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Introduction
Einstein-Euler system

The Einstein-Euler system with a positive cosmological constant is
given by

GH + Aghv = Tm, (L)
- . 1.1
vV, T" =0,

where ﬁu denotes covariant derivative and A the positive
cosmological constant, G = Ric*" — %Rg‘”’ is the Einstein
tensor of the metric

g= guudx'udxyv (1'2)

Rz’c,“,, R are the Ricci and scalar curvature of the metric §
respectively. T*” denotes the stress energy tensor

" = (p + p)a"a” + pg" (Guura” =-1),  (1.3)
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Introduction
Conformal transformation

We consider the conformal metric
G = e—Q%W, or gt = eZ‘I’gW, (1.4)
where
¢ = —In(7). (1.5)

Under the conformal transformation (1.4) and (1.5), the equations
(1.2) that we consider in this paper is the following Cauchy
problem

G = T 4 2(VAVY® — VFOVY®) — (200,® + [VE[2)gH,
VT = 6T, + gaTF gV, ,
T=1: g"=g{"(x), 0:g" =g{"(x),
plr=1 = m(x), v'[=1 = ¢"(x).
(1.6)
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Introduction

Physical Background

dark energy
afterglow light accelerated expansion
pattem  Dark Ages development of
380 000 years galaxies, planets, etc

inflation

quantum
fluctuations’

1st stars
about 200 million years

Big Bang expansion
13.81 billion years

@ Cosmological evidences show that our universe is undergoing
accelerated expansion. (Astrophys. J. 517 565, and
Astrophys. J. 116 1109).

@ Standard models: “quintessence” . ‘“positive cosmological
constant” . “Dark Energy”
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Introduction

Background (FLRW) solution

e Firemann-Lemaitre-Robertson-Walker (FLRW) solutions to
(1.2) are spatially homogeneous, isotropy and time dependent
only and are used to explain the accelerated expanding of the
universe.

@ The main motivation of our work is to give a criterion on the
fluids such that the Einstein-Euler system with a positive
cosmological constant admits a global classical solution when
the initial data are small perturbations to the FLRW solutions.
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Introduction
Main Results

Theorem

[Ann. Henri. Poincare, 2020] Suppose k € Z3, A > 0,
gy’ € H*Y(T?), i, po, v™ € H*(T3), po > 0 for all x € T? with

(gwjaargw)apaui”‘r 1= (goyvgl y Po, V ) (17)

which solves the constraint equations
(G —T°)|,—, =0 and Z"|,—; =0.
Then there exists a constant o > 0, such that if

llgs” = (Dl s+ llgt"” = 0em™ (Dl e+l po—p (D) |z 412" | e < 0}

and the fluids satisfy given assumptions in the following
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Introduction
Main Results

Theorem

there exists a unique classical solution g"* € C?((0,1] x T?),
p, v' € C*((0,1] x T?) to the conformal Einstein-Euler system that
satisfies the following regularity conditions

2
(g‘“’,u“,p) c ﬂ CZ((Tl, ] Hk+1 4 TS m Ce Tl, kaf(TB)
£=0

x () C((Ty, 1], H*4(T?)), (1.8)

£=0

and the estimates

19" (7) = 0" (T) [ v + 10ag" () = O™ (7) || v
+o(7) = A+ + ' ()| < 0
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Introduction
Basic assumptions on the fluids

(The symmetrization condition of Makino-like variable o) There
exists an invertible transformation

C? 3 p:[~00,+00] — (0,+00)
a(@?) = p(z)

and a transformation C* 5 \ : [—o0, +00] — [0,1/6] for some
constant 6 > 0. such that
de(a) _ pla) +p'p

do q(a) (19)

where

q(a) :== iiz)) s(a) = gp*( dz(;)) (1.10)
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Introduction

Assumption

Suppose p is the density of the fluid associating with its
homogeneous, isotropic state, then we denote

