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Einstein-Euler system

The Einstein-Euler system with a positive cosmological constant is
given by {

G̃µν + Λg̃µν = T̃µν ,

∇̃µT̃µν = 0,
(1.1)

where ∇̃µ denotes covariant derivative and Λ the positive
cosmological constant, G̃µν = R̃icµν − 1

2R̃g̃
µν is the Einstein

tensor of the metric
g̃ = g̃µνdx

µdxν , (1.2)

R̃icµν , R̃ are the Ricci and scalar curvature of the metric g̃
respectively. T̃µν denotes the stress energy tensor

T̃µν = (ρ+ p)ũµũν + pg̃µν (g̃µν ũ
µũν = −1), (1.3)
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Conformal transformation

We consider the conformal metric

gµν = e−2Φg̃µν , or gµν = e2Φg̃µν , (1.4)

where
Φ = − ln(τ). (1.5)

Under the conformal transformation (1.4) and (1.5), the equations
(1.2) that we consider in this paper is the following Cauchy
problem
Gµν = e4ΦT̃µν + 2(∇µ∇νΦ−∇µΦ∇νΦ)− (2�gΦ + |∇Φ|2g)gµν ,
∇µT̃µν = −6T̃µν∇µΦ + gκλT̃

κλgµν∇µΦ,

τ = 1 : gµν = gµν0 (x), ∂τg
µν = gµν1 (x),

ρ|τ=1 = m(x), vi|τ=1 = qi(x).

(1.6)
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Physical Background

Cosmological evidences show that our universe is undergoing
accelerated expansion. (Astrophys. J. 517 565, and
Astrophys. J. 116 1109).

Standard models: “quintessence”!“positive cosmological
constant”!“Dark Energy” · · · .
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Background (FLRW) solution

Firemann-Lemâıtre-Robertson-Walker (FLRW) solutions to
(1.2) are spatially homogeneous, isotropy and time dependent
only and are used to explain the accelerated expanding of the
universe.

The main motivation of our work is to give a criterion on the
fluids such that the Einstein-Euler system with a positive
cosmological constant admits a global classical solution when
the initial data are small perturbations to the FLRW solutions.
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Main Results

Theorem

[Ann. Henri. Poincare, 2020] Suppose k ∈ Z≥3, Λ > 0,
gµν0 ∈ Hk+1(T3), gµν1 , ρ0, ν

α ∈ Hk(T3), ρ0 > 0 for all x ∈ T3 with

(gµν , ∂τg
µν , ρ, ui)|τ=1 = (gµν0 , gµν1 , ρ0, ν

α) (1.7)

which solves the constraint equations

(G0µ − T 0µ)|τ=1 = 0 and Zµ|τ=1 = 0.

Then there exists a constant σ > 0, such that if

‖gµν0 −ηµν(1)‖Hk+1+‖gµν1 −∂τηµν(1)‖Hk+‖ρ0−ρ̄(1)‖Hk+‖νi‖Hk < σ,

and the fluids satisfy given assumptions in the following
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Main Results

Theorem

there exists a unique classical solution gµν ∈ C2((0, 1]× T3),
ρ, vi ∈ C1((0, 1]× T3) to the conformal Einstein-Euler system that
satisfies the following regularity conditions

(gµν , uµ, ρ) ∈
2⋂
`=0

C`((T1, 1], Hk+1−`(T3))×
1⋂
`=0

C`((T1, 1], Hk−`(T3))

×
1⋂
`=0

C`((T1, 1], Hk−`(T3)), (1.8)

and the estimates

‖gµν(τ)− ηµν(τ)‖Hk+1 + ‖∂κgµν(τ)− ∂κηµν(τ)‖Hk
+ ‖ρ(τ)− ρ̄(τ)‖Hk + ‖ui(τ)‖Hk . σ.
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Basic assumptions on the fluids

Assumption

(The symmetrization condition of Makino-like variable α) There
exists an invertible transformation

C2 3 ϕ : [−∞,+∞] → (0,+∞)

α(xµ) 7→ ρ(xµ)

and a transformation C2 3 λ : [−∞,+∞]→ [δ̂, 1/δ̂] for some
constant δ̂ > 0. such that

dϕ(α)

dα
=
ϕ(α) + µ∗p

q(α)
(1.9)

where

q(α) :=
s(α)

λ(α)
s(α) := ϕ∗

(√dp(ρ)

dρ

)
(1.10)

and µ∗ is the pullback of µ. The physical meaning of s is the
sound speed and assume s ∈ C2([−∞,+∞]).
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Assumption

