The constant rank Theorem

Chuanqiang Chen

Ningbo University

CAMIS, South China Normal University, Nov 28, 2020

Introduction: "The constant rank Theorem"

A technique to study the convexity of solutions to PDEs.

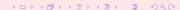
Elliptic equations: $F(D^2u, Du, u, x) = 0$, $\{F^{\alpha\beta}\} := \{\frac{\partial F}{\partial u_{\alpha\beta}}\} > 0$ Parabolic equations: $F(D^2u, Du, u, x, t) = u_t$

The classical solution u is (strictly) convex

$$\Leftrightarrow P(x,y) =: u(\frac{x+y}{2}) - \frac{u(x)+u(y)}{2} \le (<)0$$

$$\Leftrightarrow D^2 u := \{ \frac{\partial^2 u}{\partial x_i \partial x_j} \} \ge (>) 0.$$

The level set $\Sigma^c := \{x \in \Omega : u(x) = c\}$ is (strictly) convex $\Leftrightarrow Q(x,y) =: u(\frac{x+y}{2}) - \min\{u(x), u(y)\} \ge (>)0$ $\Leftrightarrow II_{\Sigma^c} \ge (>)0.$



Introduction: "The constant rank Theorem"

The idea is from Caffarelli-Friedman [Duke Math. J., 1985] and Singer-Wong-Yau-Yau [Ann. Scuola Norm. Sup. Pisa,1985].

Consider a semipositive definite matrix $W = (W_{ij})_{N \times N}$, where $W_{ij} = W_{ij}(D^2u, Du, u, x)$ (W can also depend on t) satisfies the following conditions

- (i) (W_{ij}) is diagonal or partial diagonal under a suitable coordinate,
- (ii) $W_{ij} \in C^2$.

Suppose $I = \min_{x \in \Omega} rank(W(x))$ is attained at some point $x_0 \in \Omega$. We want to prove that W is of rank I at any $x \in \Omega$.

Introduction: "The constant rank Theorem"

So we consider a suitable test function

$$\phi = \sigma_{l+1}(W)$$
 or $\phi = \sigma_{l+1}(W) + \frac{\sigma_{l+2}(W)}{\sigma_{l+1}(W)},$ (0.1)

where $\sigma_k(\lambda) = \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq N} \lambda_{i_1} \lambda_{i_2} \cdots \lambda_{i_k}$, and prove a differential inequality

$$\begin{cases} \sum_{\alpha,\beta=1}^{n} F^{\alpha\beta} \phi_{\alpha\beta} \leqslant C_{1} \phi + C_{2} |\nabla \phi| & \text{in } \mathcal{N}_{x_{0}}, \\ \phi(x_{0}) = 0, & & \text{in } \mathcal{N}_{x_{0}}. \end{cases}$$

$$(0.2)$$

Utilizing the strong maximum principle and the continuous method, we can obtain

$$\sigma_{l+1}(W)(x) \equiv 0 \text{ in } \Omega. \tag{0.3}$$

Hence we can get W is of constant rank I in Ω .

The idea of Constant rank theorem

For the parabolic equations, assume $I = \min_{(x,t) \in \Omega \times (0,T]} rank(W(x,t))$ is attained at some point $(x_0, t_0) \in \Omega \times (0, T]$, and try to prove

$$\begin{cases} \sum_{\alpha,\beta=1}^{n} F^{\alpha\beta} \phi_{\alpha\beta} - \phi_{t} \leq C_{1}\phi + C_{2} |\nabla \phi| & \text{in } \mathcal{N}_{x_{0}} \times (t_{0} - \delta, t_{0}], \\ \phi(x_{0}, t_{0}) = 0, & \\ \phi \geq 0 & \text{in } \mathcal{N}_{x_{0}} \times (t_{0} - \delta, t_{0}], \end{cases}$$
(0.4)

Utilizing the strong maximum principle and the continuous method, we can obtain

$$\sigma_{l+1}(W)(x,t) \equiv 0 \text{ in } \Omega \times (0,t_0]. \tag{0.5}$$

Hence W is of constant rank I in $\Omega \times (0, t_0]$. Moreover, let I(t) be the minimal rank of W in Ω , then $I(s) \leq I(t)$ for all $0 < s \leq t \leq T$.

Example 1:

Theorem (Makar-Limanov: Math. Notes Acad. Sci. USSR.1971)

Assume Ω is a C^2 convex domain, and u is the classical solution of

$$\begin{cases} \Delta u = 1, \text{ in } \Omega \subset \mathbb{R}^n \\ u = 0, \text{ on } \partial \Omega \end{cases}$$

Then $-(-u)^{\frac{1}{2}}$ are strictly convex.