(7). (1.11)
Assume there exists an function o € C([0,1], C¥(R)) satisfying
o(7,0) = 0 and a rescaling function 3(7) € C[0,1] N C*(0,1] of «
such that

o(a) —p(a) = T@Q(T,ﬁ_l(T)(a - d)), e > 2. (1.12)

v
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Introduction
Assumptions on (3

Assumption

Denote 5 := s(a), A := \(@) and ¢ := q(&) = 5/\. Suppose

s < B(r) and
’ d/\

o If there is a positive constant 0 < & < 1, such that 3(r) is
bounded by

;T <pB(r) <

VT, x(7) =10, In B3(1) > 0. (1.14)

S| =

v

Changhua Wei Future stability for a large class of perfect fluids



Assumption

and require that

1—352 > x(1)+0. (1.15)

and

1

Zx(7) +

2 x(7) + 6, (1.16)

holds for all T € [0,1].
@ [ = constant> 0 and one of the following cases happens
o g=qand1—35>5;
e gq=qand1—3s>=0;
o ¢(@)>d and1—35%>0.

Changhua Wei Future stability for a large class of perfect fluids



Introduction
Fluids satisfy above assumptions

Once the equations of state are given

The future nonlinear stability of the FLRW spacetime for a linear
equation of state p = Kp, (K € (0, %]) Chaplygin gases
A+D (¢ € (0, \/g]) and polytropic gases

P=—7,A7

(pﬁ\l)‘“
p=Kp, (ne(l,3)) satisfy above assumptions.
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Some known results
Some known results

Pure Analysis method (wave coordinates)

o When TH = grTO" ¥ — [29“1,8“\1/6”\11 + V(¥)]g" and
V(0) >0, V'(0) =0, V'(0) >0, H. Ringstrom [Invent.
Math, 2008] showed the global non-linear stability of
non-vacuum Einstein system.

e When 0 < C2 < % Rodnianski and Speck [JEMS, 2013]
proved the global nonlinear stability of a family of FLRW
solutions of the irrotational Euler-Einstein system with
p=Cip.

® When 0 < C2 < 1, J. Speck [Selecta Math, 2012] proved the
global future stability of Euler-Einstein system with non-zero
vorticity when p = C?p.

@ When C5 =0, M. HadZi¢ and J. Speck [JHDE, 2015] proved
the global future stability of Euler-Einstein system with
non-zero vorticity.
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Some known results
Some known results

Conformal method

@ When 0 < CZ < £, T. Oliynyk [CMP, 2016] proved the same
result by combining the conformal method and wave
coordinates.

@ When 0 < CE < % C. Liu and T. Oliynyk [CMP, 2018; AHP
2018] solved the Nowtonian limit problem (Einstein-Euler and
Poisson-Euler)

e When p = —p% (0 € (0,1]) and A =0, P. LeFloch and Wei
[Ann. I. H. Poincare-AN, 2020] proved the global existence of
the Einstein-Chaplygin fluids when the fluid is irrotational.
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Some known results
Some known results

In fixed accelerated expanding spacetime
g = —dt? +a(t) Y22 (da')?
e U. Brauer, A. Rendall and O. Reula [CQG, 1994] showed the

global solution for Polytropic gases in Newtonian cosmological
spacetime with exponentially expanding rate.

@ J. Speck [ARMA, 2013] proved the future stability results for
the relativistic Euler equations when 0 < C? < % under the
assumption that a(t) satisfies some time-integrable conditions.

e Wei [JDE, 2018] proved the relationship between the future
stability of the fluids and the spacetime when a(t) admits a
polynomial expanding rate with p = C2p and p = —p%.

e T. Oliynyk [arXiv: 2002.12526] proved the future stability of
the relativistic fluids in exponentially expanding rate when
% < C2 < L. This result found some evidence for the stability
of the fluids with parameter C2 > %
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Some known results
Natural problem

@ Does the solution exists globally for general Chaplygin fluids
(without irrotational assumption)?
@ How about the polytropic gases?

