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D-solutions

» Solutions to the steady Navier—Stokes equations:

(u-V)u+Vp—Au=f,inD C R
V-u=0,

with finite Dirichlet integral:
/ |Vu(z)?dz < +oo
D

and various boundary conditions, with also the requirement that u
vanishes at infinity; here D C R? is a noncompact or compact,
connected domain.

» Homogeneous D-solutions: f =0, u =0 on 0D.

> Basic noncompact domains: R?(whole space), R? x [0, 1](slab).



Previous work

» Leray, 1933: variational method.
» Liouville type property:
Given a noncompact domain, is a homogeneous D-solution equal to 0 7

> n =2: R? Gilbarg-Weinberger, [Ann. Scuola Norm. Sup. Pisa Cl.
Sci, 1978].

> n >4: R", Galdi’s book, 2011.
> n =3 R
> axially symmetric case without swirl (ug = 0):
Koch—Nadirashvili-Seregin—Sverak, [Acta Math., 2009];

Korobkov—Pileckas—Russo, [JMFM, 2015].
> other cases: unknown!



Previous work: R3

Theorem (Galdi, 2011)

Let u be a D-solutions to steady Navier—Stokes equations, P is the
associated pressure. Then, there exist a constant Po € R such that

lim_[D°u(@)| + lim_|D*(P(z) ~ Fo)l =0,
xT|—o0

|z| =00

for any a = (o1, a2, a3) € [NUO]?.

A priori estimate:
> Sobolev embedding: Vu € L*(R?) = u € L(R?).
> Galdi’s result = u € L>=(R?).
> u € LP(R?), for any p € [6,c0].



Previous work: R3

Extra integral or decay assumption:
> Galdi, 2011: u € L2 (R?) = u = 0.
» Chae-Wolf, [JDE, 2016]: improved Galdi’s result by a log factor.
> Chae, [CMP, 2014]: Au € L8 (R®) = u = 0.
Notice: HAUHL% scales the same way as ||Vul|pz.
» Seregin, [Nonlinearity, 2016]: v € L(R*) N BMO™' = u = 0.
» Kozono—Terasawa—Wakasugi, [JFA, 2017]:
V Xu= 0(|x\7§) oru= o(|x|7%) =u=0.
Main difficulty:

» Decay of u at infinity is not fast enough.

» No a priori decay rate is known in R®.



Previous work: R3

Axially symmetric D-solution:

A priori decay estimate:

1
> Choe-Jin, [JMFM, 2009]: |u"| + |u”| < (122)3, |uf| < (np)®

r8
1 —
> Weng, [JMFM, 2017]: |u(z)| < C(22)2, |w’(z)| < Cr~ (&)™,
lw” ()] + |w* (x)] < Cr~ (6D
» Carrillo-Pan-Zhang, [JFA, 2020]:

m\»—A

» Brezis-Gallouet mequahty z)| < C’( )2,

11

> (@) < o, |wr<x>|+|w (2)] < Clmn=
r4

9
r8

Extra decay assumption:
» Wang, [JDE, 2019] or Z., [NA, 2019
w= 0(1"7%) oru = 0(1"7%) =u=0.



Previous work: R? x [0, 1]

» Carrillo-Pan-Zhang, [JFA, 2020]: Axially symmetric D-solutions with
periodic boundary conditions:

1 1
/urdz:/uzdz=0:>u:0.
0 0

Case 1 D-solutions with Dirichlet boundary?
Case 2 D-solutions with periodic boundary without extra
assumption?

» Other cases:



Main result 1: Dirichlet boundary condition

Theorem (Carrillo-Pan—Zhang-7., ARMA, 2020)

Let u be a smooth, bounded solution to the problem

(u-V)u+Vp—Au=0, in R*x]0,1],
V.u=0,
w(@)legm0 = u(@)lzgmt = 0,

such that the Dirichlet integral satisfies the condition:

1
/ |Vu(z)?dz < cc.
0 JR2

Then, u = 0.



Main result 1: Dirichlet boundary condition

Remark:

» If the Dirichlet integral is infinite, then 0 may not be the unique
solution.
Example: u = (z3 — 23,0,0),p = —2z1.

» Poincare inequality: Vu € L? = u € L. u decays like ﬁ in the
integral sense.

» Due to the boundary, the difficulty is to deal with the pressure!



Main result 1: Pressure estimate

Lemma (Pressure estimate)
Let u,p be the solution, then we have

llp — prllL2(0,) < CoR, (4)
where Co = C(||ul|zes, ||ullL2, [|Vul|p2) and pr = ﬁ fQR pdx is the

average of p on Qg with Qr = {2’ € R?||2’| < R} x [0,1].