Theorem (Brascamp-Lieb: JFA 1976)

Assume Ω is a C^2 convex domain, and u is the classical solution of eigenvalue problem

$$\begin{cases} \Delta u = \lambda_1(-u), \text{ in } \Omega \subset \mathbb{R}^n \\ u = 0, \text{ on } \partial\Omega \end{cases}$$

Then $-\log(-u)$ are strictly convex.

Step 1: Constant rank Theorem: $D^2v \ge 0 \Rightarrow RankD^2v = constant$.

From the regularity theory, $u \in C^{\infty}(\Omega) \cap C^2(\Omega)$. Let $v = -(-u)^{\frac{1}{2}}$, then v satisfies $2(-v)\Delta v - 2|\nabla v|^2 = 1$. Assume the minimum rank l of D^2v is attained at $x_0 \in \Omega$, and $l \le n-1$. For a small neighborhood \mathcal{N}_{x_0} and any fixed point $x \in \mathcal{N}_{x_0}$, we can rotate the coordinates such that

$$D^2 v$$
 is diagonal. (0.6)

Also, we can assume $v_{11} \geq v_{22} \geq \cdots \geq v_{nn}$. Denote $G = \{v_{11}, \cdots, v_{II}\}, \quad B = \{v_{l+1l+1}, \cdots, v_{nn}\}, \text{ and } G = \{1, \cdots, l\}, B = \{l+1, \cdots, n\}.$ Then $v_{ii} \geq \delta > 0$ for $i \in G$ if \mathcal{N}_{x_0} small enough. Let

$$\phi(x) = \sigma_{l+1}(D^2v), \tag{0.7}$$

If
$$h(x) \leq C(\phi + |\nabla \phi|)$$
, $\forall x \in \mathcal{N}_{x_0}$, we say $h \sim 0$.
Also $h \sim 0$ if $h \lesssim 0$, and $-h \lesssim 0$.
Since $\phi = \sigma_{l+1}(D^2v) \geq \sigma_l(G) \sum_{i \in B} v_{ii}$, then $v_{ii} \sim 0$, $\forall i \in B$.

Taking the first derivatives of ϕ , we get

$$\phi_{\alpha} = \sum_{i=1}^{n} \frac{\partial \sigma_{l+1}(D^{2}v)}{\partial v_{ii}} v_{ii\alpha}$$

$$= \sum_{i \in G} \sigma_{l}(D^{2}v|i) v_{ii\alpha} + \sum_{i \in B} \sigma_{l}(D^{2}v|i) v_{ii\alpha}$$

$$\sim \sigma_{l}(G) \sum_{i \in B} v_{ii\alpha},$$

Then

$$\sum_{i\in P} v_{ii\alpha} \sim 0.$$

$$2(-v)\Delta\phi = 2(-v)\left[\sum_{i=1}^{n} \frac{\partial\sigma_{l+1}(D^{2}v)}{\partial v_{ii}}v_{ii\alpha\alpha} + \sum_{i,j,k,l=1}^{n-1} \frac{\partial^{2}\sigma_{l+1}(D^{2}v)}{\partial v_{ij}\partial v_{kl}}v_{ij\alpha}v_{kl\alpha}\right]$$

$$\sim 2(-v)\sigma_{l}(G)\sum_{j\in B}\left[v_{jj\alpha\alpha} - 2\sum_{i\in G} \frac{v_{ij\alpha}^{2}}{v_{ii}}\right]$$

$$\lesssim \sigma_{l}(G)\sum_{j\in B}\left[4v_{j}\Delta v_{j} - 4(-v)\sum_{i\in G} \frac{v_{iij}^{2}}{v_{ii}}\right]$$

$$\lesssim \sigma_{l}(G)\sum_{j\in B}\left[4\frac{v_{j}^{2}}{-v}\Delta v - 4(-v)\frac{\left(\sum_{i\in G} v_{iij}\right)^{2}}{\sum_{i\in G} v_{ii}}\right]$$

$$\sim 0. \tag{0.8}$$

Applying the strong maximum principle, and we obtain

$$\phi(x) = \sigma_{l+1}(D^2v) \equiv 0, \quad x \in \mathcal{N}_{x_0}.$$
 (0.9)

By the continuity method, $Rank\{D^2v\} = I$ in Ω .

Step 2: Full rank Theorem: $RankD^2v = const. \Rightarrow D^2v > 0$.

By a result of Caffarelli-Spruck [CPDE, 1982] or Korevaar [Indiana, 1983], v is strictly convex near $\partial\Omega$.