Suppose ρ̄ is the density of the fluid associating with its
homogeneous, isotropic state, then we denote

ᾱ := ϕ−1(ρ̄). (1.11)

Assume there exists an function % ∈ C
(
[0, 1], Cω(R)

)
satisfying

%(τ, 0) = 0 and a rescaling function β(τ) ∈ C[0, 1] ∩ C1(0, 1] of α
such that

ϕ(α)− ϕ(ᾱ) = τΘ%
(
τ, β−1(τ)(α− ᾱ)

)
, Θ ≥ 2. (1.12)
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Assumptions on β

Assumption

Denote s̄ := s(ᾱ), λ̄ := λ(ᾱ) and q̄ := q(ᾱ) = s̄/λ̄. Suppose
s̄ . β(τ) and (

∂τβ(τ) +
s̄

τ

)dλ̄
dᾱ
. 1, (1.13)

If there is a positive constant 0 < δ̂ < 1, such that β(τ) is
bounded by

1

δ̂
τ ≤ β(τ) ≤ 1

δ̂

√
τ , χ(τ) := τ∂τ lnβ(τ) ≥ 0. (1.14)
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Assumption

and require that

1− 3s̄2 ≥ χ(τ) + δ̂. (1.15)

and

1

3
χ(τ) +

1

δ̂
≥ q′(ᾱ) ≥ 1

3
χ(τ) + δ̂, (1.16)

holds for all τ ∈ [0, 1].

β ≡ constant> 0 and one of the following cases happens

q = q̄ and 1− 3s̄2 ≥ δ̂;
q = q̄ and 1− 3s2 = 0;
q′(ᾱ) ≥ δ̂ and 1− 3s̄2 ≥ δ̂.
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Fluids satisfy above assumptions

Once the equations of state are given

Corollary

The future nonlinear stability of the FLRW spacetime for a linear
equation of state p = Kρ, (K ∈ (0, 1

3 ]), Chaplygin gases

p = − Λ1+ϑ

(ρ+Λ)ϑ
, (ϑ ∈ (0,

√
1
3 ]) and polytropic gases

p = Kρ
n+1
n , (n ∈ (1, 3)) satisfy above assumptions.
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Some known results

Pure Analysis method (wave coordinates)

When T̃µν = ∂̃µΨ∂̃νΨ− [1
2 g̃µν ∂̃

µΨ∂̃νΨ + V (Ψ)]g̃µν and

V (0) > 0, V
′
(0) = 0, V

′′
(0) > 0, H. Ringstrom [Invent.

Math, 2008] showed the global non-linear stability of
non-vacuum Einstein system.

When 0 < C2
s <

1
3 , Rodnianski and Speck [JEMS, 2013]

proved the global nonlinear stability of a family of FLRW
solutions of the irrotational Euler-Einstein system with
p = C2

sρ.

When 0 < C2
s <

1
3 , J. Speck [Selecta Math, 2012] proved the

global future stability of Euler-Einstein system with non-zero
vorticity when p = C2

sρ.

When Cs = 0, M. Hadžić and J. Speck [JHDE, 2015] proved
the global future stability of Euler-Einstein system with
non-zero vorticity.
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Some known results

Conformal method

When 0 < C2
s ≤ 1

3 , T. Oliynyk [CMP, 2016] proved the same
result by combining the conformal method and wave
coordinates.

When 0 < C2
s ≤ 1

3 , C. Liu and T. Oliynyk [CMP, 2018; AHP
2018] solved the Nowtonian limit problem (Einstein-Euler and
Poisson-Euler)

When p = − 1
ρθ

(θ ∈ (0, 1]) and Λ = 0, P. LeFloch and Wei

[Ann. I. H. Poincare-AN, 2020] proved the global existence of
the Einstein-Chaplygin fluids when the fluid is irrotational.
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Some known results

In fixed accelerated expanding spacetime
g = −dt2 + a2(t)

∑3
i=1(dxi)2

U. Brauer, A. Rendall and O. Reula [CQG, 1994] showed the
global solution for Polytropic gases in Newtonian cosmological
spacetime with exponentially expanding rate.

J. Speck [ARMA, 2013] proved the future stability results for
the relativistic Euler equations when 0 ≤ C2

s ≤ 1
3 under the

assumption that a(t) satisfies some time-integrable conditions.

