Sharp Interface Limits of some Diffused-interface Models

第七届偏微分方程青年学术论坛

华南师范大学华南数学应用与交叉研究中心

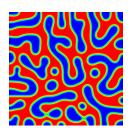
刘豫宁 上海纽约大学

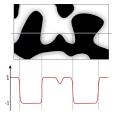
Table of contents

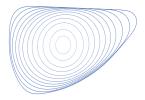
- 1 Phase field model for Motion by Mean Curvature (MMC)
- 2 Phase field approach to the Willmore flow
- 3 Phase-field model in complex fluid
- 4 Nematic–Isotropic phase transition

Introduction

The **phase field models** are widely adopted in the description of the evolution of **interfaces** in continuum mechanics. They can be constructed to purposely reproduce a given **sharp interface model** when the thickness of their diffused interface, usually denoted by ε , trends to 0.







Ginzburg-Landau equation

The scalar Ginzburg-Landau equation under diffusive scaling $(x,t) \to (\varepsilon x, \varepsilon^2 t)$:

$$\partial_t c_{\varepsilon} = \Delta c_{\varepsilon} - \varepsilon^{-2} W'(c_{\varepsilon}).$$
 (Ginzburg–Landau)

is the gradient flow of $\mathcal{E}_{\varepsilon}(c) = \varepsilon |\nabla c|^2 + \frac{1}{\varepsilon} W(c)$, where $W(c) = (c^2 - 1)^2$. The energy dissipation $\frac{d}{dt} \int_{\Omega} \mathcal{E}_{\varepsilon}(c_{\varepsilon}) dx = -\int_{\Omega} \varepsilon |\partial_t c_{\varepsilon}|^2$.

- Modica-Mortola '77 (static case): $\int_{\Omega} \mathcal{E}_{\varepsilon}(c_{\varepsilon}) dx \xrightarrow{Gamma} \mathcal{H}^{N-1}(\Gamma)$.
- De Mottoni & Schatzman '95 (<u>local</u>, asymptotic expansion),
- Evans, Soner, Souganidis '92 (global, convergence to viscosity sol.),
- Ilmanen '93, Chen '96, Röger-Schätzle '06 (global, convergence to Brakke flow, monotonicity formula, rectifiable varifold),

$$\frac{d}{dt} \int_{\Gamma_t} \phi \, d\mathcal{H}^{N-1} \leqslant \int_{\Gamma_t} \partial_t \phi + \int_{\Gamma_t} (\nabla \phi \cdot \nu H - \phi H^2) \, d\mathcal{H}^{N-1}, \forall \phi(t, x) \geqslant 0$$

This makes sense for a Radom measure μ_t , generalizing $\mathcal{H}^{N-1}(\Gamma_t)$.

Barrier formulation

Consider the MMC $\{\Gamma_t\}_{t>0}$ parametrized by X=X(s,t) with s being the local coordinate: $\partial_t X(s,t)=-H(X(s,t),t)\nu(X(s,t),t)$. De Giorgi proposed to work with the **signed distance function** $r=d_\Gamma(x,t)$ (negative inside). Differentiating the identity $d_\Gamma(X(s,t)+r\nu(s,t),t)\equiv r$ leads to

$$\nabla d_{\Gamma} = \nu, \quad \partial_t d_{\Gamma} = -\partial_t X(s, t) \cdot \nu.$$

Let $\pi(x)$ be the projection of x on Γ_t and $\{\kappa_i\}_{1\leqslant i\leqslant N-1}$ are the principal curvatures,

$$\Delta d_{\Gamma}(x) = \sum_{i=1}^{N-1} \frac{\kappa_i(\pi(x))}{1 + \kappa_i(\pi(x))d_{\Gamma}} = H - d_{\Gamma} \sum_{i=1}^{N-1} \kappa_i^2 + o(d_{\Gamma}).$$

So $(\partial_t - \Delta)d_{\Gamma} = d_{\Gamma} \sum_i \kappa_i^2 + o(d_{\Gamma})$, called barrier formulation.