Hence l = n and v is strictly convex in Ω .

Step 3: Deformation Theorem: $\Rightarrow D^2v > 0$.

• $\Omega = B_1(0), u = \frac{1}{2n}|x|^2 - \frac{1}{2n}$, and then $v = -\sqrt{\frac{1}{2n} - \frac{1}{2n}|x|^2}$ and

$$D^{2}v = \sqrt{\frac{1}{2n}}(\frac{1}{2n} - \frac{1}{2n}|x|^{2})^{-\frac{3}{2}}[(1 - |x|^{2})\delta_{ij} + x_{i}x_{j}] > 0$$

- $\Omega_t = (1-t)B_1(0) + t\Omega$, u^t is the solution, $v^t = -(-u^t)^{\frac{1}{2}}$.
- t = 0, holds. If $t \rightarrow t_0 \in (0, 1]$, such that

$$D^2 v^{t_0} \ge 0$$
, but not > 0,

it is a contradiction by Full rank Theorem. Hence t = 1, holds.

Example 2: level sets of harmonic function in convex rings

$$\begin{cases} \Delta u = 0 & \text{in} \quad \Omega = \Omega_0 \backslash \overline{\Omega_1}, \\ u = 0 & \text{on} \quad \partial \Omega_0, \\ u = 1 & \text{in} \quad \partial \Omega_1, \end{cases}$$
 (0.10)

where $\Omega = \Omega_0 \setminus \overline{\Omega}_1$ is a C^2 convex ring in \mathbb{R}^n $(n \ge 2)$, i.e. Ω_0 and Ω_1 are C^2 bounded convex domains, and $\overline{\Omega}_1 \subset \Omega_0$.

Theorem (Gabriel: JLMS 1957; Lewis: ARMA 1977)

For any $c \in (0,1)$, the level sets $\Sigma^c = \{x \in \Omega : u(x) = c\}$ are strictly convex.

Gabriel: JLMS 1957: Concavity function method

$$Q(x,y) = u(\frac{x+y}{2}) - \min\{u(x), u(y)\}, \qquad (x,y) \in \Omega \times \Omega$$

Lewis: ARMA 1977: p-harmonic function, strict convexity

Step 1: Constant rank Theorem: $II_{\Sigma^c} \ge 0 \Rightarrow Rank \ II_{\Sigma^c} = constant$.

From the regularity theory, $u \in C^{\infty}(\Omega) \cap C^{2}(\overline{\Omega})$.

From Kawohl [book, 1985], $|\nabla u| \neq 0$ in Ω .

Suppose $a(x) = \{a_{ij}(x)\}_{n-1 \times n-1}$ be the Weingarten curvature matrix of level set Σ^c , and $a \ge 0$. By rotating the coordinates, such that $u_n \ne 0$, then

$$a_{ij} = -\frac{|u_n|}{|\nabla u|u_n|^3} A_{ij}, \quad 1 \le i, j \le n-1,$$
 (0.11)

where

$$A_{ij} = h_{ij} - \frac{u_i u_l h_{jl}}{W(1+W)u_n^2} - \frac{u_j u_l h_{il}}{W(1+W)u_n^2} + \frac{u_i u_j u_k u_l h_{kl}}{W^2(1+W)^2 u_n^4},$$

$$h_{ij} = u_n^2 u_{ij} + u_{nn} u_i u_j - u_n u_j u_{in} - u_n u_i u_{jn},$$

$$W = \frac{|\nabla u|}{|u_n|}.$$

Assume the minimum rank I of a(x) is attained at $x_0 \in \Omega$, and $I \le n-2$. For a small neighborhood \mathcal{N}_{x_0} and any fixed point $x \in \mathcal{N}_{x_0}$, we can rotate the coordinates such that

$$|\nabla u(x)| = u_n(x) > 0, \quad \{u_{ij}\}_{1 \le i,j \le n-1}$$
 is diagonal. (0.12)

Then $a_{ij} = -\frac{1}{u_n^3}h_{ij} = -\frac{1}{u_n}u_{ij}$ is diagonal. Also, we can assume $u_{11} \le u_{22} \le \cdots \le u_{n-1\,n-1}$. Denote $G = \{a_{11}, \cdots, a_{ll}\}$, $B = \{a_{l+1,l+1}, \cdots, a_{n-1,n-1}\}$, and $G = \{1, \cdots, l\}$, $B = \{l+1, \cdots, n-1\}$. Then $a_{ii} \ge \delta > 0$ for $i \in G$ if \mathcal{N}_{χ_0} small enough. Let

$$\phi(x) = \sigma_{l+1}(a_{ij}), \tag{0.13}$$

If $h(x) \leq C_1 \phi + C_2 |\nabla \phi|$, $\forall x \in \mathcal{N}_{x_0}$, we say $h \lesssim 0$. Also $h \sim 0$ if $h \lesssim 0$, and $-h \lesssim 0$.

