Decay and Vanishing of some D-Solutions of the Navier-Stokes equations

Na Zhao
(Institute of Applied Physics and Computational Mathematics)

Joint with Carrillo Bryan, Xinghong Pan and Qi S. Zhang

The 7th Young Researchers PDE forum, CAMIS-SCNU

Nov. 29, 2020

Overview

Introduction

Main result and proof

D-solutions

- Solutions to the steady Navier-Stokes equations:

$$
\left\{\begin{array}{l}
(u \cdot \nabla) u+\nabla p-\Delta u=f, \text { in } D \subset \mathbb{R}^{3}, \tag{1}\\
\nabla \cdot u=0
\end{array}\right.
$$

with finite Dirichlet integral:

$$
\int_{D}|\nabla u(x)|^{2} d x<+\infty
$$

and various boundary conditions, with also the requirement that u vanishes at infinity; here $D \subset \mathbb{R}^{3}$ is a noncompact or compact, connected domain.

- Homogeneous D-solutions: $f=0, u=0$ on ∂D.
- Basic noncompact domains: \mathbb{R}^{3} (whole space), $\mathbb{R}^{2} \times[0,1]$ (slab).

Previous work

- Leray, 1933: variational method.
- Liouville type property:

Given a noncompact domain, is a homogeneous D-solution equal to 0 ?

- $n=2: \mathbb{R}^{2}$, Gilbarg-Weinberger, [Ann. Scuola Norm. Sup. Pisa Cl. Sci, 1978].
- $n \geq 4: \mathbb{R}^{n}$, Galdi's book, 2011 .
- $n=3: \mathbb{R}^{3}$,
- axially symmetric case without swirl $\left(u_{\theta}=0\right)$: Koch-Nadirashvili-Seregin-Sverak, [Acta Math., 2009]; Korobkov-Pileckas-Russo, [JMFM, 2015].
- other cases: unknown!

Previous work: \mathbb{R}^{3}

Theorem (Galdi, 2011)

Let u be a D-solutions to steady Navier-Stokes equations, P is the associated pressure. Then, there exist a constant $P_{0} \in \mathbb{R}$ such that

$$
\lim _{|x| \rightarrow \infty}\left|D^{\alpha} u(x)\right|+\lim _{|x| \rightarrow \infty}\left|D^{\alpha}\left(P(x)-P_{0}\right)\right|=0
$$

for any $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in[\mathbb{N} \cup 0]^{3}$.
A priori estimate:

- Sobolev embedding: $\nabla u \in L^{2}\left(\mathbb{R}^{3}\right) \Rightarrow u \in L^{6}\left(\mathbb{R}^{3}\right)$.
- Galdi's result $\Rightarrow u \in L^{\infty}\left(\mathbb{R}^{3}\right)$.
- $u \in L^{p}\left(\mathbb{R}^{3}\right)$, for any $p \in[6, \infty]$.

Previous work: \mathbb{R}^{3}

Extra integral or decay assumption:

- Galdi, 2011: $u \in L^{\frac{9}{2}}\left(\mathbb{R}^{3}\right) \Rightarrow u \equiv 0$.
- Chae-Wolf, [JDE, 2016]: improved Galdi's result by a log factor.
- Chae, [CMP, 2014]: $\Delta u \in L^{\frac{6}{5}}\left(\mathbb{R}^{3}\right) \Rightarrow u \equiv 0$.

Notice: $\|\Delta u\|_{L^{\frac{6}{5}}}$ scales the same way as $\|\nabla u\|_{L^{2}}$.

- Seregin, [Nonlinearity, 2016]: $u \in L^{6}\left(\mathbb{R}^{3}\right) \cap B M O^{-1} \Rightarrow u \equiv 0$.
- Kozono-Terasawa-Wakasugi, [JFA, 2017]:

$$
\nabla \times u=o\left(|x|^{-\frac{5}{3}}\right) \text { or } u=o\left(|x|^{-\frac{2}{3}}\right) \Rightarrow u \equiv 0 .
$$

Main difficulty:

- Decay of u at infinity is not fast enough.
- No a priori decay rate is known in \mathbb{R}^{3}.