Wei [JDE, 2018] proved the relationship between the future
stability of the fluids and the spacetime when a(t) admits a
polynomial expanding rate with p = C2

sρ and p = − A
ρα .

T. Oliynyk [arXiv: 2002.12526] proved the future stability of
the relativistic fluids in exponentially expanding rate when
1
3 < C2

s ≤ 1
2 . This result found some evidence for the stability

of the fluids with parameter C2
s ≥ 1

3 .
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Natural problem

Does the solution exists globally for general Chaplygin fluids
(without irrotational assumption)?

How about the polytropic gases?

What is the difference between polytropic gases and the linear
case?

In other words, which kind of fluids can ensure the global nonlinear
stability of the Einstein-Euler system with a positive cosmological
constant when the initial data are small perturbations to the
FLRW solutionsº(Structural stability of the FLRW-type
stabilization with respect to different equations of state.)
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Main idea

The main idea of conformal method is to turn the whole system
into a singular symmetric hyperbolic system.

Bµ∂µu =
1

t
BPu+H in [T0, T1]× Tn, (3.1)

u =u0 in T0 × Tn, (3.2)

where we require the following Conditions:

T0 < T1 ≤ 0.

P is a constant, symmetric projection operator, i.e., P2 = P,
PT = P and ∂µP = 0.

u = u(t, x) and H(t, u) are RN -valued maps,
H ∈ C0([T0, 0], C∞(RN )) and satisfies H(t, 0) = 0.
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Singular symmetric system

Bµ = Bµ(t, u) and B = B(t, u) are MN×N -valued maps, and
Bµ, B ∈ C0([T0, 0], C∞(RN )), B0 ∈ C1([T0, 0], C∞(RN ))
and they satisfy

(Bµ)T = Bµ, [P,B] = PB− BP = 0. (3.3)

Suppose

B0 =B̊0(t) + B̃0(t, u) (3.4)

B =B̊(t) + B̃(t, u) (3.5)

where B̃0(t, 0) = 0 and B̃(t, 0) = 0. There exists constants
κ, γ1, γ2 such that

1

γ1
I ≤ B̊0 ≤ 1

κ
B̊ ≤ γ2I (3.6)

for all t ∈ [T0, 0].
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singular symmetric system

For all (t, u) ∈ [T0, 0]× RN , we have

P⊥B0(t,P⊥u)P = PB0(t,P⊥u)P⊥ = 0,

where P⊥ = I− P is the complementary projection operator.

There exists constants θ, β1 and $ > 0 such that

|P⊥[DuB
0(t, u)(B0)−1BPu]P⊥| ≤ |t|θ +

2β1

$ + |P⊥u|2
|Pu|2,
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Proposition

Proposition

Suppose that k ≥ n
2 + 1, u0 ∈ Hk(Tn) and above conditions are

fulfilled. Then there exists a T∗ ∈ (T0, 0), and a unique classical
solution u ∈ C1([T0, T∗]× Tn) that satisfies
u ∈ C0([T0, T∗], H

k) ∩ C1([T0, T∗], H
k−1) and the energy estimate

‖u(t)‖2Hk −
∫ t

T0

1

τ
‖Pu‖2Hk ≤ CeC(t−T0)(‖u(T0)‖2Hk)

for all T0 ≤ t < T∗, where C = C(‖u‖L∞([T0,T∗),Hk), γ1, γ2, κ), and
can be uniquely continued to a larger time interval [T0, T

∗) for all
T ∗ ∈ (T∗, 0] provided ‖u‖L∞([T0,T∗),W 1,∞) <∞.
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Energy inequalities

Acting on (3.1) by DαB−1 to obtain

Bµ∂µD
αu =

1

t
BPDαu− B[Dα,B−1Bµ]∂µu+ BDα(B−1H).

By tedious computations and standard energy estimates under
above assumptions, we can get

∂t‖u‖20 .
κ̃

t
‖Pu‖20 + γ(θ + ‖divB‖L∞)‖u‖20 + 2

√
γ‖H‖2‖u‖0,

and

∂t‖u‖2k .
κ̃

t
‖Pu‖2k + C

[
− 1

t
(δ‖Pu‖2k + c(δ)‖Pu‖20) + ‖u‖2k

]
.

Then we have

∂t

(
‖u‖2k +K‖u‖20 −

∫ t

T0

1

τ
‖Pu‖2kdτ

)
. C‖u‖2k.