@ What is the difference between polytropic gases and the linear
case?

In other words, which kind of fluids can ensure the global nonlinear
stability of the Einstein-Euler system with a positive cosmological
constant when the initial data are small perturbations to the
FLRW solutions? (Structural stability of the FLRW-type
stabilization with respect to different equations of state.)
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Main idea
Main idea

The main idea of conformal method is to turn the whole system
into a singular symmetric hyperbolic system.
1
B 0,u :;BPu +H in[Tp,Ty] x T", (3.1)
u =ug in Tp x T", (3.2)
where we require the following Conditions:

e Ty <11 L0.

e P is a constant, symmetric projection operator, i.e., P? = P,
PT =P and 9,P =0.

o u = u(t,z) and H(t,u) are R"-valued maps,
H € O[Ty, 0], C>(R"Y)) and satisfies H(t,0) = 0.
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Main idea
Singular symmetric system

e B" = B¥(t,u) and B = B(t,u) are My n-valued maps, and
B*, B € C°([Ty, 0], C*(RY)), BY € CH([Tp, 0], C>=(RY))
and they satisfy

(B =pB*, [P,B]=PB-BP=0. (3.3)

@ Suppose

BY =B°(t) + B%(t, ) (3.4)
B =B(t) + B(t,u)

where B(t,0) = 0 and B(t,0) = 0. There exists constants
K, Y1, Y2 such that

7H <B'< B < vl (3.6)
1

for all t € [T}, 0].
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Main idea
singular symmetric system

e For all (t,u) € [Tp,0] x RY, we have
PLB°(t,Ptu)P = PB°(t, Ptu)Pt =0,

where PY =1 — P is the complementary projection operator.

@ There exists constants 6, 51 and @ > 0 such that

253

1 0 0y—1 1 < -
IPL[D,BO(t,u)(B%)'BPulP| < |t|¢9+w+uuu|2

Puf?,
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Main idea
Proposition

Proposition

Suppose that k > % + 1, ug € H*(T™) and above conditions are
fulfilled. Then there exists a T, € (Tp,0), and a unique classical
solution u € C*([Ty, Ti] x T™) that satisfies

u € C([Ty, Ti], H*) N CY([To, Ti], H* 1) and the energy estimate

t
1 _
||u(t)||§{k —/T ;HPuH?{k < CeCt TO)(HU(TO)H?{k)
0

for all Ty <t < Ty, where C = C(||ull oo (73 1), H¥)> Y15 V25 ), and
can be uniquely continued to a larger time interval [Ty, T™*) for all
T € (T*,O] provided HUHLOO([T(),T*),WLOO) < Q.
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Main idea
Energy inequalities

Acting on (3.1) by D®B™! to obtain
1
B"9,D%u = ~BPD"u — B[D* B 'B*0,u+ BD*(B 'H).

By tedious computations and standard energy estimates under
above assumptions, we can get

Oellull§ < %HPuH% + (0 + |ldivB| <) lull§ + 2yl H]l2 ] ullo,
and

allull £ SIPull +C[ ~ (61PulR + ) IPuld) + llul].
Then we have

b1
o0 (Il + Kl ~ [ Jiuliar) < Clulf.

To
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Sketch of the prc
Main difficulties

@ The coefficient matrix B? is degenerate for polytropic gases
® How to deal with the source terms (2 is bounded)?

@ How to make a balance between the Einstein equations and
Euler equations? (The projection matrix for g°* is not
diagonal)?

@ How to ensure the C! property of BY with respect to 77

@ How to ensure the constraint
PLBO(t,Ptu)P = PBO(t,Ptu)P+ = 07 (For Fluids II)
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Sketch of the prc
The metrics

@ The original metric:
g = Guvdatdz".

