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Part 1 Lane-Emden problem
−∆u = up in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1)

where Ω ⊂ R2 is a smooth bounded domain and p > 1 is sufficiently large.

Lane-Emden equation (1) is an extremely simple looking semilinear elliptic
equation with a power focusing nonlinearity, nevertheless it has a very rich
structure in terms of the dependence of the solutions on the exponent p of the
power nonlinearity and on both the geometry and the topology of the domain.

In any smooth bounded domain Ω, problem (1) admits at least one solution for
any p > 1, which can be obtained by standard variational methods, for
example minimizing the associated energy functional on the Nehari manifold.
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An interest subject is the qualitative properties of positive solutions when p is
large.

Ren-Wei, TAMS,1994: The existence and asymptotic behavior of the least
energy solution on the convex region when p is large.

Adimurthi-Grossi, 2003 PAMS: Some exact asymptotic estimates of the least
energy solution by using the technique of blow-up analysis.

Grossi-Grumiau-Pacella, AIHPANL, 2013: Asymptotic behavior of low energy
nodal solutions.
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De Marchis-Ianni-Pacella [JEMS 2015; MA 2017; AIM 2017]: Asymptotic
analysis and sign changing bubble towers, Morse index formula for radial
solutions, Exact Morse index for nodal radial solutions.

De Marchis-Grossi-Ianni-Pacella[JMPA 2019] calculated the Morse index of
the single spike solutions concentrating at a non-degenerate critical point of
the Robin function and hence proved the non-degeneracy of these solutions.

A direct consequence of this non-degeneracy result and the results in convex
domains, the positive solution of (1) satisfying

sup
p

p‖∇up‖2
2 <∞ (2)

is unique.
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Problem:

(1) Whether the positive solutions of (1) with multiple spikes are
non-degenerate.

(2) The uniqueness of positive solutions of (1) in general domains.

(3) Morse index of the positive solutions of (1) with multiple spikes.
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Let Green’s function G(x , ·) be the solution of{
−∆G(x , ·) = δx in Ω,

G(x , ·) = 0 on ∂Ω,

where δx is the Dirac function. For G(x , y), we have the following form

G(x , y) = S(x , y)− H(x , y) for (x , y) ∈ Ω× Ω, (3)

where S(x , y) = − 1
2π ln |x − y | and H(x , y) is the regular part of G(x , y). For

any x ∈ Ω, we set R(x) := H(x , x), which is called the Robin function. Let
ak = (a1, · · · ,ak ) with aj ∈ Ω for j = 1, · · · , k and Ψk : Ωk → R be defined by

Ψk (ak ) =
k∑

j=1

Ψk,j (ak ), with Ψk,j (ak ) = R
(
aj
)
−

k∑
m=1,m 6=j

G
(
aj ,am

)
. (4)
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Also it is well known that

U(x) = −2 ln
(
1 +
|x |2

8
)

(5)

is a positive solution of the Liouville equation
−∆U = eU in R2,∫
R2

eUdx = 8π.

Now we state the following basic asymptotic behavior on the positive solutions
of Lane-Emden problem (1).
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Theorem A. De Marchis-Ianni-Pacella [JEMS 2015] Let (up) be a family of
solutions to (1) and (2). Then there exist a finite number of k of distinct points
x∞,j ∈ Ω, j = 1, · · · , k and a subsequence of p (still denoted by p) such that
setting S :=

{
x∞,1, · · · , x∞,k

}
, one has

lim
p→+∞

pup = 8π
√

e
k∑

j=1

G(x , x∞,j ) in C2
loc(Ω\S), (6)

the energy satisfies

lim
p→+∞

p
∫

Ω

|∇up(x)|2dx = 8πe · k , (7)

and the concentrated points x∞,j , j = 1, · · · , k fulfill the system

∇x Ψk
(
x∞,1, · · · , x∞,k

)
= 0.
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Moreover, for some small fixed r > 0, let xp,j ∈ B2r (x∞,j ) be the sequence
defined as

up(xp,j ) = max
B2r (x∞,j )

up(x),

then for any j = 1, · · · , k , it holds

lim
p→+∞

xp,j = x∞,j , lim
p→+∞

up(xp,j ) =
√

e, lim
p→+∞

εp,j = 0,

where εp,j =
(

p
(
up(xp,j )

