, co + 50%co + Aco + -+ — LW (co)

=0¢ca =ACA—6L2W/(CA)

e O(c72) : we choose ¢y = 9(%) the optimal profile:

0(0) = 0,0(+00) = +1. = 0(z) = tanh(—2)

S

—0"(z) + W'(0(z)) =0,Vz €R, }

e O(e71): (8; — A)dr = 0 on Ty leads to MMC.

(0 — A)co+ =W (o) = 288 &g/ (4) & /e in L*(T'; x (—6,9))
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Rigorous Sharp Interface Limit

The first results on the convergence of level-set to MMC was due to

De Mottoni & Schatzman ’95

Assume I'; evolves by MMC and is smooth on [0,7]. Assume
{P}o<e<1, are well-prepared initial data, i.e. ¢2(z) = 41 away from the
initial surface Ty and ¢2(x) = 0(dr,(z)/¢) near it. Then there exists an
approximate solution c4 of (Ginzburg—Landau), up to a tail s.t

sup le=(x,t) — calw, )| p2() == 0, where

0\\

ca(z, t) = 0(T2D L 0(1)) + 0(e?)  in L®((0,T) x Q).
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Sketched Proof

Using the smooth solution of MMC to construct an
approximate solution ¢4 of (Ginzburg-Landau) such
that

Oica — Acy + E%W’(CA) =TA.

Here r4 can be made as small as possible provided
the asymptotic expansion is sufficiently accurate.
The difference ¢ = ¢, — ¢4 satisfies

Qe—Ac+ EW"(ca)e=N(e) —ra,
where A (¢) is nonlinear.

De Mottoni-Schatzman 95, Chen '94
There exists g9 > 0 such that for any € € (0,&0) and ¢ € H(T'4(5)) ,

/ (VP + W (caw?) dz > — [ ¢da
T4 (9) ' (9)
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Spectrum inequality of linearized operator

De Mottoni & Schatzman '95, Chen '94
There exists g9 > 0 such that for any ¢ € (0, &),

/ (V9P + 20 ca) dez — [ vdz, o € H'TL(6)).
Ft(é) Ft((5)

Since cq4 = 0(%) + O(e?), by Taylor’s expansion, it suffices to show

[ (9ol + jowv + W @) do >~ [ wdo
T4 (8) : T4(6)

As W (0) = %7 by a cut-off near I't(§) and a change of variable z — (s,7) = (s, 7)

/ ontol? + 2y
r(s)
6 1
= [ [ (00 9P + 2220209 )
6/6 7
=é /1; / 5/ (\Bzw(sz,s)\Q + %(z)if(sz,s)) J(ez, s)dz with £ = 2
- €

5/5 " "
=t [ [, (e 9P 4 625 )? — 2007 ) Sz, )+
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Introduction

Consider the Cahn-Hilliard type equation in a domain  C R3:

301 = 2 Ape — W (e ) e,
Elle = —62A¢5 + Wl(‘be)v

where W (¢) = (¢* — 1)%. ! It is the gradient flow of

_1 W@’ Nl/ 2
5(¢)_2€/ﬂ(5A¢ L ) dr y | HES.

For well-prepared initial data, lim. ,o(e, ¢<) = (to, Lo+ ) — La-(¢)) where
the closed surface T'y = 90~ (t) evolves by Willmore flow

V =ArH + H|A]? — H?/2.

. V = —0dr |r,: mnormal velocity of T = Ute[07T] I,.
° A = Vv: second fundamental form.

