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Introduction

Incompressible elastodynamics

For isotropic, hyperelastic and homogeneous incompressible materials, the
motion can be described by the following elastodynamic system (in R"™)

ov+v-Vo+Vp=V- (avgl(;F)FT),

(1)
V-v=0.

We focus on Hookean elasticity W (F) = 3|F|? for simplicity. The general
case differs by the cubic and higher order nonlinear terms which won't
make much difference.
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Introduction

Flow Map

Define the flow map:

{dw&tty) = v(t,2(t,y)),
z(0) = y.

The deformation tensor is defined through the flow map:

n Ox (ta y)
F(t,y) = e
Y
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Introduction

Compatibility for deformation tensor

The incompressible condition is equivalent to V- F'T = 0. In addition, one
can deduce that

OF +v-VF = VuF,

(2)
FiVFi, = Fu N Fij, i,5,m,k, 1€ {1,2,--- ,n}L.

The above equations are basically the compatibility conditions for the
velocity field and the flow map:

DtDyCE = DyDt.%',
DjDk-Ti :Dij:BZ', i,j,k S {1,2,--' ,n}.

Here Dy, D; are derivatives with respect to Lagrangian coordinates.

! Lei, Z., Liu, C., and Zhou, Y. Global solutions for incompressible viscoelastic fluids. Arch.
Ration. Mech. Anal. 188 (2008), no. 3, 371-398
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Introduction

Full elastodynamics

Then the elastodynamics (1) can be equivalently rewritten as follows:

8tv+v-Vv+Vp:V-(an7](f)FT),
OF +v-VF = YVuF, (3)
V-v=0 V- -FI=0,

with the constraint

FrjVmFi, = Fy Vi Fyy,  i,5,m k1€ {1,2,--- ,n}. (4)
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Introduction

Viscoelasticity

Taking into account of viscosity, we have the Oldroyd-B system of
viscoelasticity:

0tv—|—v-Vv+Vp:uAv+V-(mg7§,F)FT),
OF +v-VF = VuF, (5)
V-v=0, V-FT=0,

with the constraint

Fm]vak = -FlkvlFljv iajamakvl € {1723 to 7”}' (6)
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Review of related results

Quasilinear wave equations

Let W(F) = |F|>, F = I + G. The incompressible elastodynamics (3)
and (4) can be rewritten as

ov—V-G=-Vp—v-Vo+V-(GG"),
0:G — Vv = —v - VG + VoG,
V-v=0 V-G =0,
with the constraint
0iGir, — 0xGij = G1,0,Gij — Gi;0Gar, 4,5, k, 1€ {1,2,--- ,n}.
Quasilinear wave equations:

(0F = A = f1, (07 = A)G = fa.
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Review of related results

The tools for the long time existence

Vector field method:

o Generalized derivatives: 0 = (0, V), Q0 = —2;0; + 2;0;,
S =1t0; +1r0,, Li =1t0; + x;0;, Z = (8, 0,8, L)

e Klainerman-Sobolev inequalities (Klainerman 1985):

1 n—1
E—rzt+n) s > 2%
lal<[Z]+1

o Generalized energy:

Ep(t)= Y 10Z%(t. )|

la|<k—1
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Review of related results

2D wave equations are supercritical

Formally, generalized energy gives (for quadratic nonlinearity):

S0 5 107060 B (1),

By the Klainerman-Sobolev inequality, the above inequality becomes

CB() S ()T B,

This suggests:
@ n >4, integrable, small data global, subcritical!
e n = 3, small data almost global, critical!

@ n = 2, far from integrability, supercritical!
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Review of related results

Quasilinear wave equations

3-D case:
o finite time blow up, F. John (CPAM, 1981)

@ almost global, John-Klainerman (CPAM, 1984)

@ global under null conditions: Klainerman (Lect. in Appl. Math.,
1986); Christodoulou (CPAM, 1986)

2-D case:

o finite time blow up: Alinhac (Ann. of Math., Acta Math., 1999)
@ global under null conditions: Alinhac (Invent. Math., 2001)

Y. Cai Vanish viscosity limit for 2D viscoelasticity Nov. 29, 2020 11/48



Review of related results

Elastodynamics in 3D

Blow-up for compressible elastodynamics in 3D:

e John (CPAM, 1984), Tahvildar-Zadeh (Ann. Inst. H. Poincare-Phys.
Theor, 1998)

Long time existence in 3D:

@ almost global for compressible elastodynamics: John (CPAM, 1988),
Klainerman, Sideris (CPAM, 1996),

@ global for compressible elastodynamics: Sideris (Invent. Math., 1996,
Ann. Math.,2000), Agemi (Invent. Math., 2000)

@ global for incompressible elastodynamics: Sideris, Thomases (CPAM
2005, 2007)
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Review of related results

Elastodynamics in 2D

Incompressible elastodynamics in 2D:
@ Almost Global: Lei-Sideris-Zhou (Trans. AMS, 2015)
o Global: Lei (CPAM, 2016). Inherent strong null condition

@ An alternative proof of global solution: Wang (Ann. Henri Poincaré,
2017). Space-time resonance, normal form, Z norm

@ Uniform bound of the highest-order energy: Cai (arXiv:2010.08718,
2020)

Two dimensional compressible elastodynamics : open problem!
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Review of related results

Related Results

Global for viscoelasticity:
Contributions of many authors:

e Lin-Liu-Zhang/Lei-Zhou, 2D,
o Lei-Liu-Zhou/Chen-Zhang, 3D
@ Liu, Fang-Zhang, Hu-Wang, Qian-Zhang, Qian, Deng, Han....

Vanishing viscosity for viscoelasticity in 3D:
@ Kessenich, P. (arXiv:0903.2824, 2009)
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Analysis of the problems

Main result

Theorem (Cai-Lei-Lin-Masmoudi, CPAM, 2019)

For sufficiently small initial displacement, the 2D incompressible
viscoelasticity is globally well-posed uniformly for all ¢ > 0 and all ;1 > 0.
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Analysis of the problems

Equations near equilibrium

Let W(F) = £|F|%. The deformation tensor perturbs around its
equilibrium, F' = I 4+ G. Then the 2D incompressible viscoelastic system
(5) and (6) can be rewritten as follows:

O —pAv -V -G=—-Vp—v-Vuo+V-(GG"),
G — Vv = —v- VG + VoG, (7)
V-v=0, V-G'=0,

with the constraint

(V1 G)i = GieViGi — GV iGia. (8)
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Analysis of the problems

Inviscid case

Vector fields and generalized energy?:

o Generalized derivatives: Z = (9,9,5), 0 = (0;,V), Q=09 =+ -V,
S =10 + 10,

o Generalized energy:

Ex(t)= Y 12|72 +12°Gl 7.

jal <r

e Weighted L? norm:

Xe(t)= Y It =r)VZ%[7+ Y It —r)VZG|[7..

la|<k—1 la|<k—1

2 Lei, Zhen; Sideris, Thomas C.; Zhou, Yi. Almost global existence for 2-D incompressible
isotropic elastodynamics. Trans. Amer. Math. Soc. 367 (2015), no. 11, 8175-8197.
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Analysis of the problems

Weighted L>* — L? estimate

Lemma (Lei-Sideris-Zhou, Trans. AMS, 2015)
For all f € H?(R?), there holds

2 f@) S S0 10,00 122 + 190 12:)2,

a=0,1
2t =)@ S SN -1 0Q0 f |22 + (- P fI2.]3,
a=0,1
Ol oo r< ey j2) S Z [t =)0 fll 2,
la|<2

provided the right-hand side is finite.
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Analysis of the problems

Temporal Decay

Lemma (Lei-Sideris-Zhou, Trans. AMS, 2015)
Assume E,, < 1, there holds

X, S B,
1
(t)7] 2" 20|, (t)2| 252G S B2,
1
(0,25 Yo + 0,25 Gw) | 12 + ||ro-Guwr| 2 < EZ.

Good unknowns: g = v 4+ Gw, Guw™.
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Analysis of the problems

Null condition

For the following quasilinear wave equations:

02u — Au = Q(du, 0*u),

Definition (null condition)

We say @ satisfies the null condition if Q) can be written in the following form:
Q(aua 82”) = Ql(auvg(au)) + QQ(g? aQU’) + R7

where R satisfies

2
[Tu||0%u| + |Ou||OT u] r> L‘—t—l.

R| <

Here g is good unknowns of the following form:

g(u) = woiu + Vu.

v
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Analysis of the problems

Systems satisfy null condition

The nonlinear terms in the momentum equation can be organized as
follows:

v-Vou—V-(GGT)
= (v + Gw) - Vo — (Gwb) (Vv + V;Gw) — (Guwb);V,;Guw*
= Q1(9, Vv) + Q2(Gw, g(9u)) + Q2(g, 9(Vu)).

