Boussinesq System With Measure Forcing

Liutang Xue

Beijing Normal University

CAMIS, South China Normal University, Nov. 28, 2020

Boussinesq System

Boussinesq system

$$
\left\{\begin{array}{l}
\partial_{t} \theta+v \cdot \nabla \theta-\Delta \theta=\mu \tag{1}\\
\partial_{t} v+v \cdot \nabla v-\Delta v+\nabla p=\theta e_{d} \\
\operatorname{div} v=0
\end{array}\right.
$$

where $d=2,3, e_{d}=(0, \cdots, 0,1), v$ the velocity and θ the temperature.

- System (1) is widely used in geophysics, atmosphere.
- System (1) can be rigorously derived from compressible Navier-Stokes -Fourier equations by taking a low Mach number limit (see Feireisl, Novotny [FN09]).
- For system (1) with $\mu=0$:
the well-posedness was studied in Cannon, DiBenedetto [CD80], Guo [Guo89] etc.
Brandolese, Schonbek [BS12] proved that the total energy $\|u(t)\|_{L^{2}}^{2}$ may grow in time.

Boussinesq System With Measure Forcing

We consider system (1) in which μ is given by a heat source transported by the flow:

$$
\left\{\begin{array}{l}
\partial_{t} \mu+v \cdot \nabla \mu=0 \tag{2}\\
\partial_{t} \theta+v \cdot \nabla \theta-\Delta \theta=\mu \\
\partial_{t} v+v \cdot \nabla v-\Delta v+\nabla p=\theta e_{d} \\
\operatorname{div} v=0 \\
\left.(\mu, \theta, v)\right|_{t=0}(x)=\left(\mu_{0}, \theta_{0}, v_{0}\right)(x)
\end{array}\right.
$$

where $x \in \mathbb{R}^{d}$.

- One can think of $\mu(x, t)=\sum_{i=1}^{m} \lambda_{i} \delta\left(x-x_{i}(t)\right), \lambda_{i} \in \mathbb{R}$.
- From the perspective of physical modeling, it would describe the movement of water after putting chemical material, like Sodium (Na), rapidly reacting with water.
- We assume total transfer of energy by μ is constant in time.
- We also neglect all other chemical or thermodynamical effects.

3D Navier-Stokes system with singular forcing

$$
\left\{\begin{array}{l}
\partial_{t} v+v \cdot \nabla v-\Delta v+\nabla p=F \tag{3}\\
\operatorname{div} v=0,\left.\quad v\right|_{t=0}=v_{0}, \quad x \in \mathbb{R}^{3}
\end{array}\right.
$$

- "Landau solutions" are a family of explicit formulas of (v, p) which solves system (3) (with $F=0$) under the conditions they are steady, symmetric about x_{1}-axis, homogeneous of degree -1 , regular except origin. See Landau [LL59], Tian, Xin [TX98], Sverak [Sve11].
"Landau solutions" indeed are distributional solution to system (3) with singular force $F=\left(b \delta_{0}, 0,0\right)$. See Cannone, Karch [CK04].
- If $v_{0} \in \mathcal{P} \mathcal{M}^{2}$ and $F \in C_{w}\left([0, \infty), \mathcal{P} \mathcal{M}^{0}\right)$ are sufficiently small ${ }^{1}$, then system (3) can be solved globally and uniquely. cf. Cannone, Karch [CK04].

[^0]Question: If $\mu_{0} \in \mathcal{M}\left(\mathbb{R}^{d}\right)$ with $^{2} \operatorname{supp} \mu_{0} \subset B_{R_{0}}(0)$ for some $R_{0}>0$, can we solve the system (2) uniquely and globally?
${ }^{2}$ Denote $\mathcal{M}=\mathcal{M}\left(\mathbb{R}^{d}\right)$ as the space of finite Radon measures defined on \mathbb{R}^{d} with total variation topology, i.e., for any μ Radon measure,

$$
\|\mu\|_{\mathcal{M}\left(\mathbb{R}^{d}\right)}=|\mu|\left(\mathbb{R}^{d}\right):=\sup \left\{\left|\int_{\mathbb{R}^{d}} f \mathrm{~d} \mu\right|:\|f\|_{L^{\infty}} \leq 1\right\} .
$$

From Riesz representation theorem, $\mathcal{M}\left(\mathbb{R}^{d}\right)$ is the dual space of $C_{0}\left(\mathbb{R}^{d}\right)$.

Main Result

Theorem 1 (P. B. Mucha \& L. Xue, 2020)

Let $\mu_{0} \in \mathcal{M}_{+}\left(\mathbb{R}^{2}\right)$ with supp $\mu_{0} \subset B_{R_{0}}(0)$ for some $R_{0}>0$.
For each $\sigma \in(0,2)$, let $\theta_{0} \in L^{1} \cap B_{\frac{2}{2-\sigma}, \infty}^{2-\sigma}\left(\mathbb{R}^{2}\right)$ with $\theta_{0} \geq 0$, and
$v_{0} \in H^{1}\left(\mathbb{R}^{2}\right)$ be a divergence-free vector field with vorticity $\omega_{0}=\partial_{1} v_{2,0}-\partial_{2} v_{1,0} \in B_{\frac{2}{2-\sigma}, \infty}^{3-\sigma}\left(\mathbb{R}^{2}\right)$.
Then system (2) admits a global in time unique solution (μ, θ, v) such that for any $T>0$,

$$
\begin{gather*}
\mu \in L^{\infty}\left(0, T ; \mathcal{M}_{+}\left(\mathbb{R}^{2}\right)\right), \quad \text { with } \quad \text { supp } \mu \subset B_{R_{0}+C_{T}} \tag{4}\\
\theta \in L^{\infty}\left(0, T ; L^{1} \cap B_{\frac{2-\sigma}{2-\sigma}, \infty}^{2-}\left(\mathbb{R}^{2}\right)\right), \quad \text { with } \quad \theta \geq 0 \text { on }[0, T] \times \mathbb{R}^{2}, \\
v \in L^{\infty}\left(0, T ; H^{1} \cap W^{1, \infty}\right) \cap L^{2}\left(0, T ; H^{2}\right), \quad \nabla v \in L^{\infty}\left(0, T ; B_{\frac{2}{2-\sigma}, \infty}^{3-\sigma}\right) .
\end{gather*}
$$

- Difficulty: The heat source is a measure which is not vanishing in time.
- Solvability of (2) $)_{1}$ requires high regularity of the velocity (Lipschitz continuity) to guarantee existence and uniqueness.
One can not expect too high regularity of solutions since they are generated by a measure.
Our solutions are regular enough and (2) $)_{1}$ can be solved in terms of characteristics.
- In obtaining a priori estimates, the source μ given as a measure does not allow to use the standard bounds by energy norms.
- We prove uniqueness in Lagrangian coordinates: the regularity is high enough to define the Lagrangian coordinates. After the transformation, μ becomes fixed in time.