Asymptotical Analysis

Inner solution is the expansion of c_{ε} near the interface in a stretched variable $z = d_{\Gamma}(x,t)/\varepsilon$, which is introduced to relax the sharp transition of c_{ε} near the interface. Outer solution determines the boundary condition of the inner solution at $z = \pm \infty$. We use the Ansatz

$$c_A(x,t) = c_0(\frac{d_{\Gamma}}{\varepsilon}, x, t) + \varepsilon c_1 + \cdots$$
 near Γ_t (inner solution)

and look for c_A solving Ginzburg-Landau equations up to a tail:

$$\underbrace{\frac{\partial_t d_{\Gamma}}{\varepsilon} \partial_z c_0 + \partial_t c_0}_{=\partial_t c_A} \approx \underbrace{\frac{\Delta d_{\Gamma}}{\varepsilon} \partial_z c_0 + \frac{1}{\varepsilon^2} \partial_z^2 c_0 + \Delta c_0 + \dots - \frac{1}{\varepsilon^2} W'(c_0)}_{=\Delta c_A - \frac{1}{\varepsilon^2} W'(c_A)}$$

• $O(\varepsilon^{-2})$: we choose $c_0 = \theta(\frac{d_{\Gamma}}{\varepsilon})$, the optimal profile:

$$\begin{cases} -\theta''(z) + W'(\theta(z)) &= 0, \forall z \in \mathbb{R}, \\ \theta(0) = 0, \theta(\pm \infty) &= \pm 1. \end{cases} \Rightarrow \theta(z) = \tanh(\frac{z}{\sqrt{2}})$$

• $O(\varepsilon^{-1})$: $(\partial_t - \Delta)d_{\Gamma} = 0$ on Γ_t leads to MMC.

$$(\partial_t - \Delta)c_0 + \frac{1}{\varepsilon^2}W'(c_0) = \frac{\partial_t d_{\Gamma} - \Delta d_{\Gamma}}{d_{\Gamma}} \frac{d_{\Gamma}}{\varepsilon} \theta'(\frac{d_{\Gamma}}{\varepsilon}) \approx \sqrt{\varepsilon} \quad \text{in} \quad L^2(\Gamma_t \times (-\delta, \delta))$$

Rigorous Sharp Interface Limit

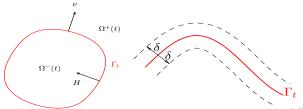
The first results on the convergence of level-set to MMC was due to

De Mottoni & Schatzman '95

Assume Γ_t evolves by MMC and is smooth on [0,T]. Assume $\{c_{\varepsilon}^0\}_{0<\varepsilon\leqslant 1}$, are well-prepared initial data, i.e. $c_{\varepsilon}^0(x)=\pm 1$ away from the initial surface Γ_0 and $c_{\varepsilon}^0(x)=\theta(d_{\Gamma_0}(x)/\varepsilon)$ near it. Then there exists an approximate solution c_A of (Ginzburg–Landau), up to a tail s.t

$$\sup_{0 \leqslant t \leqslant T} \|c_{\varepsilon}(x,t) - c_{A}(x,t)\|_{L^{2}(\Omega)} \xrightarrow{\varepsilon \to 0} 0, \text{ where}$$

$$c_{A}(x,t) = \theta(\frac{d_{\Gamma}(x,t)}{\varepsilon} + O(1)) + O(\varepsilon^{2}) \quad \text{in } L^{\infty}((0,T) \times \Omega).$$



Sketched Proof

Using the smooth solution of MMC to construct an approximate solution c_A of (Ginzburg–Landau) such that

$$\partial_t c_A - \Delta c_A + \frac{1}{\varepsilon^2} W'(c_A) = r_A.$$

Here r_A can be made as small as possible provided the asymptotic expansion is sufficiently accurate.

The difference $\bar{c} = c_{\varepsilon} - c_A$ satisfies

$$\delta$$

$$\partial_t \bar{c} - \Delta \bar{c} + \frac{1}{\varepsilon^2} W''(c_A) \bar{c} = \mathcal{N}(\bar{c}) - r_A,$$

where $\mathcal{N}(\bar{c})$ is nonlinear.