Previous work: \mathbb{R}^{3}

Axially symmetric D-solution:
A priori decay estimate:

- Choe-Jin, [JMFM, 2009]: $\left|u^{r}\right|+\left|u^{z}\right| \lesssim\left(\frac{\ln r}{r}\right)^{\frac{1}{2}},\left|u^{\theta}\right| \leq \frac{(\ln r)^{\frac{1}{8}}}{r^{\frac{3}{8}}}$.
- Weng, [JMFM, 2017]: $|u(x)| \leq C\left(\frac{\ln r}{r}\right)^{\frac{1}{2}},\left|w^{\theta}(x)\right| \leq C r^{-\left(\frac{19}{16}\right)^{-}}$,

$$
\left|w^{r}(x)\right|+\left|w^{z}(x)\right| \leq C r^{-\left(\frac{67}{64}\right)^{-}} .
$$

- Carrillo-Pan-Zhang, [JFA, 2020]:
- Brezis-Gallouet inequality: $|u(x)| \leq C\left(\frac{\ln r}{r}\right)^{\frac{1}{2}}$;
$-\left|w^{\theta}(x)\right| \leq C \frac{(\ln r)^{\frac{3}{4}}}{r^{\frac{5}{4}}},\left|w^{r}(x)\right|+\left|w^{z}(x)\right| \leq C \frac{(\ln r)^{\frac{11}{8}}}{r^{\frac{9}{8}}}$.
Extra decay assumption:
- Wang, [JDE, 2019] or Z., [NA, 2019]:

$$
w=o\left(r^{-\frac{5}{3}}\right) \text { or } u=o\left(r^{-\frac{2}{3}}\right) \Rightarrow u=0 .
$$

Previous work: $\mathbb{R}^{2} \times[0,1]$

- Carrillo-Pan-Zhang, [JFA, 2020]: Axially symmetric D-solutions with periodic boundary conditions:

$$
\int_{0}^{1} u^{r} d z=\int_{0}^{1} u^{z} d z=0 \Rightarrow u=0
$$

- Other cases:

Case 1 D-solutions with Dirichlet boundary?
Case 2 D-solutions with periodic boundary without extra assumption?

Main result 1: Dirichlet boundary condition

Theorem (Carrillo-Pan-Zhang-Z., ARMA, 2020)

Let u be a smooth, bounded solution to the problem

$$
\left\{\begin{array}{l}
(u \cdot \nabla) u+\nabla p-\Delta u=0, \quad \text { in } \quad \mathbb{R}^{2} \times[0,1] \tag{2}\\
\nabla \cdot u=0 \\
\left.u(x)\right|_{x_{3}=0}=\left.u(x)\right|_{x_{3}=1}=0
\end{array}\right.
$$

such that the Dirichlet integral satisfies the condition:

$$
\begin{equation*}
\int_{0}^{1} \int_{\mathbb{R}^{2}}|\nabla u(x)|^{2} d x<\infty \tag{3}
\end{equation*}
$$

Then, $u \equiv 0$.

Main result 1: Dirichlet boundary condition

Remark:

- If the Dirichlet integral is infinite, then 0 may not be the unique solution.
Example: $u=\left(x_{3}-x_{3}^{2}, 0,0\right), p=-2 x_{1}$.
- Poincare inequality: $\nabla u \in L^{2} \Rightarrow u \in L^{2} . u$ decays like $\frac{1}{|x|}$ in the integral sense.
- Due to the boundary, the difficulty is to deal with the pressure!

Main result 1: Pressure estimate

Lemma (Pressure estimate)

Let u, p be the solution, then we have

$$
\begin{equation*}
\left\|p-p_{R}\right\|_{L^{2}\left(\Omega_{R}\right)} \leq C_{0} R \tag{4}
\end{equation*}
$$

where $C_{0}=C\left(\|u\|_{L^{\infty}},\|u\|_{L^{2}},\|\nabla u\|_{L^{2}}\right)$ and $p_{R}:=\frac{1}{\left|\Omega_{R}\right|} \int_{\Omega_{R}} p d x$ is the average of p on Ω_{R} with $\Omega_{R}=\left\{x^{\prime} \in \mathbb{R}^{2}| | x^{\prime} \mid \leq R\right\} \times[0,1]$.