We observe a similar fact for the G-equation in (7)-(8).
Y. Cai
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Analysis of the problems

Ghost weight

Heuristic calculation (= 0). Consider the energy estimate with weight
ed = earctan(r—t) (S. Alinhac, Invent. Math., 2001):

1d

-2 VA 2 VA 2\ .q

531 1270 + 127G

1 [ |Z% + Z5Gw]? + | Z5Gw |2

+= eldr
2 R2 1+(t—7')2

= nonlinear terms.
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Analysis of the problems

Bad commutators when p > 0

“Bad commutators” will appear when ghost weight is applied.

A heuristic calculation:

1d
—— [ (12" + | Z5G*)etdx + u/ |V Z5v|?eldx
2 dt R2 R2
1 A yATe 2 yATe 112
+/ |Z%v + wl® +| wr| A
2 R2 1 =+ (t — 7")2
1
= ,u/ | ZFv]2Aeldx + - - -
2" Jre
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Analysis of the problems

Difficulties

Main Difficulties

The use of ghost weight is the key step to obtain desired estimate.
However, the appearance of viscosity seems preventing us using this
weight. Exactly, the commutator due to ghost weight and viscosity is
very serious

1
VItt!
Even within null conditions, the temporal decay is still critical

In dimension two, the time decay rate is which is supercritical.

2D Soblev inequality is critical!
2D Hardy's inequality is not correct!

No compact support!
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Analysis of the problems

The First Key Ingredient

Strategy: we introduce a new type energy named “modified generalized
energy” which has one more traditional derivative than the generalized
energy.

Higher order energy estimate:
@ generalized energy estimate : no ghost weight.
o Modified generalized energy estimate: with ghost weight.

Now we can absorb the commutator!
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Analysis of the problems

The realization of the first key idea

Modified higher-order energy estimate (with ghost weight):
1d
2dt

1 / |VZrv + VZEGw|? + |V ZEGw|? g
+= eldx
2 R2 1 + (t — T)2
1
= 2,u/ |V Z5v|? Aeldx + nonlinear terms
R2

/ (|VZ50|* 4+ |[VZ5G|)eldx + u/ |V2Z"|?elda
R2 R2

Higher-order energy estimate (without ghost weight):

1d
2dt/ (| Z%v|* + | Z5G|*)dx + ,u/ |V Z50|2da
R2 R2

= nonlinear terms
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Analysis of the problems

Strong Null Condition
We start with the following scalar quasilinear wave equations
O*u — Au = Q(du, 0%u).
Here @ is a bilinear form.
Definition (Strong Null Condition)
We say () satisfies the strong null condition if
Q(0u, 0%u) = Q1(du, g(du)) + R,
where ther reminder R satisfies

|Ou||0Zu| . t—i—l.

<
RIS 14+t 7 - 2

Here g is good known in the sense of Alinhac: ¢g(u) = wdu + Vu.
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Analysis of the problems

Original system satisfy null condition but doesn't satisfy
the strong null condition

Following Lei-Sideris-Zhou (Trans AMS, 2015), we call v + Gw and Guwt
good unknowns. One writes the nonlinear terms in the momentum
equation as

v-Vo—V-(GGT)
= (v + Gw) - Vo — (Gw); (Vv + V;Gw) — (Gwh),;V;Guwt
= Q1(g, Vv) + Q2(Gw, g(9u)) + Q2(g, 9(Vu)).

Obviously, 21 must present and thus system doesn't explicitly exhibit the
strong null structure (note that the system now is of first-order. One can
observe a similar fact for the G-equation in (7)-(8).

Y. Cai Vanish viscosity limit for 2D viscoelasticity Nov. 29, 2020 28/48



Analysis of the problems

Second main ingredient:
Our second key idea is to transform the viscoelastic system to a “fully

nonlinear” one, together with a transformed fully nonlinear constraint. It
turns out that the transformed systems satisfy the “strong null condition”.
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Analysis of the problems

A simple example

Inspired by Lei (CPAM, 2016), consider the following quasilinear wave
equations

{mv = 0y(|0w]? — |Vu[?), (9)

v(0, ) = v, Ov(0,-) = vy.

It's easy to verify that it doesn't satisfy the strong null condition.
However, let
v = Ou.