Some remarks

- It is an application of inhomogeneous Besov spaces $L^{\infty}\left(0, T ; B_{p, \infty}^{s}\left(\mathbb{R}^{2}\right)\right)$ to address the regularity of solutions.
- Properties of these spaces allow to consider regularity of (μ, θ, v) in the L^{∞}-norm in time, which is required by the basic bound of $\mu(4)$.
- By embedding $B_{2 / \sigma, 1}^{\sigma}\left(\mathbb{R}^{2}\right) \subset C_{0}\left(\mathbb{R}^{2}\right)$ for $\sigma \in(0,2)$, we have

$$
\mathcal{M}\left(\mathbb{R}^{2}\right) \subset B_{\frac{2}{2-\sigma}, \infty}^{-\sigma}\left(\mathbb{R}^{2}\right)
$$

thus μ belongs to $L^{\infty}\left(0, T ; B_{\frac{2}{2-\sigma}, \infty}^{-\sigma}\left(\mathbb{R}^{2}\right)\right)$.
This framework fits to the regularity properties of the right-hand side of equation $(2)_{2}$.

- Besov spaces admit the theory of maximal regularity for the heat and Stokes equations, which allows to maintain the full information about the solutions.

A priori estimates: estimation of source μ

$$
\partial_{t} \mu+v \cdot \nabla \mu=0,\left.\quad \mu\right|_{t=0}=\mu_{0} \in \mathcal{M}_{+}\left(\mathbb{R}^{2}\right)
$$

Proposition 1

Let $\mu_{0} \in \mathcal{M}_{+}\left(\mathbb{R}^{2}\right)$ satisfy that supp $\mu_{0} \subset B_{R_{0}}(0)$ for some $R_{0}>0$. Let $T>0$ be any given, and (μ, θ, v) be smooth functions on $\mathbb{R}^{2} \times[0, T]$ solving system (2).
Then for every $t \in[0, T]$, we have $\mu(t, x)=\mu_{t}(x) \in \mathcal{M}_{+}\left(\mathbb{R}^{2}\right)$ with

$$
\left\|\mu_{t}\right\|_{\mathcal{M}\left(\mathbb{R}^{2}\right)} \leq\left\|\mu_{0}\right\|_{\mathcal{M}\left(\mathbb{R}^{2}\right)}, \quad \forall t \in[0, T],
$$

and also $\operatorname{supp} \mu_{t} \subset B_{R_{0}+C}(0)$ with $C=\|v\|_{L_{T}^{1}\left(L^{\infty}\right)}$.

A priori estimates: L^{1}-Estimation of temperature θ

$$
\partial_{t} \theta+v \cdot \nabla \theta-\Delta \theta=\mu,\left.\quad \theta\right|_{t=0}=\theta_{0}
$$

Proposition 2

Let $\mu_{0} \in \mathcal{M}_{+}\left(\mathbb{R}^{2}\right)$ satisfy supp $\mu_{0} \subset B_{R_{0}}(0)$ for some $R_{0}>0$, and $\theta_{0} \in L^{1}\left(\mathbb{R}^{2}\right)$ be with $\theta_{0} \geq 0$.
For $T>0$ any given, assume (μ, θ, v) are smooth functions on $\mathbb{R}^{2} \times[0, T]$ solving system (2), and also θ has the point-wise spatial decay.
Then we have that $\theta(t) \geq 0$ for every $t \in[0, T]$ and

$$
\sup _{t \in[0, T]}\|\theta(t)\|_{L^{1}} \leq\left\|\theta_{0}\right\|_{L^{1}}+T\left\|\mu_{0}\right\|_{\mathcal{M}} .
$$

A priori estimates

Proposition 3

Let $\mu_{0} \in \mathcal{M}_{+}\left(\mathbb{R}^{2}\right)$ satisfy supp $\mu_{0} \subset B_{R_{0}}(0)$ for some $R_{0}>0$. For each $\sigma \in(0,2)$, let $\theta_{0} \in L^{1} \cap B_{\frac{2}{2-\sigma}, \infty}^{2-\sigma}\left(\mathbb{R}^{2}\right)$ be with $\theta_{0} \geq 0$, and $v_{0} \in H^{1}\left(\mathbb{R}^{2}\right)$ be a divergence-free vector field with initial vorticity $\omega_{0}:=\partial_{1} v_{2,0}-\partial_{2} v_{1,0} \in B_{\frac{2}{2-\sigma}, \infty}^{3-\sigma}\left(\mathbb{R}^{2}\right)$. Let $T>0$ be any given, and (μ, θ, v) be smooth functions on $\mathbb{R}^{2} \times[0, T]$ solving system (2).
Then we have

$$
\begin{equation*}
\|\theta\|_{L_{T}^{\infty}\left(B_{\substack{2-\sigma \\ 2-\sigma}}^{2-\infty}\right)}+\|V\|_{L_{T}^{\infty}\left(H^{1}\right)}+\|v\|_{L_{T}^{2}\left(H^{2}\right)} \leq C e^{\exp \left(C(1+T)^{8}\right)} \tag{5}
\end{equation*}
$$

and
$\left.\|\nabla v\|_{L_{T}^{\infty}\left(B_{2}^{2-\sigma}\right)}^{\left.2-\sigma^{2}\right)}+\|v\|_{L_{T}^{\infty}\left(W^{1}, \infty\right)}+\left\|\left(\nabla p, \partial_{t} v, \nabla^{2} v\right)\right\|_{L_{T}^{\infty}\left(B_{2}^{2-\sigma}\right)}^{2-\sigma^{2}, \infty}\right) \leq C e^{\exp \left(C(1+T)^{8}\right)}$,
where $C>0$ depends only on σ and norms of $\left(\mu_{0}, \theta_{0}, v_{0}\right)$.

Proof of Proposition 3

- Energy estimate yields

$$
\begin{aligned}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|v(t)\|_{L^{2}}^{2}+\|\nabla v(t)\|_{L^{2}}^{2} & \leq\left|\int_{\mathbb{R}^{2}} \theta v_{2}(t, x) \mathrm{d} x\right| \\
& \leq\|\theta(t)\|_{L^{1}}\|v(t)\|_{L^{\infty}} \leq C(1+t)\|v(t)\|_{L^{2}}^{1 / 2}\left\|\nabla^{2} v\right\|_{L^{2}}^{1 / 2}
\end{aligned}
$$

- Consider the equation of vorticity $\omega:=\operatorname{curl} v=\partial_{1} v_{2}-\partial_{2} v_{1}$, which is

$$
\partial_{t} \omega+v \cdot \nabla \omega-\Delta \omega=\partial_{1} \theta
$$

Energy estimate also yields

$$
\begin{aligned}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|\omega(t)\|_{L^{2}}^{2} & +\|\nabla \omega(t)\|_{L^{2}}^{2} \leq\left|\int_{\mathbb{R}^{2}} \theta \partial_{1} \omega(t, x) \mathrm{d} x\right| \leq\|\theta(t)\|_{L^{2}}\|\nabla \omega(t)\|_{L^{2}} . \\
& \Longrightarrow \frac{\mathrm{d}}{\mathrm{~d} t}\|\omega(t)\|_{L^{2}}^{2}+\|\nabla \omega(t)\|_{L^{2}}^{2} \leq\|\theta(t)\|_{L^{2}}^{2} .
\end{aligned}
$$