)p−1
)−1/2

. And setting

wp,j (y) :=
p

up(xp,j )

(
up(xp,j + εp,jy)− up(xp,j )

)
, y ∈ Ωp,j :=

Ω− xp,j

εp,j
, (8)

one has
lim

p→+∞
wp,j = U in C2

loc(R2). (9)
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To prove the non-degeneracy of the multi-spike solutions and the local
uniqueness of the solutions, a complete understanding of the properties of
such solutions is crucial. In particular, we need to obtain a sharp estimate for
the concentration rate εp,j at xp,j than those stated in Theorem A.

Theorem 1 (Grossi-Ianni-L-Yan,2020)

Let (up) be a family of solutions to (1) and (2), xp,j , εp,j and wp,j with
j = 1, · · · , k be defined in Theorem A above, then it holds

up(xp,j ) =
√

e
(

1− ln p
p − 1

+
1
p

(
4πΨk,j (x∞) + 4

√
2 + 2

))
+ O

( 1
p2−δ

)
, (10)

where δ is a small fixed constant, Ψk,j is the function in (4),
x∞ :=

(
x∞,1, · · · , x∞,k

)
. Consequently,

εp,j =
1
p

e−
p−1

4

(
e−
(

2πΨk,j (x∞)+2
√

2+1
)

+ O
( 1

p1−δ

))
, (11)
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Theorem 1, Continue.
and

εp,j

εp,s
= e2π

(
Ψk,s(x∞)−Ψk,j (x∞)

)
+ O

( 1
p1−δ

)
for 1 ≤ j , s ≤ k . (12)

Moreover, it holds

lim
p→+∞

p(wp,j − U) = w0 in C2
loc(R2), (13)

where w0 solves the non-homogeneous linear equation

−∆u − eU(x)u = −U2(x)

2
eU(x) in R2. (14)
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Now we define the linearized operator of Lane-Emden problem (1) by

Lp
(
ξ
)

:= −∆ξ − pup−1
p ξ,

where up is a positive solution of (1) satisfying (2). With the sharp estimates in
Theorem 1, we can prove the following non-degeneracy result for a
multi-spike positive solutions of (1).

Theorem 2 (Grossi-Ianni-L-Yan,2020)

Let up be a positive solution of (1) satisfying (2), k be the number of the
bubbles of up and ξp ∈ H1

0 (Ω) be a solution of Lp
(
ξp
)

= 0. Suppose that
x∞ := (x∞,1, · · · , x∞,k ) is a nondegenerate critical point of Ψk (x), then ξp = 0
for large p.
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For the local uniqueness of solutions to (1), we have the following result.

Theorem 3 (Grossi-Ianni-L-Yan,2020)

Let u(1)
p and u(2)

p be two positive solutions to (1) with

lim
p→+∞

p
∫

Ω

|∇u(l)
p (x)|2dx = 8πe for l = 1,2, (15)

which concentrate at the same non-degenerate critical point of Robin function
R(x). Then u(1)

p ≡ u(2)
p for large p.
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Remarks on local uniquenessµ

If Ω ⊂ R2 is a smooth bounded convex domain, then from [Caffarelli-Friedman,
DMJ, 1985], we know that the Robin function R(x) is strictly convex and so it
has a unique critical point which is a strict minimum. Moreover the
corresponding Hessian matrix D2R(x) at this point is positive definite.

On the other hand, we know from [Kamburov-Sirakov, CVPDE, 2018] that
supp p‖∇up‖2

2 <∞ holds when Ω is convex. By [Grossi-Takahashi, JFA,
2010], problem (1) possesses no solutions with k spike for k ≥ 2 when Ω is
convex.

Hence from Theorem 3, problem (1) admits a unique solution for large p and
convex domain. This gives another proof of the uniqueness result in a convex
domain obtained in [De Marchis-Grossi-Ianni-Pacella, JMPA 2019].
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Let us point out that the uniqueness result in [Caffarelli-Friedman, DMJ, 1985]
holds only if Ω is convex. Its proof uses a uniqueness result for (1) when p is
close to one, and the uniqueness of Morse index one solution proved by [Lin,
1994]. If Ω is convex, the solution has one spike and its Morse index is one.