Changhua Wei Future stability for a large class of perfect fluids



Introduction Some known results Main idea Sketch of the proof Further discussions

Main difficulties

The coefficient matrix B0 is degenerate for polytropic gases

How to deal with the source terms (ρ−ρ̄
τ2 is bounded)?

How to make a balance between the Einstein equations and
Euler equations? (The projection matrix for g0µ is not
diagonal)?

How to ensure the C1 property of B0 with respect to τ?

How to ensure the constraint
P⊥B0(t,P⊥u)P = PB0(t,P⊥u)P⊥ = 0? (For Fluids II)
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The metrics

The original metric:

g̃ = g̃µνdx
µdxν .

The original background metric:

η̃ =
1

τ2

(
− 1

w2
dτ2 +

3∑
i=1

(dxi)2

)
= −dt2 + a2(t)

3∑
i=1

(dxi)2.

The conformal metric:

g = gµνdx
µdxν .

The conformal background metric:

η = − 1

w2
dτ2 +

3∑
i=1

(dxi)2.
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Analysis of the FLRW solution

The time dependent solution satisfies

−3ω2 − Ω +
( ρ̄− p̄

2
+ Λ

)
=0, (4.1)

−6Ω− 6ω2 + 2Λ− (ρ̄+ 3p̄) =0. (4.2)

∂0ρ̄ =
3

τ
(ρ̄+ p̄). (4.3)

Solving above and under the assumptions above, we have

τ4ρ̄(1) ≤ ρ̄(τ) ≤ τ3ρ̄(1), (4.4)

1

3
ρ̄(1)τ4 ≤ ω2 − Λ

3
≤ 1

3
ρ̄(1)τ3, (4.5)

−2

3
τ3ρ̄(1) ≤ Ω ≤ −1

2
τ4ρ̄(1) (4.6)

and

3τ3ρ̄(1) ≤ ∂τ ρ̄ ≤ 4τ2ρ̄(1). (4.7)
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Wave coordinates

Define the wave coordinates as

Zµ = Γµ + Y µ = Γµ +
2

τ

(
gµ0 + (w2 +

ẇ

2
)δµ0

)
. (4.8)

Rµν = −1
2g
αβ∂α∂βg

µν +∇(µΓν) + lower order

Remark

From above, we can see that Y µ = −2∇µΦ− e2Φ ¯̃Γµ. For the
metric η, Zµ ≡ 0. This fact is very important for the disappear of
the linear part of the conformal Einstein and conformal fluid
equations (1.6).
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Conformal Einstein equations

With the wave coordinates Zµ defined by (4.8), we can consider
the following equivalently reduced conformal Einstein equation by
assuming Zµ|τ=1 = 0

− 2Rµν + 2∇(µZν) +Aµνκ Zκ = −4∇µ∇νΦ + 4∇µΦ∇νΦ

− 2

[
�gΦ + 2|∇Φ|2g + (

ρ− p
2

+ Λ)e2Φ

]
gµν

− 2e2Φ(ρ+ p)uµuν (4.9)

where
Aµνκ = −X(µδν)

κ + Y (µδν)
κ .
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Expanding the left hand side of above and subtracting the
background metric, we get

− gκλ∂κ∂λ(gµν − ηµν) =
2ω2

τ
∂τ (gµν − ηµν)− 4ω2

τ2
(g00 + ω2)δµ0 δ

ν
0

−4ω2

τ2
g0iδ

(µ
0 δ

ν)
i −

2

τ2
gµν(g00 + ω2) + Hµν .

Hµν = (gκλ − ηκλ)∂κ∂λη
µν − 2Ω

τ2
(g00 + ω2)δµ0 δ

ν
0 −

Ω

τ
∂τ (gµν − ηµν)

−2Ω

τ2
g0iδ

(µ
0 δ

ν)
i −

Ω

τ2
(gµν − ηµν)

−2∂τψ(τ)

3τ

(
(gµ0 − ηµ0)δν0 + (gν0 − ην0)δµ0

)
− 1

τ2
(ρ− ρ̄− p+ p̄)(gµν − ηµν)− 2

τ2

(
ρ− ρ̄− (p− p̄)

2

)
ηµν

− 2

τ2

[
(ρ− ρ̄+ p− p̄)uµuν + (ρ̄+ p̄)(uµuν − ūµūν)

]
+Qµν(g, ∂g)−Qµν(η, ∂η)
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New variables

Define the densitized three metric

gij = det(ǧlm)
1
3 gij , (4.10)

where
ǧlm = (glm)−1,

and the variable

q = g00 + w2 − w2

3
ln(det(gpq)). (4.11)

It is easy to check that

∂µg
ij = (det(ǧpq))

1
3Lijlm∂µg

lm, (4.12)

where

Lijlm = δilδ
j
m −

1

3
ǧlmg

ij .