We get

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\|v(t)\|_{L^{2}}^{2}+\|\omega(t)\|_{L^{2}}^{2}\right)+\|\nabla v\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla \omega\|_{L^{2}}^{2} \leq\|\theta(t)\|_{L^{2}}^{2}+C(1+t)^{\frac{4}{3}}\|v(t)\|_{L^{2}}^{\frac{2}{3}} \tag{7}
\end{equation*}
$$

- In order to control the norm $\|\theta(t)\|_{L^{2}\left(\mathbb{R}^{2}\right)}$, we use the equation of θ

$$
\partial_{t} \theta+v \cdot \nabla \theta-\Delta \theta=\mu
$$

Since $B_{2 / \sigma, 1}^{\sigma}\left(\mathbb{R}^{2}\right) \subset C_{0}\left(\mathbb{R}^{2}\right)$ for $\sigma \in(0,2)$, observe that

$$
\mu(t) \in \mathcal{M}\left(\mathbb{R}^{2}\right)=\left(C_{0}\left(\mathbb{R}^{2}\right)\right)^{*} \subset B_{\frac{2}{2-\sigma}, \infty}^{-\sigma}\left(\mathbb{R}^{2}\right) .
$$

Lemma 2 (cf. Theorem 2.2.5 of Danchin05')

Let $s \in \mathbb{R}$ and $p \in[1, \infty]$. Let $T>0, u_{0} \in B_{p, \infty}^{s}\left(\mathbb{R}^{d}\right)$, and $f \in L_{T}^{\infty}\left(B_{p, \infty}^{s-2}\left(\mathbb{R}^{d}\right)\right)$. Then

$$
\partial_{t} u-\Delta u=f,\left.\quad u\right|_{t=0}=u_{0}, \quad x \in \mathbb{R}^{d},
$$

has a unique solution $u \in L_{T}^{\infty}\left(B_{p, \infty}^{s}\right)$ and there exists a constant $C=C(d)$ such that

$$
\|u\|_{L_{T}^{\infty}\left(B_{p, \infty}^{s}\right)} \leq C\left(\left\|u_{0}\right\|_{B_{p, \infty}^{s}}+(1+T)\|f\|_{L_{T}^{\infty}\left(B_{p, \infty}^{s}\right)}^{s-2}\right) .
$$

- Hence we infer that for every $t \in[0, T]$,

Lemma 3

Let $v: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be divergence-free and $\theta: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Let $s \in(0,1)$, $p \in[1, \infty]$. Then there exists $C=C(s)>0$ such that

$$
\|v \cdot \nabla \theta\|_{B_{p, \infty}^{-s}\left(\mathbb{R}^{2}\right)} \leq C\|v\|_{H^{1}\left(\mathbb{R}^{2}\right)}\left(\sup _{k \geq-1} 2^{k(1-s)} \sqrt{k+2}\left\|\Delta_{k} \theta\right\|_{L^{p}\left(\mathbb{R}^{2}\right)}\right) .
$$

- Owing to Lemma 3, it follows that

$$
\begin{aligned}
\left.\|\theta\|_{L_{t}^{\infty}\left(B_{2}^{2-\sigma}\right)}^{2-\sigma}\right) \leq & C_{0}\left(\left\|\theta_{0}\right\|_{B_{\frac{2}{2-\sigma}}^{2-\sigma}, \infty}+(1+t)\left\|\mu_{0}\right\|_{\mathcal{M}}\right) \\
& +C_{0}(1+t)\|(v, \omega)\|_{L_{t}^{\infty}\left(L^{2}\right)}\left(\sup _{k \geq-1} 2^{k(1-\sigma)} \sqrt{2+k}\left\|\Delta_{k} \theta\right\|_{L_{t}^{\infty}\left(L^{2}-\frac{2}{2-\sigma}\right)}\right) .
\end{aligned}
$$

- We first derive a rough estimate of $\|\theta\|_{\substack{L_{t}^{\infty}\left(B_{\begin{subarray}{c}{2} }}^{2-\sigma}\right)} \\{2-\sigma, \omega^{\infty}}\end{subarray}}$ by $\|(v, \omega)\|_{L_{t}^{\infty}\left(L^{2}\right)}$.

By interpolation and Young inequality, it gives

$$
\begin{aligned}
& \left.\|\theta\|_{L_{t}^{\infty}\left(B_{\frac{2}{2-\sigma}, \infty}^{2-\sigma}\right)} \leq C(1+t)+C(1+t)\|(v, \omega)\|_{L_{t}^{\infty}\left(L^{2}\right)}\|\theta\|_{L_{t}^{\infty}\left(B_{2}^{1-\frac{\sigma}{2}}\right.}^{2-\sigma^{2}, \infty}\right) \\
& \left.\leq C(1+t)+C(1+t)\|(v, \omega)\|_{L_{t}^{\infty}\left(L^{2}\right)}\|\theta\|_{L_{t}^{\infty}\left(L^{1}\right)}^{\frac{2-\sigma}{4}}\|\theta\|_{\substack{L_{t}^{\infty}\left(B_{\begin{subarray}{c}{2-\sigma} }}^{2-\sigma}, \infty\right.}\end{subarray}}^{\frac{2+\sigma}{2-\infty}}\right) \\
& \leq C(1+t)+C\left((1+t)^{\left.\left.\frac{4}{2-\sigma}\|(v, \omega)\|_{L_{t}^{\infty}\left(L^{2}\right)}^{\frac{4}{2-\sigma}}\|\theta\|_{L_{t}^{\infty}\left(L^{1}\right)}\right)+\frac{1}{2}\|\theta\|_{L_{t}^{\infty}\left(B_{\substack{2-\sigma \\
2-\sigma}}^{2-\infty}\right)}\right), ~ \text {, }, ~}\right.
\end{aligned}
$$

and

$$
\begin{equation*}
\left.\|\theta\|_{L_{t}^{\infty}\left(B_{\substack{2-\sigma}}^{2-\sigma}\right)}^{2-\infty^{2}}\right) \leq C(1+t)^{\frac{6-\sigma}{2-\sigma}}\left(1+\|(v, \omega)\|_{L_{t}^{\infty}\left(L^{2}\right)}^{\frac{4}{2-\sigma}}\right), \tag{8}
\end{equation*}
$$

with C depending on the norms $\left\|\theta_{0}\right\|_{\substack{1} B_{-\frac{2}{2-\sigma}, \infty}^{2-\sigma}}$ and $\left\|\mu_{0}\right\|_{\mathcal{M}}$.

- Then we show refined estimate of (8) by reducing power index of $\|(v, \omega)\|_{L_{L}^{\infty} L^{2}}$.