Proof: By using Bogovskii estimate and scaling technique, for any $f \in L^{2}\left(\Omega_{R}\right)$ with $\int_{\Omega_{R}} f=0$, there exists at least one $V: \Omega_{R} \rightarrow \mathbb{R}^{3}$ such that

$$
\nabla \cdot V=f, \quad V \in W_{0}^{1,2}\left(\Omega_{R}\right), \quad\|\nabla V\|_{L^{2}\left(\Omega_{R}\right)} \leq C R\|f\|_{L^{2}\left(\Omega_{R}\right)}
$$

Let $f=p-p_{R}$, one has

$$
\begin{equation*}
\int_{\Omega_{R}} \nabla\left(p-p_{R}\right) \cdot V d x=\int_{\Omega_{R}}(\Delta u-u \cdot \nabla u) \cdot V d x \tag{5}
\end{equation*}
$$

Main result 1: Pressure estimate

Integration by parts indicate that

$$
\begin{aligned}
& \int_{\Omega_{R}}\left(p-p_{R}\right)^{2} d x \\
= & \int_{\Omega_{R}}\left(p-p_{R}\right) \nabla \cdot V d x \\
= & \int_{\Omega_{R}} \sum_{i, j=1}^{3} \partial_{i} u^{j} \partial_{i} V^{j}+\nabla \cdot(u \otimes u) \cdot V d x \\
= & \int_{\Omega_{R}} \sum_{i, j=1}^{3}\left(\partial_{i} u^{j}-u^{i} u^{j}\right) \partial_{i} V^{j} d x \\
\leq & \|\nabla V\|_{L^{2}\left(\Omega_{R}\right)}\left(\|\nabla u\|_{L^{2}\left(\Omega_{R}\right)}+\|u\|_{L^{\infty}\left(\Omega_{R}\right)}\|u\|_{L^{2}\left(\Omega_{R}\right)}\right) \\
\leq & \frac{\varepsilon}{R^{2}}\|\nabla V\|_{L^{2}\left(\Omega_{R}\right)}^{2}+C_{\varepsilon} R^{2}\left(\|\nabla u\|_{L^{2}\left(\Omega_{R}\right)}+\|u\|_{L^{\infty}\left(\Omega_{R}\right)}\|u\|_{L^{2}\left(\Omega_{R}\right)}\right)^{2} \\
\leq & C \varepsilon\left\|p-p_{R}\right\|_{L^{2}\left(\Omega_{R}\right)}^{2}+C_{\varepsilon} R^{2}\left(\|\nabla u\|_{L^{2}\left(\Omega_{R}\right)}+\|u\|_{L^{\infty}\left(\Omega_{R}\right)}\|u\|_{L^{2}\left(\Omega_{R}\right)}\right)^{2} .
\end{aligned}
$$

By choosing ε is small enough, we can get the pressure estimate.

Main result 1: Vanishing of u

Proof of main result 1: Let $\phi(s)$ be a smooth cut-off function satisfying

$$
\phi(s)= \begin{cases}1 & s \in[0,1 / 2] \tag{6}\\ 0 & s \geq 1\end{cases}
$$

with the usual property that ϕ, ϕ^{\prime} and $\phi^{\prime \prime}$ are bounded. Set $\phi_{R}\left(y^{\prime}\right)=\phi\left(\frac{\left|y^{\prime}\right|}{R}\right)$ where R is a large positive number. For convenience of notation, we denote $I=[0,1]$. Now testing the Navier-Stokes equation

$$
u \cdot \nabla u+\nabla p=\Delta u
$$

with $u \phi_{R}$, we obtain

$$
\int_{\mathbb{R}^{2} \times I}-\Delta u \cdot\left(u \phi_{R}\right) d x=\int_{\mathbb{R}^{2} \times I}-\left(u \cdot \nabla u+\nabla\left(p-p_{R}\right)\right) \cdot\left(u \phi_{R}\right) d x
$$