De Mottoni-Schatzman '95, Chen '94

There exists $\varepsilon_0 > 0$ such that for any $\varepsilon \in (0, \varepsilon_0)$ and $\psi \in H^1(\Gamma_t(\delta))$,

$$\int_{\Gamma_t(\delta)} \left(|\nabla \psi|^2 + \frac{1}{\varepsilon^2} W''(c_A) \psi^2 \right) dx \gtrsim -\int_{\Gamma_t(\delta)} \psi^2 dx$$

Spectrum inequality of linearized operator

De Mottoni & Schatzman '95, Chen '94

There exists $\varepsilon_0 > 0$ such that for any $\varepsilon \in (0, \varepsilon_0)$,

$$\int_{\Gamma_t(\delta)} \left(|\nabla \psi|^2 + \frac{1}{\varepsilon^2} W''(c_A) \psi^2 \right) dx \gtrsim -\int_{\Gamma_t(\delta)} \psi^2 dx, \quad \psi \in H^1(\Gamma_t(\delta)).$$

Since $c_A = \theta(\frac{d_{\Gamma}}{\varepsilon}) + O(\varepsilon^2)$, by Taylor's expansion, it suffices to show

$$\int_{\Gamma_t(\delta)} \left(|\nabla_{\Gamma} \psi|^2 + |\partial_{\mathbf{n}} \psi|^2 + \frac{1}{\varepsilon^2} W''(\theta) \psi^2 \right) dx \geqslant -C \int_{\Gamma_t(\delta)} \psi^2 dx$$

As $W''(\theta)=\frac{\theta'''}{\theta'}$, by a cut-off near $\Gamma_t(\delta)$ and a change of variable $x\to(s,r)\to(s,\frac{r}{\varepsilon})$

$$\begin{split} &\int_{\Gamma(\delta)} |\partial_{\mathbf{n}}\psi|^2 + \frac{W^{\prime\prime}(\theta)}{\varepsilon^2} \psi^2 dx \\ &= \int_{\Gamma} \int_{-\delta}^{\delta} \left(|\partial_r \psi(r,s)|^2 + \frac{W^{\prime\prime}(\theta)}{\varepsilon^2} \psi^2(r,s) \right) J(r,s) dr \\ &= \frac{1}{\varepsilon} \int_{\Gamma} \int_{-\delta/\varepsilon}^{\delta/\varepsilon} \left(|\partial_z \psi(\varepsilon z,s)|^2 + \frac{\theta^{\prime\prime\prime}}{\theta^\prime} (z) \psi^2(\varepsilon z,s) \right) J(\varepsilon z,s) dz \qquad \text{with } \frac{r}{\varepsilon} = z \\ &= \frac{1}{\varepsilon} \int_{\Gamma} \int_{-\delta/\varepsilon}^{\delta/\varepsilon} \left(|\partial_z \psi(\varepsilon z,s)|^2 + \psi^2(\frac{\theta^{\prime\prime}}{\theta^\prime}(z))^2 - 2\partial_z \psi \psi \frac{\theta^{\prime\prime}}{\theta^\prime} \right) J(\varepsilon z,s) dz + \cdots \end{split}$$

Table of contents

- 1 Phase field model for Motion by Mean Curvature (MMC)
- 2 Phase field approach to the Willmore flow
- 3 Phase-field model in complex fluid
- 4 Nematic–Isotropic phase transition

Introduction

Consider the Cahn-Hilliard type equation in a domain $\Omega \subset \mathbb{R}^3$:

$$\begin{cases} \varepsilon^3 \partial_t \phi_{\varepsilon} = \varepsilon^2 \Delta \mu_{\varepsilon} - W''(\phi_{\varepsilon}) \mu_{\varepsilon}, \\ \varepsilon \mu_{\varepsilon} = -\varepsilon^2 \Delta \phi_{\varepsilon} + W'(\phi_{\varepsilon}), \end{cases}$$

where $W(\phi) = (\phi^2 - 1)^2$. It is the gradient flow of

$$\mathcal{E}(\phi) = \frac{1}{2\varepsilon} \int_{\Omega} \left(\varepsilon \Delta \phi - \frac{W'(\phi)}{\varepsilon} \right)^2 dx \approx \frac{1}{2} \int_{\Gamma} H^2 dS.$$