Lemma 4

Let $\theta: \mathbb{R}^{2} \times[0, T] \rightarrow \mathbb{R}$ be a scalar function. Let $s \in(0,1), p \in[1, \infty]$, then there is a positive constant $C=C(s, p)$ such that

$$
\begin{align*}
\sup _{k \geq-1} 2^{k(1-s)} & \sqrt{k+2}\left\|\Delta_{k} \theta\right\|_{L_{T}^{\infty}\left(L^{p}\right)} \\
& \leq C\|\theta\|_{L_{T}^{\infty}\left(L^{1}\right)}^{\frac{1}{4-s-2 / p}}\|\theta\|_{L_{T}^{\infty}\left(B_{p, \infty}\right)}^{\frac{3-s-s / s / p}{4-s-2 / p}} \tag{9}\\
& \sqrt{\log \left(e+\frac{\|\theta\|_{L_{T}^{\infty}\left(B_{p}^{2-s}\right)}}{\|\theta\|_{L_{T}^{\infty}\left(L^{1}\right)}}\right)}+C\|\theta\|_{L_{T}^{\infty}\left(L^{1}\right)} .
\end{align*}
$$

Applying (9) and the fact $z \mapsto z^{\frac{1}{2}} \sqrt{\log \left(e+\frac{1}{z}\right)}$ is increasing on $(0, \infty)$,

$$
\begin{aligned}
& \|\theta\|_{L_{t}^{\infty}\left(B_{\substack{2 \\
2-\sigma \\
2-\sigma}}^{2-\infty}\right)} \leq C(1+t)+C(1+t)\|(v, \omega)\|_{\left.L_{t}^{L_{t}^{\infty}}\left(L^{2}\right)\|\theta\|_{L_{t}^{\infty}\left(L^{1}\right)}\right)}
\end{aligned}
$$

Using rough estimate (8), we see

$$
\begin{aligned}
\sqrt{\log \left(e+\|\theta\|_{L_{t}^{\infty}\left(B_{\substack{2 \\
2-\sigma}}^{2-\sigma}\right)}\right)} & \left.\leq \sqrt{\log \left(\left(e+C(1+t)^{\left.\left.\frac{6-\sigma}{2-\sigma}\right)\left(e+\|(v, \omega)\|_{L_{t}^{(o s}\left(L^{2}\right)}^{2-\sigma}\right)\right)}\right.\right.} \underset{ }{\frac{4}{2-\sigma}}\right) \\
& \leq C(1+t) \sqrt{\log \left(e+\|(v, \omega)\|_{L_{t}^{\infty}\left(L^{2}\right)}^{2}\right)}
\end{aligned}
$$

thus

$$
\|\theta\|_{\substack{L_{t}^{\infty}\left(B_{\begin{subarray}{c}{2-\sigma} }}^{2-\sigma}, \omega^{2-\infty}\right.}\end{subarray}} \leq C(1+t)+C(1+t)^{3}\|(v, \omega)\|_{L_{t}^{\infty}\left(L^{2}\right)}\left(\sqrt{\left.\log \left(e+\|(v, \omega)\|_{L_{t}^{\infty}\left(L^{2}\right)}^{2}\right)\|\theta\|_{\substack{L_{t}^{\infty}\left(B_{2}^{2-\sigma}, B^{2-\sigma^{\prime}}\right)}}^{\frac{1}{2-\infty}}+1\right) . . ~}\right.
$$

We then obtain

$$
\begin{equation*}
\left.\|\theta\|_{L_{t}^{\infty}\left(B^{2-\sigma}-\frac{-}{2-\sigma}, \infty\right.}\right) \leq C(1+t)^{6}\left(1+\|(v, \omega)\|_{L_{t}^{\infty}\left(L^{2}\right)}^{2}\right) \log \left(e+\|(v, \omega)\|_{L_{t}^{\infty}\left(L^{2}\right)}^{2}\right) \tag{10}
\end{equation*}
$$

- Now we go back to inequality (7).

By (10) and interpolation $\|\theta\|_{L_{T}^{\infty}\left(L^{2}\right)}^{2} \leq C\|\theta\|_{L_{T}^{\infty}\left(L^{1}\right)}\|\theta\|_{L_{T}^{\infty}\left(B_{p, \infty}^{2 / \infty}\right)}, \forall p \in[1, \infty)$, we deduce

$$
\begin{array}{r}
\frac{\mathrm{d}}{\mathrm{~d} t}\|(v, \omega)(t)\|_{L^{2}}^{2}+\frac{1}{2}\|(\nabla v, \nabla \omega)(t)\|_{L^{2}}^{2} \leq C\|\theta\|_{L_{t}^{\infty}\left(L^{1}\right)}\|\theta\|_{L_{t}^{\infty}\left(B_{\frac{2}{2-\sigma}, \omega^{2}}^{2-\sigma}\right)}+C(1+t)^{\frac{4}{3}}\|v(t)\|_{L^{2}}^{\frac{2}{3}} \\
\leq C(1+t)^{7}\left(1+\|(v, \omega)\|_{L_{t}^{\infty}\left(L^{2}\right)}^{2} \log \left(e+\|(v, \omega)\|_{L_{t}^{\infty}\left(L^{2}\right)}^{2}\right)\right) .
\end{array}
$$

Integrating on time yields

$$
\begin{aligned}
& \|(v, \omega)\|_{L_{t}^{\infty}\left(L^{2}\right)}^{2}+\|(\nabla v, \nabla \omega)\|_{L_{t}^{2}\left(L^{2}\right)}^{2} \\
\leq & C(1+t)^{8}+C \int_{0}^{t}(1+\tau)^{7}\|(v, \omega)\|_{L_{\tau}^{\infty}\left(L^{2}\right)}^{2} \log \left(e+\|(v, \omega)\|_{L_{\tau}^{\infty}\left(L^{2}\right)}^{2}\right) \mathrm{d} \tau .
\end{aligned}
$$

Gronwall inequality guarantees

$$
\begin{equation*}
\|(v, \omega)\|_{L_{T}^{\infty}\left(L^{2}\right)}^{2}+\|(\nabla v, \nabla \omega)\|_{L_{T}^{2}\left(L^{2}\right)}^{2} \leq C e^{\exp \left(C(1+T)^{8}\right)} \tag{11}
\end{equation*}
$$

Plugging (11) into (8) leads to

$$
\|\theta\|_{L_{t}^{\infty}\left(B_{\substack{2 \\ 2-\sigma \\ 2}}^{2-\infty}\right)} \leq C e^{\exp \left(C(1+T)^{8}\right)}
$$

- By viewing the equation of ω as $\partial_{t} \omega-\Delta \omega=\partial_{1} \theta-v \cdot \nabla \omega$, we use Lemma 2 and product estimate to get

$$
\left.\|\nabla v\|_{L_{T}^{\infty}\left(B_{\frac{2}{3-\sigma}, \infty}^{2-\sigma}, \infty\right.} \approx\|\omega\|_{L_{T}^{\infty}\left(B^{3-\sigma}\right.}^{2-\sigma}\right) \leq C e^{\exp \left(C(1+T)^{8}\right)}
$$

and

$$
\begin{aligned}
\|v\|_{L_{T}^{\infty}\left(W^{1, \infty}\right)} & \leq C_{0}\left\|\Delta_{-1} v\right\|_{L_{T}^{\infty}\left(L^{\infty}\right)}+C_{0} \sum_{q \in \mathbb{N}}\left\|\Delta_{q} \nabla v\right\|_{L_{T}^{\infty}\left(L^{\infty}\right)} \\
& \left.\leq C_{0}\|v\|_{L_{T}^{\infty}\left(L^{2}\right)}+C_{0} \sum_{q \in \mathbb{N}} 2^{-q} 2^{q(3-\sigma)}\left\|\Delta_{q} \nabla v\right\|_{L_{T}^{\infty}\left(L^{2}-\sigma\right.}^{2-\sigma}\right) \\
& \leq C_{0}\|v\|_{L_{T}^{\infty}\left(L^{2}\right)}+C_{0}\|\nabla v\|_{\substack{L_{T}^{\infty}\left(B_{\frac{2}{2-\sigma}, \infty}^{3-\sigma}\right)}} \leq C e^{\exp \left(C(1+T)^{8}\right)},
\end{aligned}
$$