@ The original background metric:

1 1 o >
= (_de# + Z(dﬁ) = —dt* + a*(t) Y (da')’,
i=1 ’

2
T =1
@ The conformal metric:
g = guvdxtdz”.

@ The conformal background metric:
1 3
= ——dr? + ) (da').
n=—adr +¢:1( ')

Changhua Wei Future stability for a large class of perfect fluids



Sketch of the prc
Analysis of the FLRW solution

The time dependent solution satisfies

a2 p—D _
3w? — 0+ > +4) =0, (4.1)
—6Q — 6w? + 2A — (p + 3p) =0. (4.2)
_ 3,
Oop = ;(P + D). (4.3)
Solving above and under the assumptions above, we have
mp(1) < p(r) < 7°p(1), (4.4)
L 5(1)7* < W? Al 5(1)73 (4.5)
— T —=<= )
g/ T = 3 =3P\
2 1
—37p() Q< =571 (4.6)
and
3r3p(1) < 0,p < 47%p(1). (4.7)
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Sketch of the prc
Wave coordinates

Define the wave coordinates as

5 .
ZH=TH4YHF=TH4= <g“0 + (w? + ;})55> . (4.8)
T

o RH = —% aﬂaaagg“” + VEDY) 4 lower order

From above, we can see that Y* = —2VH® — ¢2PTH_ For the
metricn, Z* = 0. This fact is very important for the disappear of
the linear part of the conformal Einstein and conformal fluid
equations (1.6).
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Sketch of the prc
Conformal Einstein equations

With the wave coordinates Z#* defined by (4.8), we can consider
the following equivalently reduced conformal Einstein equation by
assuming Z*|;—=1 =0

—2RM™ 4+ 2VWZY) 4 AW 7R — APV + AVHOVY D
— 2|0,® +2|VeS + (% + A)e?®| g
2¢2% (p + p)uru” (4.9)

where
AR — _ x(ngr) 4y (egy),
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Sketch of the prc

Expanding the left hand side of above and subtracting the
background metric, we get

K v v 2w2 v 4w v
— g0 (" — ) = Taw — 1) = =5(g% + )50,

2
015(M5 ) 7—2.q,ul/(g00 +w2) —i—Y)’“’.

20) 0
9 = (g O — Ly (6% + WIS — 09" — )
20 b)) D
~ 0" — (" — ")

_20:9(7) ((g"° =)o + (9° = 1"*)5%)

1 — — w v 2 p— ﬁ_ (p _ﬁ> v
——lp=p—p D)~ )2<2 U

=
2
72 [<p —p+p—putu’ + (p+ p)(utu” — a“al/)}
+Q" (g,09) — Q" (n, )



Sketch of the prc
New variables

Define the densitized three metric

gij = det(glm)%gija (410)
where
-~ _ Imy\—1
Gim = (g"")"",
and the variable
2
q=¢"+w? - % In(det(g??)). (4.11)
It is easy to check that
. 1
9,8 = (det(gpq))3L;. g™, (4.12)

where ]
i _sisi _ Lo i
Obviously, LY is trace-free, i.e.,
lm
ij lm
L,.g"=0.



Sketch of the prc
New unknowns

o= £ 1 (4.13)
27
3 Oov _ ,,0v
W= (g ) -2 o ) (4.14)
u’ = 9(g™ —1™), (4.15)
uil = gii i (4.16)
ul = .87, (4.17)
u = q, (4.18)
u, = 0.9 (4.19)
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Sketch of the prc
symmetric hyperbolic system

Op Op
UO 1 UO
A%, u?” = —AP u?‘u + FOr, (4.20)
uOu T uOu
uf)m 1 uém
A", u%.m = —(—2¢")11 u;;n +Fm™  (4.21)
u'm T u‘m
and
Up 1 Up
A9 | wy | = =(=2¢"10 | u; | +F9, (4.22)
T
u u
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Sketch of the prc
Symmetric hyperbolic system