Main result 1: Vanishing of u

Integration by parts indicates that

$$
\begin{aligned}
\int_{\mathbb{R}^{2} \times I}|\nabla u|^{2} \phi_{R} d x= & \underbrace{\frac{1}{2} \int_{\mathbb{R}^{2} \times I}|u|^{2} \Delta \phi_{R} d x}_{I_{1}}+\underbrace{\frac{1}{2} \int_{\mathbb{R}^{2} \times I}|u|^{2} u \cdot \nabla \phi_{R} d x}_{I_{2}} \\
& +\underbrace{\int_{\mathbb{R}^{2} \times I}\left(p-p_{R}\right) u \cdot \nabla \phi_{R} d x}_{I_{3}}
\end{aligned}
$$

Denote $\bar{B}_{R / \frac{1}{2} R}:=\left\{x^{\prime}\left|1 / 2 R \leq\left|x^{\prime}\right| \leq R\right\}\right.$ i.e. the dyadic annulus. Then we have, since ϕ_{R} depends only on r, that

Main result 1: Vanishing of u

$$
\begin{aligned}
I_{1} & \lesssim \frac{1}{R^{2}}\|u\|_{L^{2}\left(\bar{B}_{R / \frac{1}{2} R} \times I\right)}^{2} ; \quad I_{2} \lesssim \frac{\left\|u^{r}\right\|_{\infty}}{R}\|u\|_{L^{2}\left(\bar{B}_{R / \frac{1}{2} R} \times I\right)}^{2} \\
I_{3} & \lesssim \frac{1}{R}\left\|u^{r}\right\|_{L^{2}\left(\bar{B}_{R / \frac{1}{2} R} \times I\right)}\left\|p-p_{R}\right\|_{L^{2}\left(\bar{B}_{R / \frac{1}{2} R} \times I\right)} \lesssim C_{0}\|u\|_{L^{2}\left(\bar{B}_{R / \frac{1}{2} R} \times I\right)} .
\end{aligned}
$$

Now let $R \rightarrow+\infty$, using $u \in L^{2}\left(\mathbb{R}^{2} \times I\right)$, we arrive at

$$
\int_{\mathbb{R}^{2} \times I}|\nabla u|^{2} d x=0
$$

which shows that $u \equiv c$. Besides, recall $u=0$ at the boundary, then at last we deduce

$$
u \equiv 0
$$

Main result 2: Periodic boundary condition

Theorem (Carrillo-Pan-Zhang-Z., ARMA, 2020)

Let u be a smooth axially symmetric solution to the problem

$$
\left\{\begin{array}{l}
(u \cdot \nabla) u+\nabla p-\Delta u=0, \quad \text { in } \quad \mathbb{R}^{2} \times S^{1}=\mathbb{R}^{2} \times[-\pi, \pi] \tag{7}\\
\nabla \cdot u=0 \\
u\left(x_{1}, x_{2}, z\right)=u\left(x_{1}, x_{2}, z+2 \pi\right) \\
\lim _{|x| \rightarrow \infty} u=0
\end{array}\right.
$$

with finite Dirichlet integral:

$$
\int_{-\pi}^{\pi} \int_{\mathbb{R}^{2}}|\nabla u(x)|^{2} d x<+\infty
$$

Then $u=0$.

Main result 2: Periodic boundary condition

Ideas:

- In this case, we can't get $u \in L^{2}$ by Poincaré inequality! However, we have $u^{r} \in L^{2}$ since

$$
\int_{-\pi}^{\pi} u^{r}(r, z) d z=0, \quad \forall r \geq 0
$$

This can be seen from integrating the divergence free condition in the z direction:

$$
\partial_{r} u^{r}+\frac{u^{r}}{r}+\partial_{z} u^{z}=0, \Rightarrow r \partial_{r} \int_{-\pi}^{\pi} u^{r} d z+\int_{-\pi}^{\pi} u^{r} d z=0 .
$$

Therefore

$$
\left(r \int_{-\pi}^{\pi} u^{r}(r, z) d z\right)^{\prime}=0, \Rightarrow \int_{-\pi}^{\pi} u^{r}(r, z) d z=0 \times \int_{-\pi}^{\pi} u^{r}(0, z) d z=0
$$