Obviously, Lijlm is trace-free, i.e.,

Lijlmg
lm = 0.
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New unknowns

u0ν =
g0ν − η0ν

2τ
, (4.13)

u0ν
0 = ∂τ (g0ν − η0ν)− 3(g0ν − η0ν)

2τ
, (4.14)

u0ν
i = ∂i(g

0ν − η0ν), (4.15)

uij = gij − δij , (4.16)

uijµ = ∂µg
ij , (4.17)

u = q, (4.18)

uµ = ∂µq. (4.19)
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symmetric hyperbolic system

Aκ∂κ

 u0µ
0

u0µ
j

u0µ

 =
1

τ
AP

 u0µ
0

u0µ
j

u0µ

+ F 0µ, (4.20)

Aκ∂κ

 ulm0
ulmj
ulm

 =
1

τ
(−2g00)Π

 ulm0
ulmj
ulm

+ F lm, (4.21)

and

Aκ∂κ

 u0

uj
u

 =
1

τ
(−2g00)Π

 u0

uj
u

+ F q, (4.22)
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Symmetric hyperbolic system

A0 =

 −g00 0 0
0 gij 0
0 0 −g00

 , Ak =

 −2g0k −gjk 0
−gik 0 0

0 0 0

 ,

P =

 1
2 0 1

2

0 δjk 0
1
2 0 1

2

, A =

 −g00 0 0
0 3

2g
jk 0

0 0 −g00

 ,
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Symmetric hyperbolic system

Π =

 1 0 0
0 0 0
0 0 0

 , F 0µ =

 6u0iu0µ + 4u00u0µ
0 − 4u00u0µ + M̂0µ

0
0

 ,

and

F ij =

 4u00uij0 + Ḿ ij

0
g00ulm0

 , F q =

 4u00u0 − 8(u00)2 + R̂q

0
g00ulm0

 .
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Symmetrize Euler Equations

Define
uµ = eΦũµ, (4.23)

Then

uµ∂µρ+ (ρ+ p)Lµi∇µu
i =− 3(ρ+ p)uµ∇µΦ, (4.24)

Mkiu
µ∂µu

i +
s2Lµi
ρ+ p

∂µρ =− Lµk∂µΦ., (4.25)

where
Lµi = δµi −

ui
u0
δµ0 and Lkν = gνλL

λ
k (4.26)

and

Mki =gki −
ui
u0
g0k −

uk
u0
g0i +

uiuk
u2

0

g00. (4.27)
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Symmetrize process

uµ
dϕ(α)

dα
∂µα+ (ρ+ p)Lµi∇µu

i =− 3(ρ+ p)uµ∇µΦ, (4.28)

Mkiu
µ∂µu

i +
s2Lµi
ρ+ p

dϕ(α)

dα
∂µα =− Lµk∂µΦ, (4.29)

multiplying both sides of (4.28) by λ2(α)dαdρ , we obtain

λ2uµ∂µα+ λ2dα

dρ
(ρ+ p)Lµi∇µu

i =− 3(ρ+ p)λ2dα

dρ
uµ∇µΦ,

(4.30)

Mkiu
µ∂µu

i +
s2Lµi
ρ+ p

dϕ

dα
∂µα =− Lµk∂µΦ. (4.31)

The relation (1.9) in Assumption 3 which is

dϕ(α)

dα
=
λ(α)(ρ+ p)

s(α)
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Symmetric Euler

We can get

λ2uµ∂µα+ λsLµi∇µu
i =− 3λsuµ∇µΦ, (4.32)

λsLµi ∂µα+Mkiu
µ∇µuk =− Lµk∂µΦ, (4.33)

Remark

For p = Kρ and p = − 1
ρϑ

, the new density variable is defined by

ξ = ξ(ρ) =
∫ ρ
ρ(1)

dy
y+p(y) . Under this variable transformation,

(4.24)–(4.25) become

s2uµ∂µξ + s2Lµi∇µu
i =− 3s2uµ∂µΦ, (4.34)

s2Lµi ∂µξ +Miju
µ∇µuj =− Lµi ∂µΦ. (4.35)