But a solution with one spike concentrating at a non-degenerate critical point
of the Robin function R(x) has Morse index larger than one if this critical point
is not a local minimum point of R(x).

Theorem 3 tells us that each non-degenerate critical point of the Robin
function can generate exactly one single spike solution for (1), and if all the
critical points of R(x) are non-degenerate, then the number of one spike
solutions equals the number of the critical points of R(x).
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Ideasµ

Proposition 4

For any fixed small d > 0, it holds

up(x) =
k∑

j=1

Cp,jG(xp,j , x) + o
( k∑

j=1

εp,j

p

)
in C1

(
Ω\

k⋃
j=1

B2d (xp,j )
)
, (16)

where
Cp,j :=

∫
Bd (xp,j )

up
p (y)dy =

1
p

(
8π
√

e + o(1)
)
. (17)

By potential theory.
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Now we define
vp,j (x) := p

(
wp,j (x)− U(x)

)
Proposition 5

For any small fixed d0 > 0 and fixed τ ∈ (0,1), there exists C > 0 such that

|vp,j | ≤ C(1 + |x |)τ in B d0
εj,p

(0). (18)

Inspired by [Chen-Lin,2002,CPAM, Lin-Yan, 2018, AIM].
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As a consequence of Proposition 5, we can prove

Proposition 6

It holds
lim

p→+∞
vp,j = w0 in C2

loc(R2),

where w0 solves the non-homogeneous linear equation

−∆u − eU(x)u = −U2(x)

2
eU(x) in R2. (19)

Next to prove Theorem 1, we use the idea in [De Marchis-Ianni-Pacella, JEMS
2015].
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For non-degeneracy and local uniqueness. Our ideas are local Pohozeav
identities based on blow-up analysis, which is established by Deng-Lin-Yan
in 2015, JMPA. This method has been widely used to consider some related
problem:

Cao, Guo, Lin, Peng, Wei, Yan.......

Cao-Peng-Yan’s book: Singularly Perturbed Methods for Nonlinear Elliptic
Problems, 2020.

Cao-Li-L, CVPDE 2015. L-Peng-Wang, CVPDE 2020.

Cao-L-Peng, TAMS, 2020: The number of positive solutions to the
Brezis-Nirenberg problem.
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The Brezis-Nirenberg problem:{
−∆u = u

N+2
N−2 + εu, u > 0, in Ω,

u = 0, on ∂Ω,
(20)

where ε is a small positive parameter, Ω ⊂⊂ RN is smooth, N ≥ 3.

Assumption A: The problem{
−∆u = u

N+2
N−2 , u > 0, in Ω,

u = 0, on ∂Ω,
(21)

has no solutions.
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Theorem 7 (Cao-L-Peng,TAMS,2020)

Let N ≥ 6, for any k ∈ [1, k0], if the the critical points of Ψk are nondegenerate
and Mk (x) is a positive matrix at these points, Assumption A holds, then

the number of the positive solution to (20) is
k0∑

i=1

li ,

where k0 is the largest number of the blow-up points of the positive solution to
the equation (20) and li is the number of the critical point of Ψi .
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Morse index:

Furthermore, we calculate the morse index of the above positive solutions by
local Pohozeav identities based on blow-up analysis.

For more results on morse index, we can refer to Massimo Grossi and
Filomena Pacella’s paper or the book

[Lucio Damascelli, Filomena Pacella: Morse index of solutions of nonlinear
elliptic equation,2019].
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Part 2. We consider the following nonlinear elliptic equation
−∆u = f (u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(22)

Here Ω ⊂ RN with N ≥ 2 is a smooth bounded domain.

f is a smooth nonlinearity.

We focus on the number of the critical points of positive solutions.
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The above problem is a generalization of the elastic torsion problem(f (u) ≡ 1),
a classical topic in PDEs, with references dating back to St. Venant(1856).

From then, many techniques and important results to address this problem
were developed in the literature (Morse theory, degree theory, complex
analysis, etc.).

Here an open problem is

How many critical points does the positive solution possess.