_900 0 0 _2g'0k _gjk 0
A0 = 0 g¢7 0 A= —¢* 0 o],
0 0 —g% 0 0 0
;3 0 3 % 0 0
P=| 04 0] A= 0 3¢ 0 |,
1 1 00
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Sketch of the prc
Symmetric hyperbolic system

1 00 6uiu" + 4u00u8“ — 4uO0y0r 4 pyOn
I=( 0 0 0 |,F%= 0
0 0 O 0
and
4u00u6j + M 4uuy — 8(u%)2 + Ra
FY = 0 , F9= 0
gOOUlm g u%)m
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Sketch of the prc
Symmetrize Euler Equations

Define
ut = e®ut, (4.23)
Then
wup + (p + p) L Vyu' = = 3(p + p)ut'V, @, (4.24)
Y
Mpyu" 0 u’ + p +lp8up =— L1'9,P., (4.25)
where w
LF=6'— =6 and Lg, = gLy (4.26)
Ug
and
U Ug Ui
My =gki — —gok — —9oi + —5~9oo- (4.27)
uo UuQ Uuq
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Sketch of the prc
Symmetrize process

dp(a)
o
v do

Mkiu“auul +

O+ (p+p) LAV, u' = = 3(p+ p)u"'V,®,  (4.28)
s2LE dp(a)
p+p da

multiplying both sides of (4.28) by A*(a)% a4, We obtain

Ao = — L9, ®, (4.29)

do d
Nutd,o + N p (p+p) LIV, u' =—3(p+ p))\Qd—iu“Vu@,
0

(4.30)
s2LY dy
p+pda
The relation (1.9) in Assumption 3 which is
dp(@) _ M) (p+p)

do s(«@)
Changhua Wei Future stability for a large class of perfect fluids
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Sketch of the prc
Symmetric Euler

We can get
N utd,a + ALV ' = — 3\su”'V @, (4.32)
AsLEO o + Myu!V uf = — L1, ®, (4.33)

Remark

Forp= Kp and p = — 19, the new density variable is defined by

£(p) f o )7 +p . Under this variable transformation,
(4 24)—(4. 25) become

s*ut9 € + P LIV ut = — 35%ut0,®, (4.34)
s?LEOuE + MijutV ! = — LF9,9. (4.35)
It is evident that (4.32)—(4.33) coincide with (4.34)—(4.35) by
choosing \ = s and o = £ provided s is non-degenerate (indeed
s=VK forp=Kp).




Sketch of the prc

Degenerate phenomenon for polytropic gases

When p = KpnTH, we have

) N 1) C(1,6¢)73/m
K+1—-KC(1,5¢) 3/’

n
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Sketch of the prc
Fluids (1)

Background equation

o.a- 2 (4.36)
Then
Nutd,(a — @) + AsLEou’ :§)\su0 - )\2u0£ - )‘SL?PLVUV’
T ! (4.37)
Mygud,uF + AsL 9, (o — @) :L?% - )\SL?% - Mkiu“FZVuV.
(4.38)

Introduce

a=p(r)¢, a=p(1), ut = [J’(T)'Ui and 6 =( -,
(4.39)
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Sketch of the prc

New variables for Fluids (I)

Then
Nuk9,8¢ + AsLE 90t =S, (4.40)
AsLE9,6¢ + Myulduo* =S;. (4.41)
Where

s =$ (3)\u0 [5

T] - X(Tw’uO) 8¢+ %X(T) (M) vt

ug

o >/\\ 0|

by i ) (U
%”l - )\B(ST) %gm(az‘gko + Orgki — Orgio)
—s(r,V) (4.42)

and

si=1 (<25 (1= B - xmprrste) - x(nMiad) ot

uo
3(>\s—5\s)s i 1 7G5 2.0 0
—2(T(T)+x(7')>\séc>g”u 7B J) ((1+Gs Ju ’+u]>
00
+ "O“i +84(7, U, V). (4.43)
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Sketch of the prc
New transformation