!The usual Cahn-Hilliard equation is 0;¢e = Ape.
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Asymptotic Expansions

dr (J,‘,t)

Use Ansatz ¢. =6 <7) + .-+, e = --- as inner expansions of

{

€

Egatd)a = 52AN6 - W/,(¢5)Maa
cpe = —2 A + W' (¢.).

e 0(z) = tanh(%) is the optimal profile.
dr(iﬂ,t)

eh s pe(a,t) = —Adp(z, )0 (22) + -
€2 . dr satisfies a quasilinear 4-th order equation

Oydr + A%dp = AdrD +Vdr - VD on Ty,

where D(z,t) = VAdr - Vdr + 3(Adr)?. This is the barrier
formulation of Willmore flow

V = ArH + H|AP? — H?/2.
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Approximate solution and Spectrum inequality

Fei-L. "19 preprint

Let I'; C R? evolve by the Willmore flow. Then ther(e e)xists
d[‘ I,t

approximate solutions (¢4, p) such that ¢4 = 0(==~) near I'; and

¢4 = £1 when away from I';, and fulfill the C-H equation up to a tail:

e30pa = e2Apa — W (¢pa)pa + O(e'9),
epa = —e*Ada + W (pa) + O(e™).

Moreover, if [[¢z (-, 0) — ¢4(-,0)|lz2(q) S €2, then

[SIEN]

pe — PallLoo (0, TmaxsL2(02)) S €2-

The equation of ¢ = ¢ — ¢4 writes, up to some tails terms

2 ‘
o = — (A — g—QW”((bA)) ¢ —e 3W"(pa)pua ¢+ higher order terms.
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Phase field model with fluid

Consider the coupled system with Stokes flow

—Ave + Vp. = —ediv(Ve: ® Ve ), divo, =0,
Oce +ve - Ve = Ace — éwl(cs)a
velan = 0, Cceloo = —1.

Assume (v, cc) = (vo, Lo+ ) — lo-(1)) and let 2z = @ be the fast variable.
We shall construct approximate solution with form

ca(w,t) = co(z,2,t) +ecr + -+, wva(x,t) =vo(z,2,t) +evr +--- .
=0tca =va4-Vea =Aca—e 2W'(ca)
—_—
3t€dr 8200 + Otco + (gaZCo + VCO) Uy N Agr BZC(] + 6%8;(;() 4+ = E%LV/(C())

As before, the e =1 order gives the MMC with convection

Oidr +vg - v = Adr.
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Expansion for Stokes system near the interface

Near the interface c. =~ G(d?r). So Ve, ~ 50’(%). Tested by a solenoidal

vector field p(z), the fluid equation writes
/ div(—=2Dv. + pI) - ¢ = —/ ediv(Ve: ® Vee) - ¢
Q Q

:/ e(Ve. @ Ve,) : Vo
Q

’ diQ
z/ 0<f)(1/®y—ld):Vgpﬂ>—rf divr, ¢
r(s) r,

Integration by parts: / [-2Dv: +pI]: v @ ¢ 20, o’/ ©-vH,
r, r

t
which implies the jump condition of the stress tensor:

[2Dvy — polI] - v = —ovH.

Away from I'; outer expansion leads to Stokes flow.
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Rigorous Sharp Interface Limit

The inner expansion gives:
O}

[2Dvo — polI] - v = —cHv on I';
V+uv-v==H, [u]=0, on I'; Te

The outer expansion leads to

—Avg+Vpy =0 in QF(t)
divyy =0 in QF(t)

Abels-L. 18
Assume a smooth solution on [0, Tp] and that c?(x) ~ 0 (dp,(x)/e) near T,
and 2(z) = +1 away from I';. Then

sup_||ce(t) — cat)llz2(@) = O(€?), llve = vallzz-(0,m)x)) = O(e),

o ca(z,t) =10 dr(;’t) O(l)) + O(£?) near T
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Nematic-Isotropic phase transition

Using spectrum stability argument, Fei-Wang-Zhang-Zhang 19 studied
the isotropic-nematic phase transition modeled by the matrix-valued
Ginzburg-Landau equation:

Crystalline Solid Liquid Crystal Isotropic Liquid 8tQ6 — AQa _ E% W/ (Qg ) , Qs . Q _> Q,

iy WAt - Q)
| .\’ / Q:{QER 3Q=Q,trQ:0}
i WA lg‘f

where W (Q) = %tr(Q2) — L tr(Q®) + ¢ (tr(Q2)) is the Landau’s
expansion of the free energy. Here a, b, ¢ are temperature dependent
constant, and satisfies b2 = 27ac at the critical temperature:
ArgminW(Q) = {s:(n®@n—1I3) :n € S?}, s_ = 0,54 = Hivbic_m.
Rubinstein-Sternberg-Keller '89. Lin-Pan-Wang, ’13: steady case.