Since
$$\phi = \sigma_{l+1}(a_{ij}) \ge \sigma_l(G) \sum_{i \in B} a_{ii}$$
, then
$$a_{ii} \sim 0, h_{ii} \sim 0, u_{ii} \sim 0, \ \forall i \in B.$$

Taking the first derivatives of ϕ , we get

$$\phi_{\alpha} = \sum_{ij=1}^{n-1} \frac{\partial \sigma_{l+1}(a)}{\partial a_{ij}} a_{ij,\alpha} = \sum_{i \in G} \sigma_{l}(a|i) a_{ii,\alpha} + \sum_{i \in B} \sigma_{l}(a|i) a_{ii,\alpha}$$

$$\sim \sigma_{l}(G) \sum_{i \in B} a_{ii,\alpha} \sim -u_{n}^{-3} \sigma_{l}(G) \sum_{i \in B} h_{ii,\alpha}$$

$$\sim -u_{n}^{-3} \sigma_{l}(G) \sum_{i \in B} [u_{n}^{2} u_{ii\alpha} - 2u_{n} u_{in} u_{i\alpha}],$$

hence

$$\sum_{i \in B} a_{ii,\alpha} \sim 0, \quad \sum_{i \in B} h_{ii,\alpha} \sim 0, \quad \sum_{i \in B} \left[u_n^2 u_{ii\alpha} - 2u_n u_{in} u_{i\alpha} \right] \sim 0. \quad (0.14)$$

$$\Delta \phi = \sum_{i,j=1}^{n-1} \frac{\partial \sigma_{l+1}(a)}{\partial a_{ij}} a_{ij,\alpha\alpha} + \sum_{i,j,k,l=1}^{n-1} \frac{\partial^2 \sigma_{l+1}(a)}{\partial a_{ij}\partial a_{kl}} a_{ij,\alpha} a_{kl,\alpha}$$

$$\sim \sigma_l(G) \sum_{j \in B} \left[a_{jj,\alpha\alpha} - 2 \sum_{i \in G} \frac{a_{ij,\alpha} a_{ij,\alpha}}{a_{ii}} \right]$$

$$\sim \sigma_l(G) \frac{2}{u_n^3} \sum_{j \in B, i \in G} \sum_{\alpha=1}^{n} \frac{[u_n u_{ij\alpha} - 2u_{i\alpha} u_{jn}]^2}{u_{ij}}$$

$$\leq C(\phi + |\nabla \phi|). \tag{0.15}$$

Applying the strong maximum principle, and the continuity method, $Rank\{a_{ij}\} = I$ in Ω .

Step 2: Full rank Theorem: $II_{\Sigma^c} \ge 0 \Rightarrow II_{\Sigma^c} > 0$.

 Σ^c are (n-1) dimensional closed hypersurface, so l=n-1 (level sets are strictly convex).

Step 3: Deformation Theorem: $\Rightarrow II_{\Sigma^c} > 0$.

- $\Omega = B_2(0) \setminus \overline{B_1(0)}$, $u = -\frac{2^{n-1}}{2^{n-1}+1} \frac{1}{|x|^{n-1}} + \frac{1}{2^{n-1}+1}$, and then $\{x : u(x) = c\}$ is a sphere.
- $\Omega_t = (1-t)B_2(0) \setminus \overline{B_1(0)} + t\Omega$, u^t is the solution.
- t = 0, holds. If $t \rightarrow t_0 \in (0, 1]$, such that

$$II_{u^{t_0}} \ge 0$$
, but not > 0 ,

it is a contradiction by Full rank Theorem. Hence t = 1, holds.

Convexity of solutions is an important geometric property, and there is a vast literature devoted to it. There are two important methods

 macroscopic methods: weak maximum principle, including concavity function method, and convex envelope method.

$$P(x,y) = u(\frac{x+y}{2}) - \frac{u(x) + u(y)}{2}$$

$$Q(x,y) = u(\frac{x+y}{2}) - \min\{u(x), u(y)\}$$

 microscopic methods: strong maximum principle, mainly is the constant rank theorem.

$$Rank\{W_{ii}\} = constant$$

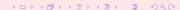
For the elliptic equations and parabolic equations, the convexity of the solution