Define
v =oF — Ag%F = vk — 27 AuOF, (4.44)
3s2[a(T)] 352
A= A(r) = — = . (4.45)
ST R e
Then
u b 1 ik 3Ass 0\ .k
ASLE9u0¢ + My (vF) = = (=22 (1= 2225 — x(n)B(r)AsdC) = x()gniu® ) v
T uQ A
00
Gij T 27/ 0j 05 1 Tnoou;
I —1-3 =
. (5(7)( )"+ )) T 28
+8:(7, U, V) (4.46)
and
2 wa i 1 of= 5 2.0
A2ul@,5¢ + AsLEOu' = = [3au (: - :T) —x(M)A20| 8¢
- Y
.y ) . -
+ X0 <M> v+ F(r,U,V), (4.47)
T uo
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Sketch of the prc

Final form
We get
S T | .
DHON = —DPTV + —(Eod), + E400)U* + F(,V,U), (4.48)
T T
where
V= (5¢v)T, U* = (ugh, ¥, u®)T (4.49)
and
Db — A2ut AsLh  Eo= 7100 0 0. 0 7
AsLE Myput 28(r) \ 0 & 0O
BuC[E — $7] - x(m)A%ul XOBAs9:5¢
D= (T)B/\(T))\sg vl X 3 Ifo ’
T =9 (1= 2522) = x(1)griu’,

0 0 0 . 1 0

E, = ———(1-33%) and Pf = .
q 1
B(7) grq 0 grq 0 &
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Sketch of the prc

Fluids (I1)

We use lower index for the velocity and get
s §>

, 3
Nuryu (o — &) + AsLE T 90,uy = ,)\27‘0(
T AA

ou’ ;
_ I3 B v
AsLt <3(gaﬁ)a”ga +T,u ) , (4.50)
- » .t 1 1 ,3)Xss
Myut J* J449, AsJILEO, (o — &) = JPU = (—— 4+ — (=%
kiUl g + As Hou(a — @) [T( w + uo( X ))uq
(4.51)

- Mkiuu(%‘);)apgaﬁ + Fﬁ,,u”)].

ou?
Ou; '
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Sketch of the prc

Fluids (I1)

~ ~ 1 A atn ~ ~
DrN = ~DP'V + A (7, U, V), (4.52)
T

where V = (8¢, ug)T, D* and H are given by

P — 1 A2yt AsJia Lt
SN0\ NJULE My R Jiayk
and
. 1 —)\st(a(Bgfﬁ) 8ugaﬁ + Ffwu”)
= iy k
AZu0 —J4 Mkiu“(rg;txﬁ)aﬂgaﬁ + Ffwu”)

Changhua Wei Future stability for a large class of perfect fluids



Sketch of the prc

Decomposition

QIf $= § and 1 — 3s2 > § hold, then set

R 1 0 L 0 0
D= . A and P' = . |- @53
0 - A2u0uq (1 B :\ ] )J ! 0 51

S and 1 — 3s2 = 0 hold, then set

R 1 0 - 0 0
D= ) and P = . (4.54)
0 s5oi 0 0

=
>lw

Il
>l

QI %(%) > 6> 0, then take
o [ 3l + i ()t Ks(a - @) 0
0 N (1~ BRI

(4.55)

pl = ( (1) ; > (4.56)
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Sketch of the prc
The origin of the assumptions

goo =noo + 7Soo(T, U),

goi =7S0:(7, U),

u® = — /=00 4 78(7,U) + B2 (r)W(7, U, V) + 78(7)V(1, U, V),
1

uo :\/ﬁ + 78(7,U) + B2(1)W(T,U, V) + 78(1)V(7, U, V),
2,0
w; =B()giv? + 2ru® — IRt