It is evident that (4.32)–(4.33) coincide with (4.34)–(4.35) by
choosing λ = s and α = ξ provided s is non-degenerate (indeed
s =
√
K for p = Kρ).
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Degenerate phenomenon for polytropic gases

When p = Kρ
n+1
n , we have

s2 = A(1 +
1

n
)

C(1, δζ)τ3/n

K + 1−KC(1, δζ)τ3/n
,
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Fluids (I)

Background equation

∂τ ᾱ =
3s̄

τ λ̄
. (4.36)

Then

λ2uµ∂µ(α− ᾱ) + λsLµi ∂µu
i =

3

τ
λsu0 − λ2u0 3s̄

λ̄τ
− λsLµi Γiµνu

ν ,

(4.37)

Mkiu
µ∂µu

k + λsLµi ∂µ(α− ᾱ) =L0
i

1

τ
− λsL0

i

3s̄

λ̄τ
−Mkiu

µΓkµνu
ν .

(4.38)

Introduce

α = β(τ)ζ, ᾱ = β(τ)ζ̄, ui = β(τ)vi and δζ = ζ − ζ̄,
(4.39)
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New variables for Fluids (I)

Then

λ2uµ∂µδζ + λsLµi ∂µv
i =S, (4.40)

λsLµi ∂µδζ +Mkiu
µ∂µv

k =Si. (4.41)

Where

S =
1

τ

(
3λu0

[
Ξ−

s̄

λ̄
Υ
]
− χ(τ)λ2u0

)
δζ +

1

τ
χ(τ)

(
λsgijβ(τ)vj

u0

)
vi

+
λsβ′(τ)g0iu

0

β(τ)u0
vi − λ

s

β(τ)

u0

2
gik(∂igk0 + ∂τgki − ∂kgi0)

− S(τ,U) (4.42)

and

Si =
1

τ

(
−
gik

u0

(
1−

3λss̄

λ̄
− χ(τ)β(τ)λsδζ

)
− χ(τ)Mkiu

0

)
vk

− 2

(
3(λs− λ̄s̄)s̄
λ̄β(τ)

+ χ(τ)λsδζ

)
giju

0j −
1

τ

τgij

β(τ)

(
(1 + 6s̄2)u0j + u0j

0

)
+
η00u00

i

2β(τ)
+ Si(τ,U,V). (4.43)
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New transformation

Define

vk = vk −Ag0k = vk − 2τAu0k, (4.44)

A = A(τ) = −
3s2[ᾱ(τ)]√
−η00β(τ)

= −
3s̄2

ωβ(τ)
. (4.45)

Then

λsLµi ∂µδζ +Mkiu
µ∂µ(vk) =

1

τ

(
−
gik

u0

(
1−

3λss̄

λ̄
− χ(τ)β(τ)λsδζ

)
− χ(τ)gkiu

0

)
vk

−
gij

τ

(
τ

β(τ)
(1− 3s̄2)(u0j

0 + u0j)

)
+

1

τ

τη00u00
i

2β(τ)

+Ŝi(τ,U, Ṽ) (4.46)

and

λ2uµ∂µδζ + λsLµi ∂µv
i =

1

τ

[
3λu0

(
Ξ−

s̄

λ̄
Υ
)
− χ(τ)λ2u0

]
δζ

+
χ(τ)

τ

(
β(τ)λsgijvj

u0

)
vi + F̂(τ,U, Ṽ), (4.47)
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Final form

We get

Dµ∂µṼ =
1

τ
DP†Ṽ +

1

τ
(E0δ

0
µ + Eqδ

q
µ)Uµ + F (τ, Ṽ,U), (4.48)

where

Ṽ = (δζ, vp)T , Uµ = (u0µ
0 , u0µ

j , u0µ)T (4.49)

and

Dµ =

 λ2uµ λsLµp

λsLµr Mrpuµ

 , E0 =
τη00

2β(τ)

 0 0 0

0 δjr 0

 ,

D =

 3λu0[Ξ− s̄
λ̄

Υ]− χ(τ)λ2u0 χ(τ)β(τ)λsgijv
j

u0
χ(τ)β(τ)λsgrjv

j

u0
− gir
u0

(
1− 3λss̄

λ̄

)
− χ(τ)griu

0,

 ,

Eq = −
τ

β(τ)
(1− 3s̄2)

 0 0 0

grq 0 grq

 and P† =

 1 0

0 δip

.
and F = (F̂, Ŝi)

T .
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Fluids (II)