- (spatial) convex solutions $\longleftrightarrow D_x^2 u \ge 0$
 - Semilinear or quasilinear elliptic equations:
 Korevaar[Indiana, 1983], Kennington[Indiana, 1985], Kawohl[Math. Meth. Appl, 1986];
 Caffarelli-Friedman[Duke, 1985], Korevaar-Lewis[ARMA, 1987]
 - Eigenvalue problem:
 Brascamp-Lieb[JFA, 1976], Caffarelli-Spruck[CPDE, 1982],
 Singer-Wong-Yau-Yau[Ann. Scuola Norm. Sup. Pisa, 1985], Liu-Ma-Xu
 [Adv.Math, 2010],
 - Christoffel-Minkowski problems:
 Guan-Ma[Invent. Math., 2003], Guan-Lin-Ma[Chin. Ann. Math., 2006],
 Guan-Ma-Zhou[CPAM, 2006]
 - Fully nonlinear elliptic and parabolic equations:
 Alvarez-Lasry-Lions[J.M.P.A, 1997], Caffarelli-Guan-Ma[CPAM, 2007],
 Bian-Guan[Invent. Math, 2009], Ma-Xu[JFA, 2008]

- Convexity of (spatial) level sets $\longleftrightarrow I_X \ge 0$
 - Elliptic equations:
 Shiffman[Ann. Math, 1956], Gabriel[J. London Math. Soc., 1957], Lewis[Arch. Rat. Mech. Anal., 1977], Caffarelli-Spruck[CPDE, 1982],
 Bianchini-Longinetti-Salani [Indiana, 2009],
 Korevaar[CPDE, 1990], Bian-Guan-Ma-Xu [Indiana, 2011], Guan-Xu[J. Reine Angew. Math, 2013]
 - Parabolic equations:
 C.-Shi[Sci. China Math., 2011], C. [D.C.D.S, 2014]

For the **parabolic equations**, the **spacetime convexity** is also a basic geometric property.

- Spacetime convex solutions $\longleftrightarrow D_{x,t}^2 u \ge 0$
 - Borell[AIHP Probab. Statist, 1996; Potential Anal, 2000]: Brownian motion
 - Hu-Ma[Manu. Math, 2013]: heat equation
 - C.-Hu[Acta Math. Sin., 2013]: fully nonlinear parabolic equation
- Convexity of spacetime level sets $\longleftrightarrow II_{x,t} \geq 0$
 - ? ? ? ? ?



Consider the convexity of spacetime level sets of the heat equation in the convex rings.

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u & \text{in } \Omega \times (0, +\infty), \\ u(x, 0) = u_0(x) & \text{in } \Omega, \\ u(x, t) = 0 & \text{on } \partial \Omega_0 \times (0, +\infty), \\ u(x, t) = 1 & \text{on } \partial \Omega_1 \times (0, +\infty), \end{cases}$$
(0.16)

where $\Omega = \Omega_0 \setminus \overline{\Omega_1}$, Ω_0 and Ω_1 are bounded convex $C^{2,\alpha}$ domain in \mathbb{R}^n with $\overline{\Omega_1} \subset \Omega_0$.

Basic Porblems: The (strict) convexity of

- (1) spatial level sets $\Sigma_x^{c,t} := \{x \in \Omega : u(x,t) = c\}.$
- (2) spacetime level sets $\Sigma_{x,t}^c := \{(x,t) \in \Omega \times (0,+\infty) : u(x,t) = c\}.$

This work is joint with Xi-Nan Ma and Paolo Salani.

Difficulties

The strict convexity of spacetime level sets is very difficult to study.

- For heat equation in convex rings, there is no result about the strict convexity of spatial level sets (until our work).
- We cannot prove the constant rank Theorem of $II_{\sum_{x}^{c,t}}$ under the condition $II_{\sum_{x}^{c,t}} \geq 0$.
- The characterization of spacetime level sets is complicated.
- The calculations are very hard when we prove the constant rank Theorem of $II_{\Sigma_{\chi_t}^c}$ under the condition $II_{\Sigma_{\chi_t}^c} \ge 0$.

Main Result

Theorem (C.-Ma-Salani, Memoirs AMS, 2019)

If u is a space-time quasiconcave solution of (0.16), with $u_t > 0$. Then

- (1) the spatial level sets $\Sigma_x^{c,t}$ of u are strictly convex for every $c \in (0,1)$ and $t \in (0,+\infty)$.
- (2) the spacetime level sets $\Sigma_{x,t}^c$ of u are strictly convex for every $c \in (0,1)$.