Peng Luo (CCNU) Critical points of positive solutions 25 / 46



The calculation of the number of critical points of a function is strictly related
to the topological properties of the domain.

This link is clearly highlighted in the following Poincaré-Hopf Theorem.

Theorem A (Poincaré-Hopf Theorem). Let Ω ⊂ RN , N ≥ 2, be a smooth
bounded domain. Let v be a vector field on Ω with isolated zeroes x1, .., xk
and such that v(x) · ν(x) < 0 for any x ∈ ∂Ω (here ν is the outward normal
vector to ∂Ω). Then we have the formula

k∑
i=1

indexxi (v) = (−1)Nχ(Ω), (23)

where indexx (v) = deg
(
v ,B(x , δ),0

)
with small fixed δ > 0 and χ(Ω) is the

Euler characteristic of Ω.
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Choosing v = ∇u in Theorem A, we get a link between an analytic problem
(to look for critical points of u) and a topological invariant (the Euler
characteristic of Ω).

The first case studied in the literature is when Ω is a (strictly) convex domain.
In this case χ(Ω) = 1 and so (23) becomes

k∑
i=1

indexxi (∇u) = (−1)N . (24)

Of course since u is a solution to (22), we always have a maximum point for u
whose index is (−1)N . The question is now

when does the sum in (24) reduce to a singleton? (25)
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Here we list some results that give an affirmative answer to the question (25).

f (s) = 1 and Ω ⊂ R2 is a convex bounded domain (Makar-Limanov,1971,
MZ).

f (s) = λ1s where λ1 is the first eigenvalue of the Laplace operator and
Ω ⊂ RN is a strictly convex bounded domain (Brascamp and Lieb,1976,
JFA; Korevaar,1983,IUMJ).

f locally lipschitz and Ω ⊂ RN is a symmetric bounded domain convex in
any direction (Gidas, Ni and Nirenberg,1979,CMP).

f ≥ 0, Ω ⊂ R2 is a bounded domain with positive curvature and u is a
semi-stable solution to (22) (Cabré and Chanillo,1998, Selecta Math.).
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Here we consider the domain

Ωε = Ω\B(P, ε) with P ∈ Ω and ε small,

and a solution uε of 
−∆u = f (u) in Ωε,

u > 0 in Ωε,

u = 0 on ∂Ωε.

(26)

We suppose
|uε| ≤ C in Ωε with C independent of ε. (27)

By the standard regularity theory, an immediate consequence of (27) is that
there exist a sequence εn → 0 and u0 ∈ C2(Ω), the solution to (22), such that{

uεn ⇀ u0 weakly in H1
0 (Ω)

(
here we extend uεn to 0 in B(P, ε)

)
,

uεn → u0 in C2(K ) for any compact set K ⊂ Ω \ P.
(28)
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If we write (23) for v = ∇uε (again assuming that the number of critical point
of uε is finite) and denote by

C = {critical points of u0 in Ω} and C1 = {∇uε(x) = 0} ∩ {dist(x , C) > δ},

and observing that χ(Ωε) = χ(Ω) + (−1)N−1, we get that if P 6∈ C we have∑
xi∈C1

indexxi (∇uε) = −1. (29)

Hence we have that the solution uε has at least one additional critical point
which is away from C. As before a natural question arises

when does the sum in (29) reduce to a singleton? (30)
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General speaking, we consider the variety of the number of critical points of
the positive solution after digging a small ball in Ω.

Theorem 8 (Grossi-L,2020)

Suppose that uε is a solution to (26) which verifies (27) and u0 its weak limit.
We have that if

P is not a critical point of u0,

then for ε small enough there is exactly one critical point for uε in
B(P,d) \ B(P, ε) (here B(P,d) ⊂ Ω is chosen not containing any critical point
of u0).

Moreover the critical point xε ∈ B(P,d) of uε is a saddle point of index −1
which verifies

uε(xε)→ u0(P).

Which answer the question (30).
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A Remark

The condition that P is not a critical point of u0 cannot be removed.
An easy counterexample can be constructed when Ω = B(0,1) and u0 is the
first eigenfunction of −∆ with zero Dirichlet boundary condition. Then

∇u0(0) = 0.