For well-prepared initial data, $\lim_{\varepsilon \to 0} (\mu_{\varepsilon}, \phi_{\varepsilon}) = (\mu_0, 1_{\Omega^+(t)} - 1_{\Omega^-(t)})$ where the closed surface $\Gamma_t = \partial \Omega^-(t)$ evolves by Willmore flow

$$V = \Delta_{\Gamma} H + H|A|^2 - H^3/2.$$

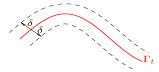
- $V = -\partial_t d_{\Gamma} \mid_{\Gamma_t}$: normal velocity of $\Gamma = \bigcup_{t \in [0,T]} \Gamma_t$.
- $A = \nabla \nu$: second fundamental form.

¹The usual Cahn-Hilliard equation is $\partial_t \phi_{\varepsilon} = \Delta \mu_{\varepsilon}$.

Asymptotic Expansions

Use Ansatz $\phi_{\varepsilon} = \theta\left(\frac{d_{\Gamma}(x,t)}{\varepsilon}\right) + \cdots, \mu_{\varepsilon} = \cdots$ as inner expansions of

$$\begin{cases} \varepsilon^3 \partial_t \phi_{\varepsilon} = \varepsilon^2 \Delta \mu_{\varepsilon} - W''(\phi_{\varepsilon}) \mu_{\varepsilon}, \\ \varepsilon \mu_{\varepsilon} = -\varepsilon^2 \Delta \phi_{\varepsilon} + W'(\phi_{\varepsilon}). \end{cases}$$



- ε^0 : $\theta(z) = \tanh(\frac{z}{\sqrt{2}})$ is the optimal profile.
- ε^1 : $\mu_{\varepsilon}(x,t) = -\Delta d_{\Gamma}(x,t)\theta'(\frac{d_{\Gamma}(x,t)}{\varepsilon}) + \cdots$
- ε^2 : d_{Γ} satisfies a quasilinear 4-th order equation

$$\partial_t d_{\Gamma} + \Delta^2 d_{\Gamma} = \Delta d_{\Gamma} D + \nabla d_{\Gamma} \cdot \nabla D$$
 on Γ_t ,

where $D(x,t) = \nabla \Delta d_{\Gamma} \cdot \nabla d_{\Gamma} + \frac{1}{2} (\Delta d_{\Gamma})^2$. This is the barrier formulation of Willmore flow

$$V = \Delta_{\Gamma} H + H|A|^2 - H^3/2.$$

Approximate solution and Spectrum inequality

Fei-L. '19 preprint

Let $\Gamma_t \subset \mathbb{R}^3$ evolve by the Willmore flow. Then there exists approximate solutions (ϕ_A, μ_A) such that $\phi_A = \theta(\frac{d_{\Gamma}(x,t)}{\varepsilon})$ near Γ_t and $\phi_A = \pm 1$ when away from Γ_t , and fulfill the C-H equation up to a tail:

$$\begin{cases} \varepsilon^{3} \partial_{t} \phi_{A} = \varepsilon^{2} \Delta \mu_{A} - W''(\phi_{A}) \mu_{A} + O(\varepsilon^{10}), \\ \varepsilon \mu_{A} = -\varepsilon^{2} \Delta \phi_{A} + W'(\phi_{A}) + O(\varepsilon^{10}). \end{cases}$$

Moreover, if $\|\phi_{\varepsilon}(\cdot,0) - \phi_A(\cdot,0)\|_{L^2(\Omega)} \lesssim \varepsilon^{\frac{7}{2}}$, then

$$\|\phi_{\varepsilon} - \phi_A\|_{L^{\infty}(0,T_{\max};L^2(\Omega))} \lesssim \varepsilon^{\frac{7}{2}}.$$