Key: "Twice" constant rank Theorem technique

- Constant Rank Theorem of $II_{\Sigma^{c,t}_{\circ}} \Rightarrow \text{constant rank properties}$
- Constant Rank Theorem of $II_{\Sigma_{\downarrow}^c}$.

the second fundamental form of the spatial level sets

- Spatial level set: $\Sigma_x^{c,t} = \{x \in \Omega | u(x,t) = c\}$
- If $u_n \neq 0$, the Weingarten curvature tensor is

$$a_{ij} = -\frac{|u_n|}{|\nabla u|u_n^3} A_{ij} \ge 0, \quad 1 \le i, j \le n-1,$$
 (0.17)

where $\nabla u = (u_1, u_2, \dots, u_{n-1}, u_n)$ is the spatial gradient of u,

$$A_{ij} = h_{ij} - \frac{u_i u_i h_{ji}}{W(1+W)u_n^2} - \frac{u_j u_i h_{ii}}{W(1+W)u_n^2} + \frac{u_i u_j u_k u_i h_{ki}}{W^2(1+W)^2 u_n^4},$$

$$W = \frac{|\nabla u|}{|u_n|},$$

$$h_{ij} = u_n^2 u_{ij} + u_{nn} u_i u_j - u_n u_i u_{in} - u_n u_i u_{in}, \quad 1 \le i, j \le n-1.$$

the spacetime level sets and the spacetime second fundamental form

- Spacetime level set: $\sum_{x,t}^{c} = \{(x,t)|u(x,t)=c\}$
- If $u_t \neq 0$, the Weingarten curvature tensor is

$$\hat{\mathbf{a}}_{\alpha\beta} = -\frac{|u_t|}{|D\mathbf{u}|u_t^3} \hat{\mathbf{A}}_{\alpha\beta}, \quad 1 \le \alpha, \beta \le n, \tag{0.18}$$

where $Du = (u_1, \dots, u_n, u_t)$ is the spacetime gradient of u,

$$\begin{split} \hat{A}_{\alpha\beta} &= \hat{h}_{\alpha\beta} - \frac{u_{\alpha}u_{\gamma}\hat{h}_{\beta\gamma}}{\hat{W}(1+\hat{W})u_{t}^{2}} - \frac{u_{\beta}u_{\gamma}\hat{h}_{\alpha\gamma}}{\hat{W}(1+\hat{W})u_{t}^{2}} + \frac{u_{\alpha}u_{\beta}u_{\gamma}u_{\eta}\hat{h}_{\gamma\eta}}{\hat{W}^{2}(1+\hat{W})^{2}u_{t}^{4}},\\ \hat{W} &= \frac{|Du|}{|u_{t}|},\\ \hat{h}_{\alpha\beta} &= u_{t}^{2}u_{\alpha\beta} + u_{tt}u_{\alpha}u_{\beta} - u_{t}u_{\beta}u_{\alpha t} - u_{t}u_{\alpha}u_{\beta t}, \quad 1 \leq \alpha, \beta \leq n. \end{split}$$

Constant rank theorem of spatial level sets

Assume $I = \min_{(x,t) \in \Omega \times (0,T]} rank\{a_{ij}(x,t)\}$ attained at some point $(x_0,t_0) \in \Omega \times (0,T]$. We just need to prove a differential inequality

$$\begin{cases} \frac{\Delta \phi - \phi_t \leqslant C_1 \phi + C_2 |\nabla \phi|}{\phi(x_0, t_0) = 0,} & \text{in } O \times (t_0 - \delta, t_0], \\ \phi \geqslant 0 & \text{in } O \times (t_0 - \delta, t_0], \end{cases}$$

$$(0.19)$$

where

$$\phi = \sigma_{l+1}(\{a_{ij}(x,t)\}). \tag{0.20}$$

Then use the strong maximum principle and the continuous method.

Constant rank theorem of spatial level sets

Similarly to Bian-Guan-Ma-Xu [Indiana Univ. Math. J, 2011], we can get

$$\Delta \phi(x,t) - \phi_t = -u_n^{-3} \sigma_l(G) \sum_{j \in B} [-4u_n u_{nj} u_{tj} + 6u_{nj}^2 u_t]$$

$$+ 2u_n^{-3} \sigma_l(G) \sum_{j \in B, i \in G} \sum_{\alpha=1}^n \frac{[u_n u_{ij\alpha} - 2u_{i\alpha} u_{jn}]^2}{u_{ii}}$$

$$+ O(\phi + |\nabla \phi|).$$

The solution is **space-time quasiconcave**, then for $j \in B$ we get

$$\hat{a}_{jn}^2 \le \hat{a}_{jj}\hat{a}_{nn} = O(\phi), \quad \text{and} \quad \hat{h}_{jn}^2 = O(\phi),$$
 (0.21)

hence

$$-4u_nu_{nj}u_{tj}+6u_{nj}^2u_t=\frac{2}{u_t}[u_tu_{nj}+\frac{\hat{h}_{jn}}{u_t}]^2+O(\phi). \hspace{1cm} (0.22)$$