Main result 2: Periodic boundary condition

- $u^{r} \in L^{2}$ is enough to deal with I_{2} since the cut-off function ϕ_{R} depends only on r !

$$
\begin{aligned}
I_{2} & =\frac{1}{2} \int_{\mathbb{R}^{2} \times I}|u|^{2} u \cdot \nabla \phi_{R} d x=\frac{1}{2} \int_{\mathbb{R}^{2} \times I}|u|^{2} u^{r} \partial_{r} \phi_{R} d x \\
& \lesssim\|u\|_{L^{\infty}\left(\bar{B}_{R / \frac{1}{2} R} \times I\right)}^{2}\left\|u^{r}\right\|_{L^{2}\left(\bar{B}_{R / \frac{1}{2} R} \times I\right)}\left\|\partial_{r} \phi_{R}\right\|_{L^{2}\left(\bar{B}_{R / \frac{1}{2} R^{\prime}} \times I\right)} \\
& \lesssim\|u\|_{L^{\infty}\left(\bar{B}_{R / \frac{1}{2} R} \times I\right)}^{2}\left\|u^{r}\right\|_{L^{2}\left(\bar{B}_{R / \frac{1}{2} R} \times I\right)} .
\end{aligned}
$$

- If we can prove $p \in L^{\infty}$, then one can deal with I_{3} the same way as I_{2}. However, we can't get $p \in L^{\infty}$ in general. Thus the main difficulty is to deal with the pressure.
- Our idea is to prove the oscillation of p in dyadic annulus is bounded even though p is not bounded.

Main result 2: Pressure estimate

Boundedness of the oscillation of p in dyadic annulus:
\checkmark For $R>1$ and any $R<r<2 R, z \in[-\pi, \pi]$, the oscillation of p has the following estimate:

$$
|p(r, z)-p(R, 0)| \lesssim 1
$$

Key idea:

1. For any $R>1, R<r<2 R,\left|\int_{-\pi}^{\pi}(p(r, z)-p(R, z)) d z\right| \lesssim 1$.

$$
\left(u^{r} \partial_{r}+u^{z} \partial_{z}\right) u^{r}-\frac{\left(u^{\theta}\right)^{2}}{r}+\partial_{r} p=\left(\partial_{r}^{2}+\frac{1}{r} \partial_{r}+\partial_{z}^{2}-\frac{1}{r^{2}}\right) u^{r}
$$

Main result 2: Pressure estimate

Integrating the above equation on z from $-\pi$ to π, we can get

$$
\begin{aligned}
\partial_{r} \int_{-\pi}^{\pi} p d z= & \int_{-\pi}^{\pi}\left[-\left(u^{r} \partial_{r}+u^{z} \partial_{z}\right) u^{r}+\frac{\left(u^{\theta}\right)^{2}}{r}+\left(\partial_{r}^{2}+\frac{1}{r} \partial_{r}+\partial_{z}^{2}-\frac{1}{r^{2}}\right) u^{r}\right] d z \\
= & -\int_{-\pi}^{\pi} \frac{1}{2} \partial_{r}\left(u^{r}\right)^{2} d z-\int_{-\pi}^{\pi} u^{z} \partial_{z} u^{r} d z+\int_{-\pi}^{\pi} \frac{\left(u^{\theta}\right)^{2}}{r} d z \\
& +\partial_{r}^{2} \int_{-\pi}^{\pi} u^{r} d z+\frac{1}{r} \partial_{r} \int_{-\pi}^{\pi} u^{r} d z-\frac{1}{r^{2}} \int_{-\pi}^{\pi} u^{r} d z
\end{aligned}
$$