We use lower index for the velocity and get

λ2uµ∂µ(α− ᾱ) + λsLµi J
iq∂µuq =

3

τ
λ2u0

( s
λ
−
s̄

λ̄

)
− λsLµi

(
∂ui

∂(gαβ)
∂µg

αβ + Γiµνu
ν

)
, (4.50)

Mkiu
µJkjJiq∂µuq + λsJijLµi ∂µ(α− ᾱ) = Jjq

[ 1

τ

(
−

1

u0
+

1

u0

(3λss̄

λ̄

))
uq

−Mkiu
µ
( ∂uk

∂(gαβ)
∂µg

αβ + Γkµνu
ν
)]
. (4.51)

In above,

Jij =
∂ui

∂uj
.
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Fluids (II)

D̂µ∂µV̂ =
1

τ
D̂P̂
†
V̂ + Ĥ(τ,U, V̂), (4.52)

where V̂ = (δζ, uq)T , D̂µ and Ĥ are given by

D̂µ =
1

λ2u0

 λ2uµ λsJiqLµi

λsJijLµi MkiJ
kjJiquµ

 ,

and

Ĥ =
1

λ2u0

 −λsLµi ( ∂ui

∂(gαβ)
∂µgαβ + Γiµνu

ν)

−JijMkiu
µ( ∂uk

∂(gαβ)
∂µgαβ + Γkµνu

ν)

 .
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Decomposition

1 If s
λ

= s̄
λ̄

and 1− 3s2 ≥ δ̂ hold, then set

D̂ =

 1 0

0 − 1
λ2u0u0

(1− 3λss̄
λ̄

)Jij

 and P̂
†

=

 0 0

0 δqi

 . (4.53)

2 If s
λ

= s̄
λ̄

and 1− 3s2 ≡ 0 hold, then set

D̂ =

 1 0

0 1
λ̄2 δ

iq

 and P̂
†

=

 0 0

0 0

 . (4.54)

3 If d
dᾱ

(
s̄
λ̄

)
≥ δ̂ > 0, then take

D̂ =

 3
[
d
dᾱ

(
s̄
λ̄

)
+ d2

dα2

(
s
λ

)
[ᾱ+K8(α− ᾱ)](δζ)

]
0

0 − 1
λ2u0u0

(1− 3λss̄
λ̄

)Jiq


(4.55)

P̂
†

=

 1 0

0 δji

 . (4.56)
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The origin of the assumptions

g00 =η00 + τS00(τ,U),

g0i =τS0i(τ,U),

u0 =−
√
−η00 + τS(τ,U) + β2(τ)W(τ,U,V) + τβ(τ)V(τ,U,V),

u0 =
1√
−η00

+ τS(τ,U) + β2(τ)W(τ,U,V) + τβ(τ)V(τ,U,V),

ui =β(τ)gijv
j + 2τu0j gkju

0

gilg0ig0l − g00

=β(τ)gijv
j + τSi(τ,U) + β2(τ)Wi(τ,U,V) + τβ(τ)Vi(τ,U,V).

s(α)− s(ᾱ) =Ξ(τ, α− ᾱ)(α− ᾱ) = β(τ)Ξ(τ, β(τ)δζ)δζ

λ(α)− λ(ᾱ) =Υ(τ, α− ᾱ)(α− ᾱ) = β(τ)Υ(τ, β(τ)δζ)δζ

Mik =gki + β2(τ)Wki(τ,U,V) + β3(τ)Uki(τ,U,V) + τβ(τ)Vki(τ,U,V)

L0
i =− ωβδijvj + βTi(τ,U,V) + τSi(τ,U,V) + β2Wi(τ,U,V) + τβVi(τ,U,V)
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Application to polytropic gas

We introduce the standard relationship between ρ and α which are

ρ =ϕ(α) =
1(

4Kn(n+ 1)
)n α2n (4.57)

and

λ =λ(α) =
(

1 +
1

4n(n+ 1)
α2
)−1

. (4.58)

Background solution

ᾱ(τ) = τ
3
2n

(
1

ᾱ2(1)
+

1

4n(n+ 1)
−

1

4n(n+ 1)
τ

3
n

)− 1
2

∈ [0, ᾱ(1)] (4.59)

for τ ∈ [0, 1]. Which shows that

ρ̄ ∼ τ3.
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Applications for Polytropic gases

♣ Choose β(τ) = τ (3−ε)/(2n) ∈ C[0, 1] ∩ C1(0, 1] for ε ∈ (0, 1]