Constant rank properties

Corollary

$$u_{ii}=0, \text{ for } i\in B, \tag{0.23}$$

$$u_{ni}=0, \text{ for } i\in B, \tag{0.24}$$

$$u_{ij\alpha} = 0, \text{ for } i \in B, j \in G, \alpha = 1, \dots, n.$$
 (0.25)

Under above assumptions, we can get

$$\hat{a}_{ij}(x,t) \equiv 0$$
, i or $j \in B$,
 $\hat{a}_{in}(x,t) = \hat{a}_{ni}(x,t) \equiv 0$, $i \in B$,
 $D\hat{a}_{ij}(x,t) = (\nabla \hat{a}_{ij}, \hat{a}_{ij,t})(x,t) \equiv 0$, i or $j \in B$,
 $D\hat{a}_{in}(x,t) = D\hat{a}_{ni}(x,t) \equiv 0$, $i \in B$.

Constant rank theorem of spacetime level sets

Assume $I = \min_{(x,t) \in \Omega \times (0,T]} rank\{\hat{\mathbf{a}}_{\alpha\beta}\}$ attained at some point $(x_0,t_0) \in \Omega \times (0,T]$. We just need to prove a differential inequality

$$\begin{cases} \Delta \varphi - \varphi_{t} \leqslant C_{1}\varphi + C_{2} |\nabla \varphi|, & \text{in } O \times (t_{0} - \delta, t_{0}], \\ \varphi(x_{0}, t_{0}) = 0, & \\ \varphi \geqslant 0 & \text{in } O \times (t_{0} - \delta, t_{0}], \end{cases}$$

$$(0.26)$$

where $O \times (t_0 - \delta, t_0]$ is a small parabolic neighborhood of (x_0, t_0) .

$$\varphi = \sigma_{l+1}(\{\hat{\mathbf{a}}_{\alpha\beta}\}), \tag{0.27}$$

Then use the strong maximum principle and the continuous method.

By hard calculations, we get

$$\Delta \varphi - \varphi_{t} \sim \sigma_{l}(G) \left(1 + \sum_{i \in G} \frac{\hat{a}_{in}^{2}}{\hat{a}_{ii}^{2}}\right) \sum_{i \in B} \Delta \hat{a}_{ii}$$

$$+ \sigma_{l}(G) \left[\left(\Delta \hat{a}_{nn} - \hat{a}_{nn,t}\right) - 2 \sum_{i \in G} \frac{\hat{a}_{in}}{\hat{a}_{ii}} \left(\Delta \hat{a}_{in} - \hat{a}_{in,t}\right) + \sum_{ij \in G} \frac{\hat{a}_{in}}{\hat{a}_{ii}} \frac{\hat{a}_{jn}}{\hat{a}_{ij}} \left(\Delta \hat{a}_{ij} - \hat{a}_{ij,t}\right) \right]$$

$$- 2\sigma_{l}(G) \sum_{i \in G} \frac{1}{\hat{a}_{ii}} \sum_{\alpha=1}^{n} \left[\hat{a}_{in,\alpha} - \sum_{i \in G} \frac{\hat{a}_{jn}}{\hat{a}_{jj}} \hat{a}_{ij,\alpha} \right]^{2}$$

$$\sim \sigma_{I}(G) \left(1 + \sum_{i \in G} \frac{\hat{a}_{in}^{2}}{\hat{a}_{ii}^{2}}\right) \left(-\frac{|u_{t}|}{|Du|u_{t}^{3}}\right) \sum_{i \in B} \Delta \hat{A}_{ii}$$

$$+ \sigma_{I}(G) \left(-\frac{|u_{t}|}{|Du|u_{t}^{3}}\right) \left[\left(\Delta \hat{A}_{nn} - \hat{A}_{nn,t}\right) - 2 \sum_{i \in G} \frac{\hat{A}_{in}}{\hat{A}_{ii}} \left(\Delta \hat{A}_{in} - \hat{A}_{in,t}\right) \right]$$