Choosing appropriate data, then u satisfies
Ou = [02u|* — |[Voul* (10)

Now the strong null condition is satisfied!
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Analysis of the problems

Problems

Consider the following two dimensional wave equations:

Ou = Noguw0a0gud,dyu,
U(O, ) = ¢, atu(ov ) = ¢a
Here 0 := (0;,01,02), O is d’ Alembertian operator, o, € HX,

u = u(t,x1,x2) is the unknown. Our goal is to prove the global
well-posedness for (11) without compact support.
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Analysis of the problems

Null condition

Denote
N(u,v) = Noguy0a05u0,0yu.

We impose the null condition for N (u,v):

NopuwXaXpX, X, =0, (12)
for all X € ¥ where

Y ={XecR3: X2 = X7+ X2}.
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Analysis of the problems

Main result

Theorem(Cai-Lei-Masmoudi, JMPA, 2018)

Let M >0, 0 < < % be two given constants and (,1) € HY, with
k > 8. Suppose that the nonlinearities satisfy the null condition (12), and

1@, D)y < M, (0 D) g < e (13)

There exists a positive constant ¢y < e~ which depend on M, k, v such
that, if € < €, the fully nonlinear wave equation (11) with initial data
(u(0), 0¢u(0)) = (p,7) has a unique global solution which satisfies

Ei(t) < CoM?(t)Y and Ej_1(t) < Coee®M for some Cy > 1 uniformly
for 0 <t < oo.
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Analysis of the problems

Application

Consider the following quasilinear wave equations

(14)

v = Alal(NM;au’Ua(;?}),
v(0,x) = vo(x), 0w (0, ) = vi(z).

Theorem (Cai-Lei-Masmoudi, JMPA, 2018)

For quasilinear wave equations (14), assume that for all X € ¥, there

holds the null condition
N5 X, Xs =0 (15)

For suitable small initial data, (14) has unique global classical solutions.

v
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Analysis of the problems

Equivalent new formulation of the 2d viselasticity

Lemma

Let v =V+1V, GT = V!H. For classical solutions, the system (7) is
equivalent to :

OV —pAV —V - H
=VLH. V- AN (=-ViVeViV+VIH @ VIH),
OH —VV =V+HVYV,

and (8) is equivalent to :

Vi.H=V'H, VH,. (17)
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Analysis of the problems

The new system satisfies the strong null condition

For the new systems, the good quantities are V 4+ H - w and H - w’. We
can calculate that

ViVV;V -ViH -VyH
=(ViV+ViH -w)V;V-ViH -w(V;V+ViH -w)
—Vf‘H ~lej‘H cwt

Now the strong null condition is satisfied. One can show the similar
phenomenon for H —equation and the constraint.
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Analysis of the problems

Application of rotational operators

For two-dimensional case, rotation operator is:
Q= :EJ‘ -V = 39.

Applying rotation operator onto (16) and (17) yielding

0OV -V -QH
=V VA= VIQV e VIV + VIQH © VI H)
1 - 1 10 10 (18)
+VE V- A= VIV @ VIQV + VEH @ VEQH),
O0H —VQV = VIQHVV + VEHVQY,
and _ _ _
V+-QH =V*+QH, - VH, +V*'H, VQH, (19)
here

Qv =QV,
QH = QH — H+.
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Analysis of the problems
Application of scaling operators
Define the modified scaling operator:
S=5-1.
Applying modified scaling operator S onto (16) and (17) gives

oSV — uA(S —1)V =V -SH
=V V- AN (-VISV e VIV + VISH © VI H)

" ~ 20
+VE VAT (-VIV VSV + VIH @ VESH), (20)
0SH — VSV = V+SHVV + VLHVSYV,
and N N N
VY .SH =V+SHy-VH, +V'Hy-VSH;. (21)

Viscoelasticity has no scaling invariance. When p > 0, there is an extra
term coming from the commutation.
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Analysis of the problems

Application of Generalized Operators

Let B
I'e {8t, 61, (92, Q}

Repeatedly using (20), (21) and (18), (19) gives
8,5°T*V — pA S CL(=1)*L§lrey — v . §ereH = f1 |
1=0

0 SeTH — VS°TV = f2,,

and B
VST H = f3,,
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Analysis of the problems