The equation of $\phi = \phi_{\varepsilon} - \phi_A$ writes, up to some tails terms

$$\partial_t \phi = -\left(\Delta - \varepsilon^{-2} W''(\phi_A)\right)^2 \phi - \varepsilon^{-3} W'''(\phi_A) \mu_A \phi + \text{higher order terms.}$$

Table of contents

- 1 Phase field model for Motion by Mean Curvature (MMC)
- 2 Phase field approach to the Willmore flow
- 3 Phase-field model in complex fluid
- 4 Nematic–Isotropic phase transition

Phase field model with fluid

Consider the coupled system with Stokes flow

$$-\Delta v_{\varepsilon} + \nabla p_{\varepsilon} = -\varepsilon \operatorname{div}(\nabla c_{\varepsilon} \otimes \nabla c_{\varepsilon}), \quad \operatorname{div} v_{\varepsilon} = 0,$$

$$\partial_{t} c_{\varepsilon} + v_{\varepsilon} \cdot \nabla c_{\varepsilon} = \Delta c_{\varepsilon} - \frac{1}{\varepsilon^{2}} W'(c_{\varepsilon}),$$

$$v_{\varepsilon}|_{\partial\Omega} = 0, \quad c_{\varepsilon}|_{\partial\Omega} = -1.$$

Assume $(v_{\varepsilon}, c_{\varepsilon}) \to (v_0, 1_{\Omega^+(t)} - 1_{\Omega^-(t)})$ and let $z = \frac{d_{\Gamma}(x, t)}{\varepsilon}$ be the fast variable. We shall construct approximate solution with form

$$c_A(x,t) = c_0(z,x,t) + \varepsilon c_1 + \cdots, \quad v_A(x,t) = v_0(z,x,t) + \varepsilon v_1 + \cdots.$$

$$\frac{=\partial_t c_A}{\underbrace{\frac{\partial_t d_{\Gamma}}{\varepsilon} \partial_z c_0 + \partial_t c_0}} + \underbrace{\underbrace{(\frac{\nu}{\varepsilon} \partial_z c_0 + \nabla c_0) \cdot v_0}_{\varepsilon} \approx \underbrace{\frac{\Delta d_{\Gamma}}{\varepsilon} \partial_z c_0 + \frac{1}{\varepsilon^2} \partial_z^2 c_0 + \dots - \frac{1}{\varepsilon^2} W'(c_0)}_{\varepsilon}$$

As before, the ε^{-1} order gives the MMC with convection

$$\partial_t d_{\Gamma} + \mathbf{v_0} \cdot \mathbf{v} = \Delta d_{\Gamma}.$$

Expansion for Stokes system near the interface

Near the interface $c_{\varepsilon} \approx \theta(\frac{d_{\Gamma}}{\varepsilon})$. So $\nabla c_{\varepsilon} \approx \frac{\nu}{\varepsilon} \theta'(\frac{d_{\Gamma}}{\varepsilon})$. Tested by a solenoidal vector field $\varphi(x)$, the fluid equation writes

$$\int_{\Omega} \operatorname{div}(-2Dv_{\varepsilon} + p_{\varepsilon}\mathbf{I}) \cdot \varphi = -\int_{\Omega} \varepsilon \operatorname{div}(\nabla c_{\varepsilon} \otimes \nabla c_{\varepsilon}) \cdot \varphi$$

$$= \int_{\Omega} \varepsilon (\nabla c_{\varepsilon} \otimes \nabla c_{\varepsilon}) : \nabla \varphi$$

$$\approx \int_{\Gamma_{t}(\delta)} \frac{\theta'(\frac{d_{\Gamma}}{\varepsilon})^{2}}{\varepsilon} (\nu \otimes \nu - I_{d}) : \nabla \varphi \xrightarrow{\varepsilon \to 0} -\sigma \int_{\Gamma_{t}} \operatorname{div}_{\Gamma_{t}} \varphi$$
Integration by parts:
$$\int_{\Gamma} \left[-2Dv_{\varepsilon} + p_{\varepsilon}\mathbf{I} \right] : \nu \otimes \varphi \xrightarrow{\varepsilon \to 0} \sigma \int_{\Gamma} \varphi \cdot \nu H,$$

which implies the jump condition of the stress tensor:

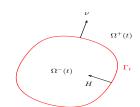
$$[2Dv_0 - p_0 \mathbf{I}] \cdot \nu = -\sigma \nu H.$$

Away from Γ_t outer expansion leads to Stokes flow.

Rigorous Sharp Interface Limit

The inner expansion gives:

$$[2Dv_0 - p_0 \mathbf{I}] \cdot \nu = -\sigma H \nu$$
 on Γ_t on Γ_t on Γ_t



The outer expansion leads to

Abels-L. '18

Assume a smooth solution on $[0, T_0]$ and that $c_{\varepsilon}^0(x) \approx \theta (d_{\Gamma_0}(x)/\varepsilon)$ near Γ_t and $c_{\varepsilon}^0(x) = \pm 1$ away from Γ_t . Then

$$\sup_{0 \leqslant t \leqslant T} \|c_{\varepsilon}(t) - c_{A}(t)\|_{L^{2}(\Omega)} = O(\varepsilon^{2}), \ \|v_{\varepsilon} - v_{A}\|_{L^{2-}((0,T)\times\Omega))} = O(\varepsilon),$$

$$c_{A}(x,t) = \theta\left(\frac{d_{\Gamma}(x,t)}{\varepsilon} + O(1)\right) + O(\varepsilon^{2}) \text{ near } \Gamma_{t}$$

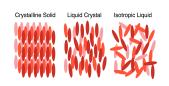
$$v_{A}(x,t) = v_{0}(x,t) + O(\varepsilon).$$

Table of contents

- 1 Phase field model for Motion by Mean Curvature (MMC)
- 2 Phase field approach to the Willmore flow
- 3 Phase-field model in complex fluid
- 4 Nematic–Isotropic phase transition

Nematic-Isotropic phase transition

Using spectrum stability argument, Fei-Wang-Zhang '19 studied the isotropic-nematic phase transition modeled by the matrix-valued Ginzburg-Landau equation:



$$\partial_t Q_{\varepsilon} = \Delta Q_{\varepsilon} - \frac{1}{\varepsilon^2} W'(Q_{\varepsilon}), \quad Q_{\varepsilon} : \Omega \to \mathbb{Q},$$

$$\mathbb{Q} = \{ Q \in \mathbb{R}^{3 \times 3} : Q = Q^T, \operatorname{tr} Q = 0 \}$$

where $W(Q) = \frac{a}{2} \operatorname{tr}(Q^2) - \frac{b}{3} \operatorname{tr}(Q^3) + \frac{c}{4} \left(\operatorname{tr}(Q^2)\right)^2$ is the Landau's expansion of the free energy. Here a, b, c are temperature dependent constant, and satisfies $b^2 = 27ac$ at the critical temperature: Argmin $W(Q) = \{s_{\pm}(\mathbf{n} \otimes \mathbf{n} - \frac{1}{3}I_3) : \mathbf{n} \in \mathbb{S}^2\}, \ s_- = 0, s_+ = \frac{b + \sqrt{b^2 - 24ac}}{4c}$. Rubinstein-Sternberg-Keller '89. Lin-Pan-Wang, '13: steady case. As a toy model one can consider the vector-valued G–L equation with $W(u) = |u|^2 (1 - |u|^2)^2$.