$$+ \sum_{i \in G} \frac{\hat{A}_{in}}{\hat{A}_{ii}} \frac{\hat{A}_{jn}}{\hat{A}_{ji}} \left(\Delta \hat{A}_{ij} - \hat{A}_{ij,t}\right) \left[-2\sigma_{I}(G) \left(-\frac{|u_{t}|}{|Du|u_{t}^{3}}\right) \sum_{i \in G} \frac{1}{\hat{A}_{ii}} \sum_{\alpha=1}^{n} \left[\hat{A}_{in,\alpha} - \sum_{i \in G} \frac{\hat{A}_{jn}}{\hat{A}_{ij}} \hat{A}_{ij,\alpha}\right]^{2}$$

$$\begin{split} \sim & \sigma_{I}(G) \Big(- \frac{|u_{t}|}{|Du|u_{t}^{3}} \Big) \frac{1}{\hat{W}^{2}} \Big[(\Delta \hat{h}_{nn} - \hat{h}_{nn,t}) \\ & - 2 \sum_{i \in G} \frac{\hat{h}_{in}}{\hat{h}_{ii}} (\Delta \hat{h}_{in} - \hat{h}_{in,t}) \\ & + \sum_{ij \in G} \frac{\hat{h}_{in}}{\hat{h}_{ij}} \frac{\hat{h}_{jn}}{\hat{h}_{ij}} (\Delta \hat{h}_{ij} - \hat{h}_{ij,t}) \Big] \\ & - 2 \sigma_{I}(G) \Big(- \frac{|u_{t}|}{|Du|u_{t}^{3}} \Big) \frac{1}{\hat{W}^{2}} \sum_{i \in G} \frac{1}{\hat{h}_{ii}} \sum_{\alpha=1}^{n} \left[\hat{h}_{in,\alpha} - \sum_{i \in G} \frac{\hat{h}_{jn}}{\hat{h}_{jj}} \hat{h}_{ij,\alpha} \right]^{2} \end{split}$$

$$\sim \sigma_{l}(G) \left(-\frac{|u_{t}|}{|Du|u_{t}^{3}} \right) \frac{2}{\hat{W}^{2}} \bullet$$

$$\left\{ -\sum_{i \in G} \frac{1}{\hat{h}_{ii}} [\hat{h}_{in,n} - \sum_{j \in G} \frac{\hat{h}_{jn}}{\hat{h}_{jj}} \hat{h}_{ij,n} - \hat{h}_{in} (\frac{u_{nn}}{u_{n}} - \frac{u_{nt}}{u_{t}} - \sum_{i \in G} \frac{\hat{h}_{in}}{\hat{h}_{ii}} \frac{u_{in}}{u_{n}})]^{2} \right.$$

$$\left. -\sum_{i \in G} \frac{1}{\hat{h}_{ii}} [\hat{h}_{in,i} - \sum_{j \in G} \frac{\hat{h}_{jn}}{\hat{h}_{jj}} \hat{h}_{ij,i} - \hat{h}_{ii} (\frac{u_{nn}}{u_{n}} - \frac{u_{nt}}{u_{t}} - \sum_{i \in G} \frac{\hat{h}_{in}}{\hat{h}_{ii}} \frac{u_{in}}{u_{n}})]^{2} \right.$$

$$\left. -\sum_{i \in G} \frac{1}{\hat{h}_{ii}} \sum_{\alpha \in G, \alpha \neq i} [\hat{h}_{in,\alpha} - \sum_{j \in G} \frac{\hat{h}_{jn}}{\hat{h}_{ij}} \hat{h}_{ij,\alpha}]^{2} \right.$$

$$\left. + [\frac{u_{nn}}{u_{n}} - \frac{u_{nt}}{u_{t}} - \sum_{i \in G} \frac{\hat{h}_{in}}{\hat{h}_{ii}} \frac{u_{in}}{u_{n}}]^{2} u_{t}^{3} \right\}$$

 $\leq C(\varphi + |\nabla \varphi|)$

Remark

Borell [C.M.P, 1982]

$$\begin{cases} \frac{\partial u^{B}}{\partial t} = \Delta u^{B} & \text{in } \Omega \times (0, +\infty), \\ u^{B}(x, 0) = 0 & \text{in } \Omega, \\ u^{B}(x, t) = 0 & \text{on } \partial \Omega_{0} \times (0, +\infty), \\ u^{B}(x, t) = 1 & \text{on } \partial \Omega_{1} \times (0, +\infty), \end{cases}$$
(0.28)

Then the spacetime level sets $\{(x,t)|u^{B}(x,t)=c\}$ is convex.

- By the constant rank theorem, we can get the spacetime level sets of u^{B} is strictly convex for t > 0 and $c \in (0, 1)$.
- Deformating from $u^{\mathbb{B}}(x, \epsilon)$ to $u_0(x)$, we can get the spacetime level sets of u is strictly convex for t > 0 and $c \in (0, 1)$.

Thank You!