- Furthermore,

$$
\left\|\left(\partial_{t} v, \nabla^{2} v, \nabla p\right)\right\|_{L_{T}^{\infty}\left(B_{\substack{2-\sigma}}^{2-\sigma}\right)} \leq C e^{\exp \left(C(1+T)^{8}\right)}
$$

Global Existence

- In order to construct a suitable approximation we consider the system with smooth initial data.
We assume
$\left.\mu^{n}\right|_{t=0},\left.\quad \theta^{n}\right|_{t=0},\left.\quad v^{n}\right|_{t=0}$ belong to the Schwartz class over \mathbb{R}^{2}, (12)
where $n \in \mathbb{N}^{+}\left(n \rightarrow \infty\right.$ in the end) and they converge to $\mu_{0}, \theta_{0}, v_{0}$ in spaces prescribed by Theorem 1 (at least in a weak sentence).
- By Galerkin's approximation and energy estimates, we can get the solution to system (2) with initial data given by (12), that is:

$$
\begin{cases}\partial_{t} \mu^{n}+v^{n} \cdot \nabla \mu^{n}=0, & \text { in } \mathbb{R}^{2} \times(0, T], \tag{13}\\ \partial_{t} \theta^{n}+v^{n} \cdot \nabla \theta^{n}-\Delta \theta^{n}=\mu^{n}, & \text { in } \mathbb{R}^{2} \times(0, T], \\ \partial_{t} v^{n}+v^{n} \cdot \nabla v^{n}-\Delta v^{n}+\nabla p^{n}=\theta^{n}, & \text { in } \mathbb{R}^{2} \times(0, T], \\ \operatorname{div} v^{n}=0, & \text { in } \mathbb{R}^{2} \times(0, T],\end{cases}
$$

- Using the standard bootstrap method, we obtain that for every $n \in \mathbb{N}^{+}$and for any $1<q, p<\infty$,

$$
\begin{align*}
& \mu^{n} \in L^{\infty}\left(0, T ; L^{1} \cap L^{\infty}\right), \\
& \theta^{n} \in L^{q}\left(0, T ; W^{2, p}\right) \cap W^{1, q}\left(0, T ; L^{p}\right), \tag{14}\\
& v^{n} \in L^{q}\left(0, T ; W^{4, p}\right) \cap W^{2, q}\left(0, T ; L^{p}\right) .
\end{align*}
$$

Due to $\left.\mu^{n}\right|_{t=0} \in \mathcal{S}$, we get $\mu^{n} \in L^{\infty}\left(0, T ; W^{4, p}\right) \cap W^{1, \infty}\left(0, T ; W^{3, p}\right)$.

- Iteration ensures that $\left(\mu^{n}, \theta^{n}, v^{n}\right)$ has sufficient smoothness so that the regularity assumptions in Propositions 1-3 are fulfilled.
Hence we have the uniform-in-n estimates

$$
\begin{aligned}
& \left\|\mu^{n}\right\|_{L^{\infty}(0, T ; \mathcal{M})} \leq\left\|\mu_{0}\right\|_{\mathcal{M}}, \quad \mu^{n} \geq 0, \quad \text { and } \quad \operatorname{supp} \mu^{n} \subset B_{R_{0}+C}(0) .
\end{aligned}
$$

where C is depending on T and norms of $\left(\mu_{0}, \theta_{0}, v_{0}\right)$ but independent of $n \in \mathbb{N}^{+}$.

- By passing $n \rightarrow \infty$, up to a subsequence, one has that for every $\varphi \in \mathcal{D}\left(\mathbb{R}^{2}\right)$,

$$
\begin{array}{ll}
\varphi v^{n} \rightarrow \varphi v, & \text { in } L^{\infty}\left(0, T ; L^{2} \cap W^{1, \infty}\right) \\
\varphi \theta^{n} \rightarrow \varphi \theta, & \text { in } L^{\infty}\left(0, T ; L^{2}\right)
\end{array}
$$

and ${ }^{3}$

$$
\begin{equation*}
\mu^{n}(t) \rightarrow \mu(t) \text { in d-topology uniformly in time. } \tag{15}
\end{equation*}
$$

- The bound (15) and strong convergence of velocity in $L^{\infty}\left(0, T ; W_{\text {loc }}^{1, \infty}\right)$ guarantee that as $n \rightarrow \infty$,

$$
v^{n} \mu^{n} \rightarrow v \mu \quad \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{2} \times[0, T]\right)
$$

[^1]
Uniqueness: Lagrangian coordinates

- Let $X_{v}(t, y)$ be the particle trajectory

$$
\begin{equation*}
\frac{\mathrm{d} X_{v}(t, y)}{\mathrm{d} t}=v\left(t, X_{v}(t, y)\right),\left.\quad X_{v}(t, y)\right|_{t=0}=y \tag{16}
\end{equation*}
$$

If $v \in L^{1}\left(0, T ; \dot{W}^{1, \infty}\left(\mathbb{R}^{d}\right)\right)$, then (16) has a unique solution $X_{v}(t, y)$ on $[0, T]$.

- Set $\bar{\mu}(t, y)=\mu\left(t, X_{v}(t, y)\right), \quad \bar{\theta}(t, y)=\theta\left(t, X_{v}(t, y)\right), \quad \bar{p}(t, y)=p\left(t, X_{v}(t, y)\right)$, then the system (2) recasts in

$$
\left\{\begin{array}{l}
\partial_{t} \bar{\mu}=0 \tag{17}\\
\partial_{t} \bar{\theta}-\operatorname{div}\left(A_{v} A_{v}^{\mathrm{T}} \nabla_{y} \bar{\theta}\right)=\bar{\mu} \\
\partial_{t} \bar{v}-\operatorname{div}\left(A_{v} A_{v}^{\mathrm{T}} \nabla_{y} \bar{v}\right)+A_{v}^{\mathrm{T}} \nabla_{y} \bar{p}=\bar{\theta} e_{2} \\
\operatorname{div}\left(A_{v} \bar{v}\right)=0 \\
\left.\bar{\mu}\right|_{t=0}=\mu_{0},\left.\quad \bar{\theta}\right|_{t=0}=\theta_{0},\left.\quad \bar{v}\right|_{t=0}=v_{0}
\end{array}\right.
$$

where $A_{v}(t, y)=\left(\nabla_{y} X_{v}(t, y)\right)^{-1}$ which under condition $\int_{0}^{t}\left\|\nabla_{y} \bar{v}\right\|_{L^{\infty}} \mathrm{d} \tau \leq \frac{1}{2}$ has

$$
A_{v}(t, y)=\left(\mathrm{Id}+\left(\nabla_{y} X_{v}-\mathrm{Id}\right)\right)^{-1}=\sum_{k=0}^{\infty}(-1)^{k}\left(\int_{0}^{t} \nabla_{y} \bar{v}(\tau, y) \mathrm{d} \tau\right)^{k}
$$