The nonlinearities are

o= X CACIVEV A= VSTV @ VSTV
b+c=oa
5:::"/:@

+ VISPTPH @ VESTTeH),
2 — Y CECYH(VLSPTPHV STV,

aa
b+c=a
B+v=a B N
£Bo= 3 Cclct(ViSPTiH, - VSITeH)).
b+c=a
B+v=a
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Analysis of the problems
Several norms

Denote V(@) = Gepay  flea) — Sepafy [ = (V, H).
Generalized energy is defined, for K > 1 by
Bty = Y U@tz
laf+la|<r
Modified generalized energy:
Et)= Y VU™, )7
laf+lal+1<x
The weighted energy norm of Klainerman-Sideris:
Xa®) = D = VU,
lo+|al+1<x
Weighted energy to capture the temporal decay of good unknowns:
Y, (t) = Z (||r(8TV(a’a) + 8, H(®) 'W)H%Q + ||T8TH(Q’(Z) ,wJ_”%Q)
|al+lal+1<x
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Analysis of the problems

Estimate of weighted L? norm

Lemma (estimate of weighted L? norm)

Suppose that (V, H) € Hi ! solves (16) and (17) with & > 12, and
suppose F,_3 < 1. Then there holds

XH—4 + Yn—4 5 En—3; XH—Q + YR—Q 5 En—l-
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Analysis of the problems

Modified higher-order energy estimate

Let k > 12, |a|+|a| <k —1, 0 =71 —1, q(0) = arctan o. Denote
e? = e4?)  Applying V onto (22). Then taking L? norm of the first
resulting equations with VV(®®e4 and taking L2 norm of the second
resulting equations with VH(®% ¢4, we have

1d

5 /RZ(WV(W)F + |[VH @ ?)eldy

—/ pVAY ClL(-1) Ve gy eneddy
R2

=0

1 viv(a,a) viH(a,a) 42 le(oc,a) C,L2
N e

2 1<i<2 R2 <t — 7“)
B / (Vfau YV £V G, : VHED)elda

R2

=1 + I,
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Analysis of the problems

where
I :/ V[V V- AT (- Vv Ve vty £ VEH™Y @ VEE)
R2
+VE VAT -V Ve vV L v He VEH ™)) vV Y eldy

+ [ V(VTHSIVY 4+ VEHVV @) VH®D ey,

R2
and
I = > {cﬁc / V[VE- v AT (- vV g vty (e
=a,bt+c=a

18] + Ib\ \WI +lel < lal + lal
+V H(ﬁab) ® VLH(%C))] . vv(aﬂl)eqclx

rofct [ wvtaENgy )y . VH(“’a)equ}.

R2

Problem: I; contains the highest-order derivatives, it may lose derivative!
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Analysis of the problems

After integration by parts, I1 gains one derivative. Moreover, it still
satisfies the null condition!

/ ViV,ATN(VEHS VG VT H - ViV IV YY) VY Y el
+/ ViViAT (VV @IV - Ve H Y VEVFH) VRV Y e
R2
+/ ViV AT (VVEH - Vi H Y - v Vi vy v e v vie® ety
/ ViV AT (VEVIVYRVY -V H -V H )V VY e
+1/ |VV D12y (Vi Vel )dr — 1 |VH @ 2V (V;Vel)dz
2 Jp2 2 Jp2
—~ ka(D‘*‘”~ijvj(vkv<“’“>eQ)d;p+/ Vi H VeV, V@OV H Y eldr
R2

R2

+/ (VT H VeV, V + ViV H Y,V ) T H Y ey,
R2
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Analysis of the problems

Other technical difficulties

@ No ghost weight in the higher-order energy estimate. How to deal
with the nonlinearities?
= Using the modified ghost weight energy in modified energy
estimate!

@ Derivative loss of X,._1 and Y,._.
= Xy_1: using the "fully nonlinear” structure.
= Y,_1: using the modified ghost weight energy in modified energy
estimate!
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Analysis of the problems

Finally, we obtain the following a priori higher-order energy estimate

t
E(t)+ Ex1(t) + Z M/ / |AV(O"“)(7)|2 + |vv(a,a)(7.)|2dxd7_
0 JR2

la|+a|<k—1
~

< /0 () En(T) + By (P) B2y (7)dr + £2(0) + Er_1(0),

and the lower-order energy estimate:

t
Ees(t)+ > p / / \VV (@) (1) 2dadr
0 JR2

laf+|a|<k—3

< B s(0) + / ()2 Ey_5(r) B2, (7)dr.
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Analysis of the problems

Thank you!
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