Picking any $r_{0} \in[R, 2 R]$, integrating the above on r from R to r_{0}, we find

$$
\begin{aligned}
& \left|\int_{-\pi}^{\pi} p\left(r_{0}, z\right) d z-\int_{-\pi}^{\pi} p(R, z) d z\right| \lesssim\left|\int_{R}^{r_{0}} \int_{-\pi}^{\pi} \partial_{r}\left(u^{r}\right)^{2} d z d r\right| \\
+ & \left|\int_{R}^{r_{0}} \int_{-\pi}^{\pi} u^{z} \partial_{z} u^{r} d z d r\right|+\left|\int_{R}^{r_{0}} \int_{-\pi}^{\pi} \frac{\left(u^{\theta}\right)^{2}}{r} d z d r\right|+\left|\int_{R}^{r_{0}} \partial_{r}^{2} \int_{-\pi}^{\pi} u^{r} d z d r\right| \\
& +\left|\int_{R}^{r_{0}} \frac{1}{r} \partial_{r} \int_{-\pi}^{\pi} u^{r} d z d r\right|+\left|\int_{R}^{r_{0}} \frac{1}{r^{2}} \int_{-\pi}^{\pi} u^{r} d z d r\right| \lesssim 1 .
\end{aligned}
$$

Main result 2: Pressure estimate

2. By mean value theorem, for fixed $R>1$, for any $R<r<2 R, \exists z(r)$ such that

$$
|p(r, z(r))-p(R, z(r))| \lesssim 1
$$

3. Boundedness of $u, \nabla u, \nabla^{2} u \Rightarrow\left|\partial_{z} p\right| \lesssim 1$ uniformly in R.

$$
\left(u^{r} \partial_{r}+u^{z} \partial_{z}\right) u^{z}+\partial_{z} p=\left(\partial_{r}^{2}+\frac{1}{r} \partial_{r}+\partial_{z}^{2}\right) u^{z}
$$

4. Combination of the above and uniform boundedness of $\partial_{z} p$, we can get for $R>1$, any $R<r<2 R$, and $z \in[-\pi, \pi]$, the following bound on oscillation of p :

$$
\begin{aligned}
& |p(r, z)-p(R, 0)| \\
& =|(p(r, z)-p(r, z(r)))+(p(r, z(r))-p(R, z(r)))+(p(R, z(r))-p(R, 0))| \\
& \leq\left(\left|\partial_{z} p\left(r, z_{1}\right)\right|+\left|\partial_{z} p\left(R, z_{2}\right)\right|\right)(|z-z(r)|+|z(r)|)+|p(r, z(r))-p(R, z(r))| \\
& \lesssim 1
\end{aligned}
$$

where $z_{1}, z_{2} \in[-\pi, \pi]$ and we have used the mean value theorem.

Main result 2: Vanishing of u

Proof of main result 2:
For I_{1} :

$$
\begin{aligned}
I_{1} & =\frac{1}{2} \int_{\mathbb{R}^{2} \times I}|u|^{2} \Delta \phi_{R} d x \\
& \lesssim\|u\|_{L^{\infty}\left(\bar{B}_{2 R / R} \times[-\pi, \pi]\right)}^{2}\left\|\Delta \phi_{R}\right\|_{L^{1}\left(\bar{B}_{2 R / R} \times[-\pi, \pi]\right)} \\
& \lesssim\|u\|_{L^{\infty}\left(\bar{B}_{2 R / R} \times[-\pi, \pi]\right)}^{2} .
\end{aligned}
$$

For I_{3} :

$$
\begin{aligned}
I_{3} & =\int_{\mathbb{R}^{2} \times I}(p-p(R, 0)) u^{r} \partial_{r} \phi_{R} d x \\
& \lesssim \sup _{R<r<2 R, z \in[-\pi, \pi]}|(p(r, z)-p(R, 0))|\left\|u^{r}\right\|_{L^{2}\left(\bar{B}_{2 R / R} \times[-\pi, \pi]\right)} \\
& \left\|\partial_{r} \phi_{R}\right\|_{L^{2}\left(\bar{B}_{2 R / R} \times[-\pi, \pi]\right)} \\
& \lesssim\left\|u^{r}\right\|_{L^{2}\left(\bar{B}_{2 R / R} \times[-\pi, \pi]\right)} .
\end{aligned}
$$

Main result 3: D-solutions in \mathbb{R}^{3}

Theorem (Carrillo-Pan-Zhang-Z., ARMA, 2020)

Let $u_{\rho}=u_{\rho}(x)$ be the radial component of 3 dimensional D-solutions in spherical coordinates. If

$$
\begin{equation*}
u_{\rho}(x) \leq \frac{C}{|x|}, \quad x \in \mathbb{R}^{3} \tag{8}
\end{equation*}
$$

for some positive constant C, then $u \equiv 0$.