Lagrangian coordinates

The equation (17) ${ }_{1}$ implies $\bar{\mu}$ becomes time independent, i.e.

$$
\bar{\mu}(t, y) \equiv \mu_{0}(y), \quad \forall t \in[0, T] .
$$

Then system (17) reduces to

$$
\left\{\begin{array}{l}
\partial_{t} \bar{\theta}-\Delta \bar{\theta}=\mu_{0}+N_{1}\left(A_{v}, \nabla \bar{\theta}\right), \\
\partial_{t} \bar{v}-\Delta \bar{v}+\nabla \bar{p}=\bar{\theta} e_{2}+N_{2}\left(A_{v}, \nabla \bar{v}\right)+N_{3}\left(A_{v}, \nabla \bar{p}\right), \tag{18}\\
\operatorname{div} \bar{v}=\operatorname{div}\left(\left(\operatorname{Id}-A_{v}\right) \bar{v}\right)=\left(\operatorname{Id}-A_{v}^{T}\right): \nabla \bar{v}, \\
\left.\bar{\theta}\right|_{t=0}=\theta_{0},\left.\quad \bar{v}\right|_{t=0}=v_{0} .
\end{array}\right.
$$

Nonlinear terms N_{1}, N_{2}, N_{3} are defined by

$$
\begin{gathered}
N_{1}\left(A_{v}, \nabla \bar{\theta}\right):=\operatorname{div}\left(\left(A_{v} A_{v}^{\mathrm{T}}-\mathrm{Id}\right) \nabla \bar{\theta}\right), \quad \text { and } \\
N_{2}\left(A_{v}, \nabla \bar{v}\right):=\operatorname{div}\left(\left(A_{v} A_{v}^{\mathrm{T}}-\mathrm{Id}\right) \nabla \bar{v}\right), \quad N_{3}\left(A_{v}, \nabla \bar{p}\right):=\left(\operatorname{Id}-A_{v}^{\mathrm{T}}\right) \nabla \bar{p} .
\end{gathered}
$$

Observe that the left-hand side of (18) fits perfectly to the needs of Lemma 5.

Lemma 5 (cf. Lemma 3 of Danchin-Mucha13')

Let R be a vector field satisfying $\partial_{t} R \in L^{2}\left(\mathbb{R}^{d} \times(0, T]\right)$ and
$\nabla \operatorname{div} R \in L^{2}\left(\mathbb{R}^{d} \times(0, T]\right)$. Then the following system

$$
\begin{cases}\partial_{t} u-\Delta u+\nabla P=f, & \text { in } \mathbb{R}^{d} \times(0, T] \\ \operatorname{div} u=\operatorname{div} R, & \text { in } \mathbb{R}^{d} \times(0, T] \\ \left.u\right|_{t=0}=u_{0}, & \text { on } \mathbb{R}^{d},\end{cases}
$$

admits a unique solution ($u, \nabla P$) which satisfies that
$\|\nabla u\|_{L_{T}^{\infty}\left(L^{2}\right)}+\left\|\left(\partial_{t} u, \nabla^{2} u, \nabla P\right)\right\|_{L_{T}^{2}\left(L^{2}\right)} \leq C\left(\left\|\nabla u_{0}\right\|_{L^{2}}+\left\|\left(f, \partial_{t} R\right)\right\|_{L_{T}^{2}\left(L^{2}\right)}+\|\nabla \operatorname{div} R\|_{L_{T}^{2}\left(L^{2}\right)}\right)$, where C is a positive constant independent of T.

- Hence the easiest framework in order to prove the uniqueness is via the $L^{2}\left(0, T ; L^{2}\right)$ estimate for the difference of temperatures.
- Note that the change of the Lagrangian coordinates makes our system quasi-linear, and the input from matrix A_{v} is negligible as the time interval is short.

Remark 1

The uniqueness to system (2) could be proved directly in the Eulerian coordinates.
Based on the considerations in Besov spaces with negative regularity index (e.g. Hmidi et al [HKR10]), one may be able to control the part coming from the transport equation (2) ${ }_{1}$. However this approach for our system seems to be very technical with nontrivial considerations for convection terms.

Uniqueness

- Consider two solutions $\left(\mu_{1}, \theta_{1}, v_{1}, p_{1}\right)$ and $\left(\mu_{2}, \theta_{2}, v_{2}, p_{2}\right)$ to system (2) starting from same data $\left(\mu_{0}, \theta_{0}, v_{0}\right)$.

We know that for $i=1,2$ and for any $T>0$,

$$
\left\|\theta_{i}\right\|_{L_{T}^{\infty}\left(L^{1} \cap B_{-\frac{2}{2-\sigma}, \infty}^{2-\sigma}\right)}<\infty, \quad\left\|v_{i}\right\|_{L_{T}^{\infty}\left(H^{1} \cap W^{1, \infty}\right)}+\left\|\left(\partial_{t} v_{i}, \nabla^{2} v_{i}, \nabla p_{i}\right)\right\|_{L_{T}^{\infty}\left(B_{\substack{-2-\sigma \\ 2-\infty}}^{2-\sigma}\right)}<\infty .
$$

- Using the Lagrangian coordinates, we have

$$
\left\|\nabla_{y} \bar{v}_{i}\right\|_{L_{T}^{\infty}\left(L^{\infty}\right)}<\infty,
$$

and moreover by letting $T^{\prime}>0$ be small enough,

$$
\begin{equation*}
\int_{0}^{T^{\prime}}\left\|\nabla_{x} v_{i}(t)\right\|_{L^{\infty}} \mathrm{d} t \leq \frac{1}{2}, \quad \text { and } \quad \int_{0}^{T^{\prime}}\left\|\nabla_{y} \bar{v}_{i}(t)\right\|_{L^{\infty}} \mathrm{d} t \leq \frac{1}{2} \tag{19}
\end{equation*}
$$

We also infer

$$
\begin{equation*}
\left\|\bar{\theta}_{i}\right\|_{L_{T}^{\infty}\left(L^{2-\sigma}\right)}+\left\|\nabla_{y}^{2} \bar{v}_{i}\right\|_{L_{T}^{\infty}\left(L^{2-\sigma}\right)}+\left\|\partial_{t} \bar{v}_{i}\right\|_{L_{T}^{\infty}\left(L^{\frac{4}{2-\sigma}}\right)}+\left\|\nabla_{y} \bar{p}_{i}\right\|_{L_{T}^{\infty}\left(L^{2-\sigma}\right)}<\infty . \tag{20}
\end{equation*}
$$