Let Ωε = B(0,1) \ B(0, ε) and uε be the first radial eigenfunction in the
annulus Ωε. Of course uε has infinitely many critical points in B(0,d) \ B(0, ε)
for any ε > 0 small and d ∈ (0,1).
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Theorem 9 (Grossi-L,2020)

Suppose that uε is a solution to (26) which verifies (27). Denoting by u0 its
weak limit we get that if

P is not a critical point of u0 and all critical points of u0 are nondegenerate,

then

]{critical points of uε in Ωε} = ]{critical points of u0 in Ω}+ 1.
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Next we consider the case ∇u0(P) = 0. As noted in above Remark it is even
possible to have infinitely many critical points. Moreover, formula (29)
becomes ∑

xi∈B(P,d)\B(P,ε)

indexxi (∇uε) = indexP(∇u0)− 1, (31)

where B(P,d) ⊂ Ω is chosen not containing any critical point of u0.

Hence the number of critical points of uε in a neighborhood of P is
strongly depending of the index of ∇u0 at P. In particular, if P is a
maximum point for u0 then (31) becomes∑

xi∈B(P,d)\B(P,ε)

indexxi (∇uε) = (−1)N − 1.
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We need an additional technical assumption.

Suppose that uε and u0 verify∫
Ωε

(
f
(
uε(y)

)
− f
(
u0(y)

))∂G(x , y)

∂xi
dy

=o
(
|x − P|

)
+

o
(

εN−2

|x−P|N−1

)
for N ≥ 3,

o
(

1
|x−P|·| log ε|

)
for N = 2.

(32)

Some cases where it is verified are the following.
f (s) ≡ 1.

Ω convex and symmetric with respect to P as in the Gidas, Ni and
Nirenberg Theorem.
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Denote by H(P) the Hessian matrix of u0 at P.

Theorem 10 (Grossi-L,2020)

Suppose that uε is a solution to (26) which verifies (27). Denoting by u0 its
weak limit we get that if (32) holds and all critical points of u0 are
nondegenerate, for small ε we have that

]{critical points of uε in Ωε} ≥ ]{critical points of u0 in Ω}+ 2 indexP
(
∇u0

)
−1.

Furthermore, if the negative eigenvalues of H(P) are simple, then

]{critical points of uε in Ωε} = ]{critical points of u0 in Ω}+ 2 indexP
(
∇u0

)
−1.
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Examples and Applications

Example 1: Assume that Ωε = B(0,1) \ B(P, ε) and φ1,ε is the first
eigenfunction of −∆ in B(0,1) \ B(P, ε). Then we have that

]{critical points of φ1,ε in Ωε} =

{
∞ if P = 0,
2 if P 6= 0,

for ε small enough.

Peng Luo (CCNU) Critical points of positive solutions 37 / 46



Example 2: Let Ω ⊂ RN be symmetric and convex with respect x1, .., xN with
N ≥ 2, P 6= 0 and uε solution of

−∆u = up in Ωε,

u > 0 in Ωε,

u = 0 on ∂Ωε,

(33)

with 1 < p < N+2
N−2 for N ≥ 3 and p > 1 if N = 2. Moreover assume that∫

Ωε

|∇uε|2 ≤ C, C independent of ε. (34)

Then uε admits exactly two critical points.

Here the key point is to obtain a priori estimate ‖uε‖L∞(Ωε) ≤ C by blow-up
analysis in Gidas-Spruck’s paper(1981,CPDE).
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Example 3: Let Ω ⊂ RN , N ≥ 3 be convex and uε solution of (33) satisfying
(34) with ∇u0(P) 6= 0. Then for p sufficiently close to N+2

N−2 we have that uε
admits exactly two critical points for ε small enough.

Example 4: Let Ω ⊂ R2 be a smooth bounded domain whose boundary has
positive curvature and uε semi-stable positive solution to{

−∆u = λf (u) in Ωε,

u = 0 on ∂Ωε,

where f > 0 is an increasing function and ∇u0(P) 6= 0. Then for any
0 < λ < λ∗ and ε small enough we have that uε admits exactly two critical
points.
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Example 5: Assume that Ω and f are like in Gidas, Ni and Nirenberg
Theorem, P = 0. Then if all the eigenvalues of H(P) are simple then for ε
small enough we have that

]{critical points of uε in Ωε} = 2N.