Proof: By using Bogovskii estimate and scaling technique, for any
feL? (Qr) with fQR f =0, there exists at least one V : Qr — R3 such that

V-V=Ff VeWy*Qn), IVVIr2n) < CRIfllr2@p)

Let f = p— pr, one has

V(p —pr) - Vdx = / (Au —u - Vu) - Vdz. (5)

Qr Qpr



Main result 1: Pressure estimate

Integration by parts indicate that

/QR (p— pR)de

- /Q (p—pr)V - Vdz

R
3
= / > 0oV + V- (u@u) -V
QR ;

Jj=1

3
/ Z (aiuj — uiuj)(?idex
Qg ;

j=1

IN

IVV 2 (0p (IVUll2p) + lullze@pllullz@p))

A

€ 2

< EHVVH%Q(QR) + CeR*(||Vull L2y + lulloe @pllull L2p))
2

< Celp —pRH2L2(QR) + CSR2(HVU||L2(QR) + Hu||L°°(QR)Hu||L2(QR)) .

By choosing ¢ is small enough, we can get the pressure estimate.



Main result 1: Vanishing of u

Proof of main result 1: Let ¢(s) be a smooth cut-off function satisfying

o) = {1 5€10,1/2], ©

0 s>1,

with the usual property that ¢, ¢’ and ¢” are bounded. Set
or(y') = qb(%) where R is a large positive number. For convenience of
notation, we denote I = [0,1]. Now testing the Navier-Stokes equation

u-Vu+Vp=Au

with u¢r, we obtain

/JR? I —Au - (U¢R)dx = \/]RQ I _(u -Vu + V(p - pR)) : (U(ﬁR)de



Main result 1: Vanishing of u

Integration by parts indicates that

1 1
/ |Vu|*prdr = = / |u|* Aprdx + = / |ul*u - Vordz
R2xT 2 Jrzxr 2 Jr2xi

Iy Iz

+/ (p—pr)u-Vordx.
R2x T

I3

Denote BR/%R = {2'|1/2R < |z'| < R} i.e. the dyadic annulus. Then we
have, since ¢r depends only on r, that



Main result 1: Vanishing of u

Lo flw”ll 2
IISEHUHL?(BR/%RU)S L3 ROOHUHLZ(BR/%RXI);

1
IEDS EHUTHL?(BR/%RM)”P—pRHIﬂ(BR/%sz) < Collu llz(éR/%Rmy

Now let R — 400, using u € L*(R? x I), we arrive at

/ |Vu|*dz = 0,
R2x T

which shows that u = c. Besides, recall u = 0 at the boundary, then at last
we deduce



Main result 2: Periodic boundary condition

Theorem (Carrillo-Pan-Zhang-Z., ARMA, 2020)
Let u be a smooth azially symmetric solution to the problem
(u-Vu+Vp—Au=0, in R?>xS =R?®x[-m7],
V-u=0,
u(x1, 2, 2) = u(z1, T2, 2 + 27),
lim w =0,

|z|—o0

with finite Dirichlet integral:
/ |Vu(z)>dz < +oo.
—r JR2

Then u = 0.



Main result 2: Periodic boundary condition

Ideas:

» In this case, we can’t get u € L? by Poincaré inequality! However, we
have u" € L? since

/ u"(r,z)dz =0, Vr>0.

This can be seen from integrating the divergence free condition in the
z direction:

r ™ s
O + = 0. =0,= 10, | u'dz+ / u"dz = 0.
T —T -7
Therefore

™ / ™ ™
(r/ u’(r, z)dz) =0,= u'(r,z)dz =0 x / u"(0,2)dz = 0.

—T —T —T



Main result 2: Periodic boundary condition

» " € L? is enough to deal with I, since the cut-off function ¢r
depends only on 7!

1 1
I :,/ lul*u - Vordr = 7/ |u|®u” 8, ¢ rdx:
2 Jrzxr 2 Jr2x1
2
Sl 3 e 05205, |00l 5205,
Slullzeos, o xnllv’llzzs -

R/ER r/LRY

» If we can prove p € L°°, then one can deal with I3 the same way as I».
However, we can’t get p € L™ in general. Thus the main difficulty is
to deal with the pressure.

» Our idea is to prove the oscillation of p in dyadic annulus is bounded
even though p is not bounded.



Main result 2: Pressure estimate

Boundedness of the oscillation of p in dyadic annulus:

» For R>1and any R <r < 2R, z € [—m, 7], the oscillation of p has
the following estimate:

Ip(r, z) — p(R,0)| < 1.