The difference equations of $\delta \bar{\theta}:=\bar{\theta}_{1}-\bar{\theta}_{2}, \delta \bar{v}:=\bar{v}_{1}-\bar{v}_{2}$ and $\delta \bar{p}:=\bar{p}_{1}-\bar{p}_{2}$ read as follows

$$
\left\{\begin{array}{l}
\partial_{t} \delta \bar{\theta}-\Delta \delta \bar{\theta}=\delta N_{1}, \tag{21}\\
\partial_{t} \delta \bar{v}-\Delta \delta \bar{v}+\nabla \delta \bar{p}=(\delta \bar{\theta}) e_{2}+\delta N_{2}+\delta N_{3}, \\
\operatorname{div} \delta \bar{v}=\operatorname{div}\left(\delta N_{4}\right) \\
\left.\delta \bar{\theta}\right|_{t=0}=0,\left.\quad \delta \bar{v}\right|_{t=0}=0,
\end{array}\right.
$$

with

$$
\begin{aligned}
& \delta N_{1}:=\operatorname{div}\left(\left(A_{v_{1}} A_{v_{1}}^{T}-A_{v_{2}} A_{v_{2}}^{\mathrm{T}}\right) \nabla \bar{\theta}_{2}\right)-\operatorname{div}\left(\left(\operatorname{Id}-A_{v_{1}} A_{v_{1}}^{\mathrm{T}}\right) \nabla \delta \bar{\theta}\right), \\
& \delta N_{2}:=\operatorname{div}\left(\left(A_{v_{1}} A_{v_{1}}^{\mathrm{T}}-A_{v_{2}} A_{v_{2}}^{\mathrm{T}}\right) \nabla \bar{v}_{2}\right)-\operatorname{div}\left(\left(\operatorname{Id}-A_{v_{1}} A_{v_{1}}^{\mathrm{T}}\right) \nabla \delta \bar{v}\right), \\
& \delta N_{3}:=-\left(A_{v_{1}}^{\mathrm{T}}-A_{v_{2}}^{\mathrm{T}}\right) \nabla \bar{p}_{2}+\left(\operatorname{Id}-A_{v_{1}}^{\mathrm{T}}\right) \nabla \delta \bar{p}, \\
& \delta N_{4}:=\left(A_{v_{1}}-A_{v_{2}}\right) \bar{v}_{2}+\left(\operatorname{Id}-A_{v_{1}}\right) \delta \bar{v} .
\end{aligned}
$$

- The target is to show uniqueness in:

$$
\delta \bar{\theta} \in L^{2}\left(0, T ; L^{2}\right), \quad \text { and } \quad \nabla \delta \bar{v} \in L^{\infty}\left(0, T ; L^{2}\right) \cap L^{2}\left(0, T ; \dot{H}^{1}\right) .
$$

- In order to perform the $L_{T}^{2}\left(L^{2}\right)$-estimate of $\delta \bar{\theta}$, we introduce a function w which solves the backward heat equation

$$
\begin{equation*}
\partial_{t} w+\Delta w=\delta \bar{\theta}, \quad \text { and }\left.\quad w\right|_{t=T^{\prime}}=0, \tag{22}
\end{equation*}
$$

with $T^{\prime} \in(0, T]$ being any given.

Lemma 6

Let $\delta \bar{\theta} \in L^{2}\left(0, T^{\prime} ; L^{2}\right)$, then there exists a unique weak solution $w \in L^{\infty}\left(0, T^{\prime} ; H^{1}\right) \cap L^{2}\left(0, T^{\prime} ; H^{2}\right)$ which satisfies
$\sup _{t \in\left[0, T^{\prime}\right]}\|\nabla w\|_{L^{2}}^{2}+\int_{0}^{T^{\prime}}\left\|\nabla^{2} w, \partial_{t} w\right\|_{L^{2}}^{2} \mathrm{~d} t+\|\nabla w\|_{L_{T^{\prime}}^{2+\sigma}\left(L^{\frac{2(2+\sigma)}{2-\sigma}}\right)}^{2} \leq C\|\delta \bar{\theta}\|_{L^{2}\left(0, T^{\prime} ; L^{2}\right)}^{2}$
with $\sigma \in(0,2)$ and $C=C(\sigma)>0$ a constant independent of T^{\prime}.

Now we take the space-time scalar product of $(21)_{1}$ with w, and observe

$$
\int_{0}^{T^{\prime}} \int_{\mathbb{R}^{2}}\left(\partial_{t} \delta \bar{\theta}-\Delta \delta \bar{\theta}\right) w \mathrm{~d} x \mathrm{~d} t=\int_{0}^{T^{\prime}} \int_{\mathbb{R}^{2}} \delta \bar{\theta}\left(-\partial_{t} w-\Delta w\right) \mathrm{d} x \mathrm{~d} t
$$

we find

$$
\begin{aligned}
& \|\delta \bar{\theta}\|_{L^{2}\left(0, T^{\prime} ; L^{2}\left(\mathbb{R}^{2}\right)\right)}^{2} \leq\left|\int_{0}^{T^{\prime}} \int_{\mathbb{R}^{2}}\left(\delta N_{1}\right) w \mathrm{~d} x \mathrm{~d} t\right| \\
& \leq\left|\int_{0}^{T^{\prime}} \int_{\mathbb{R}^{2}}\left(\left(A_{v_{1}} A_{v_{1}}^{T}-A_{v_{2}} A_{v_{2}}^{T}\right) \nabla \bar{\theta}_{2}\right) \cdot \nabla w \mathrm{~d} x \mathrm{~d} t\right|+\left|\int_{0}^{T^{\prime}} \int_{\mathbb{R}^{2}}\left(\left(\mathrm{Id}-A_{v_{1}} A_{v_{1}}^{\mathrm{T}}\right) \nabla \delta \bar{\theta}\right) \cdot \nabla w \mathrm{~d} x \mathrm{~d} t\right| \\
& \leq\left|\int_{0}^{T^{\prime}} \int_{\mathbb{R}^{2}}\left(\left(A_{v_{1}} A_{v_{1}}^{T}-A_{v_{2}} A_{v_{2}}^{T}\right) \bar{\theta}_{2}\right) \cdot \nabla^{2} w \mathrm{~d} x \mathrm{~d} t\right|+\left|\int_{0}^{T^{\prime}} \int_{\mathbb{R}^{2}}\left(\nabla\left(A_{v_{1}} A_{v_{1}}^{T}-A_{v_{2}} A_{v_{2}}^{\mathrm{T}}\right) \bar{\theta}_{2}\right) \cdot \nabla w \mathrm{~d} x \mathrm{~d} t\right| \\
& \\
& \quad\left|\left|\int_{0}^{T^{\prime}} \int_{\mathbb{R}^{2}}\left(\left(\mathrm{Id}-A_{v_{1}} A_{v_{1}}^{\mathrm{T}}\right) \delta \bar{\theta}\right) \cdot \nabla^{2} w \mathrm{~d} x \mathrm{~d} t\right|+\left|\int_{0}^{T^{\prime}} \int_{\mathbb{R}^{2}}\left(\nabla\left(\mathrm{Id}-A_{v_{1}} A_{v_{1}}^{\mathrm{T}}\right) \delta \bar{\theta}\right) \cdot \nabla w \mathrm{~d} x \mathrm{~d} t\right|\right.
\end{aligned}
$$