=B(7)gi;v? + 78i(7,U) + B2(T)W;(7, U, V) + 78(T)Vi (T, U, V).
s(a) — s(a) =E(r,a — &)(a — &) = B(7)E(7, B(7)5()d¢
AMa) = A(@) =T(r,a — a)(a — a) = B(T) Y (7, B(7)6¢)d¢
Mg, =gri + B2(1)Wii (1, U, V) + 83 (1)U (7, U, V) + 78(7) Vis (7, U, V)

LY = — wBiv7 + BTi (1, U, V) 4+ 78 (1, U, V) + BZW; (1, U, V) + 78V; (7, U, V)
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Sketch of the prc

Application to polytropic gas

We introduce the standard relationship between p and a which are

p=p(a) = ( : a®" (4.57)

4Kn(n+1))"

and

—1
A=X(a) = (1 + moﬂ) . (4.58)
Background solution
s (1 1 1 s\ "2
a(r)=12n (52(1) + In(n 1)  dn(nt 1)75) € [0, a(1)] (4.59)
for 7 € [0,1]. Which shows that
p~ T
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Sketch of the prc

Applications for Polytropic gases

& Choose (7) = r(3=9)/(27) ¢ C[0,1] N C1(0,1] for & € (0,1]

d()\(a) + ﬁ(T)s(a))
0.6(r)( o +s(a)

a=pB(T)y

3—¢ 3-c , 1 a2 1 11
= n —(1 R ¢ D VA - - i i <1
om ( ( +4n(n+1)T Y > 2n(n+1)y+2n+2ny ~

- B 1 A1 &

A=Aa) = (1 D ) and 5= s(@)= . (4.60)

&Then, calculate quantity
ds 5dx\ 3 (n 1 )*1 3
- —v52) = o - > —=x(n+ (4.61)
<da /\da) 2n 3 moﬂ 2n 2

- a2(1) | = x(r , if a(l) =2n,/%(1-3=2),

1_352:1_&%21_30‘(2) =x(r) = 5F (1) 3 ( o)
an T sy =%, i 0<a(l) <2ny/i1- 2.
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Sketch of the prc
Index n

In conclusion, we need 32(7) <7 < 3(7) and 1 — 22 > 0, then

3—¢€

<n<3—e

Since e € (0,1], son € (1,3), i.e., v € (3,2).
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Application to Chaplygin fluids

We take {A\(),0,0,8(7)} as

[P de 1 (p A AN
o) ‘/ﬁm E4pe) 01 (p(1) + AT AT (462
1+9
Aa) IATT (4.63)

:A19+1 4 [(ﬁ(l) +A)19+1 _ A19+1]e(19+1)a
B(r) =1, ©=3(1+9) and o(r,a—a)=73tD(u(a)— @) (4.64)

Thus,
B ~ 1 (ﬁ+A)19+1 _ A19+1 5
= = =1 4.65
a=al0) = 5 Gy + Ay —Ae - T (465)
_ 1
pl@) =a {1+ [(1+ B - qgeved T (4.66)
_ _1
(@) :A{l +[0+ %)“1 - 1}7309“)}“”1 — A, (4.67)
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Sketch of the prc

Applications to Chaplygin fluids

19A1+19
S(Ot) :)\(Ot) = \/p’(P) = AOFL 4 [(ﬁ(l) i A)19+1 _ A19+1}e(19+1)a
9
> p(1
1+ [(% +1)9+1 — 1]e@+D Ko

)

Pl

) =0, x(1) =0,

&.‘&.
Qi

and

IALFY 2
1-352=1-3 -
A9+ 4 730+ [(5(1) + A)9+1 — AO+1]

>1 — 39?2

0, i 19:\/%,

1-392>0, if 0<9<,/3.
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Remaining problems (Global solution or blow up?)

@ The gap of n € [3,+00) for polytropic gases.

@ The case of ¥ € (\/g, 1].
e The case of C2 € (3,1]
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Thanks for your attention!
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