Key idea:
1. Forany R > 1, R<r < 2R, ‘ = (p(r,2) = p(R, 2))dz| < 1.
012
(u"0r +u®0x)u" — () + 0rp = (02 + %ar +07 — T%)uT

T



Main result 2: Pressure estimate

Integrating the above equation on z from —7 to 7, we can get

r2

" " T z T (u9)2 2 1 2 1 r
Or pdz = —(u"0, + u®0.)u" + - +(5‘r+;8r+62 — )" | dz

- -

b ™ ™ 6\2
= —/ 18T(1[)2dz—/ uzﬁzurdz—i—/ udz
-7 2 — — r
2 i T 1 i T 1 T T
+8T/ udz—|—78,~/ udz——Q/ u'dz.
- r -7 T -
Picking any ro € [R,2R)], integrating the above on r from R to 7o, we find
™ T 0 ™
‘/ p(ro, z)dz — / p(R, z)r]z| < |/ / ar(uT)dedﬂ
+ ’/ / u®0u dzdr + ’/ / dzdr’ + ‘/ 82/ u"dzdr
+|/ far/ urdzdr| + ’/ —2/ urdzdr|§ 1.
rR T —T rR T —7



Main result 2: Pressure estimate

2. By mean value theorem, for fixed R > 1, for any R < r < 2R, 3z(r) such
that

|p(r, 2(r)) = p(R, 2(r))| < 1.
3. Boundedness of u, Vu, V2u = |0.p| < 1 uniformly in R.

(W0 + u*0 )" + Dop = (02 + L0, + 0%)u.
T

4. Combination of the above and uniform boundedness of 9.p, we can get
for R > 1, any R <r < 2R, and z € [—m, 7], the following bound on
oscillation of p:

Ip(r, z) — p(R,0)]

= |(p(r, 2) = p(r, 2(r))) + (p(r, 2(r)) — p(R, 2(r))) + (P(R, 2(r)) — p(R,0))|
< (10=p(r, 21)| + 10:p(R, 22))(|z — 2(r)| + |2(r)]) + Ip(r, 2(r)) — p(R, 2(7))]
SL

where 21, 22 € [—7r, 7T] and we have used the mean value theorem.



Main result 2: Vanishing of u

Proof of main result 2:

For I;:
I = %/Rz |u|2A¢Rd:c
xI
S ||U||2Loo(B2R/Rx[—7r,1r])||A¢R||L1(BzR/RX[fmw])
S NullZoe (B, ) x (=)
For I3:

Is = / (p — p(R,0))u" 0, ¢rdx
R2 x I

N sup |(p(r, 2) — p(R, 0))|||ur||L2(BzR/Rx[fﬂ,w])
R<r<2R,z€|—m,n]

10r ¢RIl L2(Byp ) g x (—m,m)

s ”uTHLZ(BzR/RX[—Wﬂf])'



Main result 3: D-solutions in R?

Theorem (Carrillo-Pan-Zhang-Z., ARMA, 2020)

Let u, = up,(x) be the radial component of 8 dimensional D-solutions in
spherical coordinates. If

up(z) < x e R?, (8)

||’
for some positive constant C, then u = 0.
Remark: We only impose the condition on the positive part of the radial

component of the solution, there is no restriction on the other two
components.



Main result 3: D-solutions in R?

Head pressure @ := 3|ul* + p — pi.

» Equation of Q is: —AQ +u-VQ = —|curlul>.
» Decay of u and p gives ‘ l‘im Q=0.
x|[—0o0
» Maximum principle: @ < 0.
» If one can show @ = 0, then the Liouville problem can be done!



Main result 3: D-solutions in R?

Proof of main result 3: Testing the Navier-Stokes equation
u - Vu+ Vp = Au with u¢r, we can get

—Au(ugpr)dr = / —(u-Vu+ Vp)(upr)de.

R3 R3

Integration by parts indicates that

1
/ |Vul|®prd — 7/ |u|® Appdz
R3 2 R3

1
= */ |U|2U’V¢Rd1¢+/ (p—p1)u- Vogrdz
2 R3 R3

/ Qu-V¢Rdx:/ Qup0pprdx.
R3 R3



Main result 3: D-solutions in R?

» Then we get

/ |Vu|2¢Rdx§/ |u|2A¢Rdm—/ Qu, Opprdx
R3 R3

BR/%R
+/ QujapqﬁRdm,
R3
where u, =: —min{0, u,} and u} =: max{0,u,}.

» Since u € L5(R?), p — p1 € L*(R®), we have Q € L*(R?). Choosing
0p¢r < 0, one has

dzr S A — » 0p,0rd
Ly uonds Slhlios,, 180el, 3, = [ Qui 0o

o ufl@lscs,, oI Vol g
R/LR 2 R

L HRl s

< 2
N”u”LG(BR/ R R/L )



Thanks for your attention!
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