Example 6: Let Ωε be the annulus B(0,1) \ B(0, ε), uε a radial solution to
(26) and u0 its weak limit. Assume that f (s) > 0 for s > 0 and set r = |x | and
uε = uε(r). We have that for ε > 0 small enough uε(r) has a unique critical
point r = rε given by

rε =



[(
N(N−2)u0(0)

f
(

u0(0)
) ) 1

N

+ o(1)

]
ε

N−2
N if N ≥ 3,(√

u0(0)

2f
(

u0(0)
) + o(1)

)
1√
| log ε|

if N = 2.
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An application on the spectral gap

Theorem A. [Steinerberger, 2018, JFA] Let Ω ⊂ R2 be a bounded, convex
domain and assume the solution of{

−∆u = 1 in Ω,

u = 0 on ∂Ω,

assumes its maximum x0 ∈ Ω. There are universal constants c1, c2 > 0 such
that

λmax
(
D2u(x0)

)
≤ −c1exp

(
− c2

diam(Ω)

inrad(Ω)

)
. (35)

Steinerberger proposed the following open problem:

“Does Theorem A also hold true on domains that are not convex but merely
simply connected or perhaps only bounded?”
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Theorem 11 (Chen-L, 2020)

Let Ω ⊂ R2 be a bounded, convex domain, Ωε = Ω\B(P, ε) with P ∈ Ω and
B(P, ε) denote the ball centered at P and radius ε. If uε is the solution of{

−∆u = 1 in Ωε,

u = 0 on ∂Ωε,

with its maximum xε ∈ Ωε. Let λ1 and λ2 be two eigenvalues of D2u0(x) at P,
then

lim
ε→0

λmax
(
D2uε(xε)

)
=

max
{
λ1, λ2

}
if x0 6= P,

max
{
λ1, λ2,−|λ2 − λ1|

}
if x0 = P.

where x0 is the point in Theorem A.
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A remark: Here we take Ω ⊂ R2 a bounded and convex domain,
Ωε = Ω\B(P, ε) with x0 = P and ε small.

Now we suppose that (35) is true for Ωε, then there exist two positive
constants c3 and c4, which is independent with ε, such that

λmax
(
D2uε(xε)

)
≤ −c1 exp

(
−c2

diam(Ωε)

inrad(Ωε)

)
≤ −c3 exp

(
−c4

diam(Ω)

inrad(Ω)

)
.

(36)
On the other hand, moreover if we suppose λ1 = λ2 (for example
Ω = B(0,1)), then Theorem 11 gives us

lim
ε→0

λmax
(
D2uε(xε)

)
= 0,

which is a contradiction with (36).

Hence we deduce that (35) doesn’t hold for above non-convex domain Ωε,
which gives a negative answer to above open problem.
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Key ideas.

The key step is to derive sharp C2 expansions of the solution uε which
improve (28). For N ≥ 3 our basic estimate near ∂B(P, ε) is the following

uε(x) = u0(x)− u0(P) + o(1)

|x − P|N−2 εN−2 + o(1).

Note that near ∂B(P, ε) there is an interaction between the weak limit u0 and
the fundamental solution of the Laplacian.

Another crucial result is to derive that uε and u0(x)− u0(P)
|x−P|N−2 ε

N−2 are close in
the C2-topology in B(P,d) \ B(P, ε).
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Let us write down the equation satisfied by uε − u0 where u0 and uε are
solutions of (22) and (26) respectively,

−∆
(
uε − u0

)
= f
(
uε
)
− f
(
u0
)

in Ωε,

uε − u0 = 0 on ∂Ω,

uε − u0 = −u0 on ∂B(P, ε).

By Green’s representation formula, we get

uε(x) =u0(x) +

∫
∂B(P,ε)

∂Gε(x , y)

∂νy
u0(y)dσ(y)

+

∫
Ωε

(
f
(
uε(y)

)
− f
(
u0(y)

))
Gε(x , y)dy ,

(37)

A Remark: Above involving Green’s function can be used to handle the critical
point of Robin function and Kirchhoff-Routh function [Grossi-L-Yan,2020].
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Thank you!
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