As a toy model one can consider the vector-valued G-L equation with
W (u) = [ul*(1 = Jul*)?.
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Nematic-Isotropic phase transition

Fei-Wang-Zhang-Zhang '18
Assume I'; is a MMC and is smooth on [0,7]. n: Q*(t) — S? is a
smooth harmonic heat flow in Q7 (¢) with d,n =0 on I';:
dm = An + |Vn|?n. Then for any k > 1 there exists approximate Q*!
which is close to s;(n®n — $13) in QF(¢)\['4(6) and 0 in Q(£)\I'¢(9),
and

2:QM — AQH + Tw'(QM) = O(e" ).

Moreover, if the initial data satisfies [|Q%(z) — Q¥ (0,2)| 52 < €%, then

sup [|Qx(t, ) — QW (¢, )| g2 < &°.
te[0,7T

The proof is based on asymptotic expansions and spectrum
inequality of the linearized operator at Q1.
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Modulated energy method: distance function

Bronsard-Kohn '91: Recall the energy dissipation

| GIvep+twie) ot [ cfoe = &)

Q Qy

Let G(1) = 73/3 — 7. Then V, :G(c.) = (¢2 — 1)V 1ce, thus G(c.) is bounded
in BV. Motivated by Lin '96 on the Ginzburg-Landau vortices, one can
construct a weight function ¢(x,t) = dr(z,t)? near I'y and constant away
from it. This function will cut-off the singularity and lead to

G [0 (31ve + 52 ao
S [ otont) (39e? +2852) do+ [ (9l — 252

|2 _ Wiee)

Modica '85, Ilmanen 93 showed that the discrepancy |Ve. —z~ preserves

negativity. This seems only valid for scalar equation.
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Modulated energy method: Tilt-excess

Motivated by Jerrard—Smets 15 on the binormal curve flow, and
Fischer-Laux—Simon ’20 preprint on the scalar case, we define

QN = [ (519 +1W(Q) ~€- Vi) dr. @)

where £ is an appropriate extension of the normal of Ty,

Ve (z,t) := d¥ o Q.(x,t) and V' (Q) := (¢ * d")(Q) and
¥ (Q) = Ve ela. ©

7(0)€{S+(n®n 13/3)}77(1

Laux-L. ’ 20 preprint
Let Ty be a smooth MMC on [0,7] and &[|Q%"|| () + E[Q|T'](0) < €, then

SUP¢e|o,T] E.[Q:|T](t) < € and Q, m Q= s+ (n RXn — %Ig) strongly in
LOO(Hlloc(Qi( ))) where n : QF(¢) — S? is a weak solution of the harmonic
map heat flow with 0-Neumann boundary condition on 9Q+ (¢) = T.

2_
_ =05 = b/Fac 5, g
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Controls of tilt-excess and discrepancy

In the scalar case . (z,t) cs(w 2 V2W(z)dz and n, = |vw E thus

EE[CE|F](t):/g)(%\VcEF—F%W(cE)— Sk Vel 2W () ) dr

In the vectorial case, we introduce an orthogonal projection

w
HQsaxiQE = (6381Q6 : g Egz;‘) |§ZZ§VE8:;|’ with zg :=t.

Gronwall’ inequality / (% IVQ.|* + E%W(Qs)) (1—¢-n.)
Q
+ [ (190 ~T16,9Q.P) £ =7 BLlQITI(0) < 1

As d¥(Q) is isotropic, the commutator [T, 9., Q-, Q<] = 0. So

[00Q: — 1. 0,Q:, Q] =V - [VQe — 1. VQ., Q] (weak compactness)
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Thank you

i |
Thank you !
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