Remark: We only impose the condition on the positive part of the radial component of the solution, there is no restriction on the other two components.

Main result 3: D-solutions in \mathbb{R}^{3}

Head pressure $Q:=\frac{1}{2}|u|^{2}+p-p_{1}$.

- Equation of Q is: $-\Delta Q+u \cdot \nabla Q=-|\operatorname{curl} u|^{2}$.
- Decay of u and p gives $\lim _{|x| \rightarrow \infty} Q=0$.
- Maximum principle: $Q \leq 0$.
- If one can show $Q \equiv 0$, then the Liouville problem can be done!

Main result 3: D-solutions in \mathbb{R}^{3}

Proof of main result 3: Testing the Navier-Stokes equation $u \cdot \nabla u+\nabla p=\Delta u$ with $u \phi_{R}$, we can get

$$
\int_{\mathbb{R}^{3}}-\Delta u\left(u \phi_{R}\right) d x=\int_{\mathbb{R}^{3}}-(u \cdot \nabla u+\nabla p)\left(u \phi_{R}\right) d x
$$

Integration by parts indicates that

$$
\begin{aligned}
& \int_{\mathbb{R}^{3}}|\nabla u|^{2} \phi_{R} d x-\frac{1}{2} \int_{\mathbb{R}^{3}}|u|^{2} \Delta \phi_{R} d x \\
= & \frac{1}{2} \int_{\mathbb{R}^{3}}|u|^{2} u \cdot \nabla \phi_{R} d x+\int_{\mathbb{R}^{3}}\left(p-p_{1}\right) u \cdot \nabla \phi_{R} d x \\
= & \int_{\mathbb{R}^{3}} Q u \cdot \nabla \phi_{R} d x=\int_{\mathbb{R}^{3}} Q u_{\rho} \partial_{\rho} \phi_{R} d x .
\end{aligned}
$$

Main result 3: D-solutions in \mathbb{R}^{3}

- Then we get

$$
\begin{aligned}
\int_{\mathbb{R}^{3}}|\nabla u|^{2} \phi_{R} d x \lesssim & \int_{B_{R / \frac{1}{2} R}}|u|^{2} \Delta \phi_{R} d x-\int_{\mathbb{R}^{3}} Q u_{\rho}^{-} \partial_{\rho} \phi_{R} d x \\
& +\int_{\mathbb{R}^{3}} Q u_{\rho}^{+} \partial_{\rho} \phi_{R} d x
\end{aligned}
$$

where $u_{\rho}^{-}=:-\min \left\{0, u_{\rho}\right\}$ and $u_{\rho}^{+}=: \max \left\{0, u_{\rho}\right\}$.

- Since $u \in L^{6}\left(\mathbb{R}^{3}\right), p-p_{1} \in L^{3}\left(\mathbb{R}^{3}\right)$, we have $Q \in L^{3}\left(\mathbb{R}^{3}\right)$. Choosing $\partial_{\rho} \phi_{R} \leq 0$, one has

$$
\begin{aligned}
\int_{\mathbb{R}^{3}}|\nabla u|^{2} \phi_{R} d x \lesssim & \|u\|_{L^{6}\left(B_{R / \frac{1}{2} R}\right)}^{2}\left\|\Delta \phi_{R}\right\|_{L^{\frac{3}{2}}\left(B_{R / \frac{1}{2} R}\right)}-\int_{\mathbb{R}^{3}} Q u_{\rho}^{-} \partial_{\rho} \phi_{R} d x \\
& +\sup _{B_{R / \frac{1}{2} R}} u_{\rho}^{+}\|Q\|_{L^{3}\left(B_{R / \frac{1}{2} R}\right)}\left\|\nabla \phi_{R}\right\|_{L^{\frac{3}{2}}\left(B_{R / \frac{1}{2} R}\right)} \\
& \lesssim\|u\|_{L^{6}\left(B_{R / \frac{1}{2} R}\right)}^{2}+\|Q\|_{L^{3}\left(B_{R / \frac{1}{2} R}\right)} .
\end{aligned}
$$

Thanks for your attention!