∂τβ(τ)

(
d
(
λ(α) + β(τ)s(α)

)
dα

+ s(α)

)∣∣∣∣
α=β(τ)y

=
3− ε
2n

τ
3−ε
n
−1

(
−
(

1 +
1

4n(n+ 1)
τ (3−ε)/ny2

)−2 1

2n(n+ 1)
y +

1

2n
+

1

2n
y

)
. 1

λ̄ = λ(ᾱ) =
(

1 +
1

4n(n+ 1)
ᾱ2
)−1

and s̄ = s(ᾱ) =
ᾱ

2n
. (4.60)

♣Then, calculate quantity

3
( ds̄
dᾱ
−
s̄

λ̄

dλ̄

dᾱ

)
=

3

2n
+

(
n

3
+

1
3

4n2(n+1)
ᾱ2

)−1

≥
3

2n
= χ(τ) +

ε

2n
, (4.61)

1− 3s̄2 =1−
3ᾱ2

4n2
≥ 1−

3ᾱ2(1)

4n2

= χ(τ) = 3−ε
2n

, if ᾱ(1) = 2n
√

1
3

(
1− 3−ε

2n

)
,

> χ(τ) = 3−ε
2n

, if 0 < ᾱ(1) < 2n
√

1
3

(
1− 3−ε

2n

)
.

Changhua Wei Future stability for a large class of perfect fluids



Introduction Some known results Main idea Sketch of the proof Further discussions

Index n

In conclusion, we need β2(τ) ≤ τ ≤ β(τ) and 1− 3−ε
2n > 0, then

3− ε
2

< n ≤ 3− ε.

Since ε ∈ (0, 1], so n ∈ (1, 3), i.e., γ ∈ (4
3 , 2).
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Application to Chaplygin fluids

We take {λ(α), %,Θ, β(τ)} as

α(ρ) =

∫ ρ

ρ̄(1)

dξ

ξ + p(ξ)
=

1

ϑ+ 1
ln

(ρ+ Λ)ϑ+1 − Λϑ+1

(ρ̄(1) + Λ)ϑ+1 − Λϑ+1
, (4.62)

λ(α) =
ϑΛ1+ϑ

Λϑ+1 + [(ρ̄(1) + Λ)ϑ+1 − Λϑ+1]e(ϑ+1)α
(4.63)

β(τ) =1, Θ = 3(1 + ϑ) and %(τ, α− ᾱ) = τ−3(1+ϑ)(µ(α)− µ(ᾱ)). (4.64)

Thus,

ᾱ =α(ρ̄) =
1

ϑ+ 1
ln

(ρ̄+ Λ)ϑ+1 − Λϑ+1

(ρ̄(1) + Λ)ϑ+1 − Λϑ+1
= ln τ3, (4.65)

ϕ(α) =Λ

{
1 +

[(
1 +

ρ̄(1)

Λ

)ϑ+1 − 1
]
e(ϑ+1)α

} 1
ϑ+1

− Λ, (4.66)

ϕ(ᾱ) =Λ

{
1 +

[(
1 +

ρ̄(1)

Λ

)ϑ+1 − 1
]
τ3(ϑ+1)

} 1
ϑ+1

− Λ, (4.67)
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Applications to Chaplygin fluids

s(α) =λ(α) =
√
p′(ρ) =

ϑΛ1+ϑ

Λϑ+1 + [(ρ̄(1) + Λ)ϑ+1 − Λϑ+1]e(ϑ+1)α

>
ϑ

1 + [(
ρ̄(1)
Λ

+ 1)ϑ+1 − 1]e(ϑ+1)K0

> 0,

3
( ds̄
dᾱ
−
s̄

λ̄

dλ̄

dᾱ

)
= 0, χ(τ) ≡ 0,

and

1− 3s̄2 =1− 3

(
ϑΛ1+ϑ

Λϑ+1 + τ3(1+ϑ)[(ρ̄(1) + Λ)ϑ+1 − Λϑ+1]

)2

≥1− 3ϑ2

=

0, if ϑ =
√

1
3
,

1− 3ϑ2 > 0, if 0 < ϑ <
√

1
3
.
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Remaining problems (Global solution or blow up?)

The gap of n ∈ [3,+∞) for polytropic gases.

The case of ϑ ∈ (
√

1
3 , 1].

The case of C2
s ∈ (1

3 , 1]
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Thanks for your attention!
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