Nematic-Isotropic phase transition

Fei-Wang-Zhang-Zhang '18

Assume Γ_t is a MMC and is smooth on [0,T]. $\mathbf{n}: \Omega^+(t) \mapsto \mathbb{S}^2$ is a smooth harmonic heat flow in $\Omega^+(t)$ with $\partial_{\nu} \mathbf{n} = 0$ on Γ_t : $\partial_t \mathbf{n} = \Delta \mathbf{n} + |\nabla \mathbf{n}|^2 \mathbf{n}$. Then for any $k \geq 1$ there exists approximate $Q^{[k]}$ which is close to $s_+(\mathbf{n} \otimes \mathbf{n} - \frac{1}{3}I_3)$ in $\Omega^+(t) \setminus \Gamma_t(\delta)$ and 0 in $\Omega^-(t) \setminus \Gamma_t(\delta)$, and

$$\partial_t Q^{[k]} - \Delta Q^{[k]} + \frac{1}{\varepsilon^2} W'(Q^{[k]}) = O(\varepsilon^{k-1}).$$

Moreover, if the initial data satisfies $||Q_{\varepsilon}^{0}(x) - Q^{[k]}(0,x)||_{H^{2}} \lesssim \varepsilon^{9}$, then

$$\sup_{t \in [0,T]} \|Q_{\varepsilon}(t,x) - Q^{[k]}(t,x)\|_{H^2} \lesssim \varepsilon^9.$$

The proof is based on asymptotic expansions and **spectrum** inequality of the linearized operator at $Q^{[k]}$.

Modulated energy method: distance function

Bronsard-Kohn '91: Recall the energy dissipation

$$\int_{\Omega} \left(\frac{\varepsilon}{2} |\nabla c_{\varepsilon}|^2 + \frac{1}{\varepsilon} W(c_{\varepsilon}) \right) dx + \int_{\Omega_t} \varepsilon |\partial_t c_{\varepsilon}|^2 = \mathcal{E}_{\varepsilon}(c_{in}).$$

Let $G(\tau) = \tau^3/3 - \tau$. Then $\nabla_{x,t}G(c_{\varepsilon}) = (c_{\varepsilon}^2 - 1)\nabla_{x,t}c_{\varepsilon}$, thus $G(c_{\varepsilon})$ is bounded in BV. Motivated by Lin '96 on the Ginzburg-Landau vortices, one can construct a weight function $\phi(x,t) = d_{\Gamma}(x,t)^2$ near Γ_t and constant away from it. This function will cut-off the singularity and lead to

$$\frac{d}{dt} \int \phi(x,t) \left(\frac{1}{2} |\nabla c_{\varepsilon}|^{2} + \frac{W(c_{\varepsilon})}{\varepsilon^{2}} \right) dx
\lesssim \int \phi(x,t) \left(\frac{1}{2} |\nabla c_{\varepsilon}|^{2} + \frac{W(c_{\varepsilon})}{\varepsilon^{2}} \right) dx + \int \left(\frac{1}{2} |\nabla c_{\varepsilon}|^{2} - \frac{W(c_{\varepsilon})}{\varepsilon^{2}} \right) dx.$$

Modica '85, Ilmanen '93 showed that the discrepancy $|\nabla c_{\varepsilon}|^2 - \frac{W(c_{\varepsilon})}{\varepsilon^2}$ preserves negativity. This seems only valid for scalar equation.

Modulated energy method: Tilt-excess

Motivated by Jerrard–Smets '15 on the binormal curve flow, and Fischer–Laux–Simon '20 preprint on the scalar case, we define

$$E_{\varepsilon}[Q_{\varepsilon}|\Gamma](t) := \int_{\Omega} \left(\frac{\varepsilon}{2} |\nabla Q_{\varepsilon}|^2 + \frac{1}{\varepsilon} W(Q_{\varepsilon}) - \boldsymbol{\xi} \cdot \nabla \psi_{\varepsilon}\right) dx, \tag{2}$$

where $\boldsymbol{\xi}$ is an appropriate extension of the normal of Γ_t , $\psi_{\varepsilon}(x,t) := d_{\varepsilon}^W \circ Q_{\varepsilon}(x,t)$ and $d_{\varepsilon}^W(Q) := (\phi_{\varepsilon} * d^W)(Q)$ and

$$d^{W}(Q) := \inf_{\gamma(0) \in \{s^{+}(\mathbf{n} \otimes \mathbf{n} - I_{3}/3)\}, \gamma(1) = Q} \int_{0}^{1} \sqrt{2W(\gamma(t))} |\gamma'(t)| dt.$$
 (3)

Laux-L. '20 preprint

Let Γ_t be a smooth MMC on [0,T] and $\varepsilon \|Q_\varepsilon^{in}\|_{L^\infty(\Omega)} + E_\varepsilon[Q_\varepsilon|\Gamma](0) \lesssim \varepsilon$, then $\sup_{t\in[0,T]} E_\varepsilon[Q_\varepsilon|\Gamma](t) \lesssim \varepsilon$ and $Q_{\varepsilon_k} \xrightarrow{k\to\infty} Q = s_\pm \left(\mathbf{n}\otimes\mathbf{n} - \frac{1}{3}I_3\right)$ strongly in $L_t^\infty(H^1_{loc}(\Omega^\pm(t)))$ where $\mathbf{n}:\Omega^+(t)\mapsto\mathbb{S}^2$ is a weak solution of the harmonic map heat flow with 0-Neumann boundary condition on $\partial\Omega^+(t) = \Gamma_t$. $s_- = 0, s_+ = \frac{b+\sqrt{b^2-24ac}}{t} > 0$.

Controls of tilt-excess and discrepancy

In the scalar case $\psi_{\varepsilon}(x,t) = \int_0^{c_{\varepsilon}(x,t)} \sqrt{2W(z)} dz$ and $n_{\varepsilon} = \frac{\nabla \psi_{\varepsilon}}{|\nabla \psi_{\varepsilon}|}$, thus

$$E_{\varepsilon}[c_{\varepsilon}|\Gamma](t) = \int_{\Omega} \left(\frac{\varepsilon}{2} \left| \nabla c_{\varepsilon} \right|^{2} + \frac{1}{\varepsilon} W(c_{\varepsilon}) - \xi \cdot \frac{\nabla \psi_{\varepsilon}}{|\nabla \psi_{\varepsilon}|} \left| \nabla c_{\varepsilon} \right| \sqrt{2W(c_{\varepsilon})} \right) dx.$$

In the vectorial case, we introduce an orthogonal projection

$$\Pi_{Q_{\varepsilon}} \partial_{x_i} Q_{\varepsilon} = \left(\partial_{x_i} Q_{\varepsilon} : \frac{\nabla_q d_{\varepsilon}^W(Q_{\varepsilon})}{|\nabla_q d_{\varepsilon}^W(Q_{\varepsilon})|} \right) \frac{\nabla_q d_{\varepsilon}^W(Q_{\varepsilon})}{|\nabla_q d_{\varepsilon}^W(Q_{\varepsilon})|}, \text{ with } x_0 := t.$$

Grönwall' inequality
$$\int_{\Omega} \left(\frac{1}{2} |\nabla Q_{\varepsilon}|^{2} + \frac{1}{\varepsilon^{2}} W(Q_{\varepsilon}) \right) (1 - \boldsymbol{\xi} \cdot \mathbf{n}_{\varepsilon})$$
$$+ \int_{\Omega} \left(|\nabla Q_{\varepsilon} - \Pi_{Q_{\varepsilon}} \nabla Q_{\varepsilon}|^{2} \right) \lesssim \varepsilon^{-1} E_{\varepsilon}[Q_{\varepsilon}|\Gamma](t) \lesssim 1.$$

As $d_{\varepsilon}^{W}(Q)$ is isotropic, the commutator $[\Pi_{Q_{\varepsilon}}\partial_{x_{i}}Q_{\varepsilon},Q_{\varepsilon}]=0$. So

$$[\partial_t Q_\varepsilon - \Pi_{Q_\varepsilon} \partial_t Q_\varepsilon, Q_\varepsilon] = \nabla \cdot [\nabla Q_\varepsilon - \Pi_{Q_\varepsilon} \nabla Q_\varepsilon, Q_\varepsilon] \qquad \text{(weak compactness)}$$

谢谢! Thank you!