- Letting $T^{\prime}>0$ be sufficiently small so that

$$
T^{\prime}\left\|\nabla \bar{v}_{1}\right\|_{L_{T^{\prime}}^{\infty}\left(L^{\infty}\right)} \leq \frac{1}{32}, \quad \text { and } \quad C T^{\prime \frac{6+\sigma}{2(2+\sigma)}}\left\|\nabla^{2} \bar{v}_{1}\right\|_{L_{T}^{\infty}\left(L^{\frac{4}{2-\sigma}}\right)} \leq \frac{1}{8},
$$

we get

$$
\begin{equation*}
\|\delta \bar{\theta}\|_{L_{T^{\prime}}^{2}\left(L^{2}\right)}^{2} \leq C T^{\frac{6+\sigma}{2+\sigma}}\left\|\bar{\theta}_{2}\right\|_{L_{T^{\prime}}^{\infty}\left(\frac{2+\sigma}{\sigma}\right)}^{2}\left(\left\|\nabla^{2} \delta \bar{v}\right\|_{L_{T^{\prime}}^{2}\left(L^{2}\right)}^{2}+\|\nabla \delta \bar{v}\|_{\frac{2+\sigma}{T_{T^{\prime}}^{\prime}}}^{2}{ }_{\left(L^{\left.\frac{2(2+\sigma)}{2-\sigma}\right)}\right.}\right) . \tag{23}
\end{equation*}
$$

- Next we turn to the estimation of $\delta \bar{v}$. According to Lemma 5, we have

$$
\begin{aligned}
\|\nabla \delta \bar{v}\|_{L_{T^{\prime}}^{\infty}\left(L^{2}\right)}+ & \left\|\left(\partial_{t} \delta \bar{v}, \nabla^{2} \delta \bar{v}, \nabla \delta \bar{p}\right)\right\|_{L_{T^{\prime}}^{2}\left(L^{2}\right)}+\|\nabla \delta \bar{v}\|_{L_{T^{\prime}}} \frac{2+\sigma}{}\left(L^{\frac{2(2+\sigma)}{2-\sigma}}\right) \\
\leq C\|\delta \bar{\theta}\|_{L_{T^{\prime}}^{2}\left(L^{2}\right)}+ & C\left\|\delta N_{2}\right\|_{L_{T^{\prime}}^{2}\left(L^{2}\right)}+C\left\|\delta N_{3}\right\|_{L_{T^{\prime}}^{2}\left(L^{2}\right)} \\
& +C\left\|\partial_{t}\left(\delta N_{4}\right)\right\|_{L_{T^{\prime}}^{2}\left(L^{2}\right)}+C\left\|\nabla \operatorname{div}\left(\delta N_{4}\right)\right\|_{L_{T^{\prime}}^{2}\left(L^{2}\right)}
\end{aligned}
$$

- We finally obtain

$$
\begin{aligned}
& \|\nabla \delta \bar{v}\|_{L_{T^{\prime}}^{\infty}\left(L^{2}\right)}+\left\|\left(\partial_{t} \delta \bar{v}, \nabla^{2} \delta \bar{v}, \nabla \delta \bar{p}\right)\right\|_{L_{T^{\prime}}^{2}\left(L^{2}\right)}+\|\nabla \delta \bar{v}\|_{L_{T^{\prime}}^{2+\sigma}}\left(L^{\left.\frac{2(2+\sigma)}{2-\sigma}\right)}\right. \\
& \leq C T^{\prime}\left\|\nabla \bar{v}_{1}\right\|_{L_{T^{\prime}}^{(}\left(L^{\infty}\right)}\left\|\left(\partial_{t} \delta \bar{v}, \nabla \delta \bar{p}\right)\right\|_{L_{T^{\prime}}^{2}\left(L^{2}\right)}+C T^{\prime \frac{1}{2}}\left\|v_{2}\right\|_{L_{T^{\prime}}\left(L^{\infty}\right)}\|\nabla \delta \bar{v}\|_{L_{T^{\prime}}\left(L^{2}\right)} \\
& +C\left(T^{\prime}\left\|\left(\nabla \bar{V}_{1}, \nabla \bar{V}_{2}\right)\right\|_{L_{T^{\prime}}\left(L^{\infty}\right)}+T^{\prime \frac{6+\sigma}{2(2+\sigma)}}\left\|\bar{\theta}_{2}\right\|_{L_{T^{\prime}}\left(L^{2}-\bar{\sigma}\right)}\right)\left\|\nabla^{2} \delta \bar{v}\right\|_{L_{T^{\prime}}^{2}\left(L^{2}\right)} \\
& +C T^{\frac{6+\sigma}{2(2+\sigma)}}\left\|\left(\bar{\theta}_{2}, \partial_{t} \bar{v}_{2}, \nabla \bar{p}_{2}, \nabla^{2} \bar{v}_{1}, \nabla^{2} \bar{V}_{2}\right)\right\|_{L_{T^{\prime}}^{\infty}\left(L^{2-\sigma}\right)}\|\nabla \delta \overline{\bar{v}}\|_{L_{T^{\prime}}^{\frac{2+\sigma}{\prime^{\prime}}}\left(L^{\frac{2(2+\sigma)}{2-\sigma}}\right)^{\prime}}
\end{aligned}
$$

where $C>0$ is a universal constant.

- By letting $T^{\prime}>0$ small enough, we get $\|\nabla \delta \overline{\bar{V}}\|_{L_{T^{\prime}}^{\infty}\left(L^{2}\right)}=\|\nabla \delta \overline{\bar{V}}\|_{L_{T^{\prime}}^{\frac{2+\sigma}{,}}\left(L^{\left.\frac{2(2+\sigma}{2-\sigma}\right)}\right)} \equiv 0$, and from (23), $\|\delta \bar{\theta}\|_{L_{T^{\prime}}^{2}\left(L^{2}\right)} \equiv 0$. Since $\left.\delta \bar{v}\right|_{t=0}=0$, we conclude $\delta \bar{v} \equiv 0, \delta \bar{\theta} \equiv 0$ on $\mathbb{R}^{2} \times\left[0, T^{\prime}\right]$.
- Repeating the above procedure, we finally get $\delta \bar{v}=\delta \bar{\theta} \equiv 0$ and also $X_{v_{1}}=X_{v_{2}}$ on $\mathbb{R}^{2} \times[0, T]$. Going back to the Eulerian coordinates implies $\left(\mu_{1}, \theta_{1}, v_{1}\right)=\left(\mu_{2}, \theta_{2}, v_{2}\right)$ on $\mathbb{R}^{2} \times[0, T]$.

Thanks for your attention!

[^0]: ${ }^{1}$ Pseudomeasure space $\mathcal{P} \mathcal{M}^{a}, a \geq 0$ is the space of $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ such that $\|f\|_{\mathcal{P}^{a}}=\left.\operatorname{ess} \sup _{\mathbb{R}^{d}}|\xi|\right|^{a}|\hat{f}(\xi)|<\infty$.

[^1]: ${ }^{3}$ Denote $\mathcal{M}=\mathcal{M}\left(\mathbb{R}^{d}, d\right)$ as the space of finite Radon measures on \mathbb{R}^{d} equipped with bounded Lipschitz distance topology, i.e.,

 $$
 d(\mu, v):=\sup \left\{\left|\int_{\mathbb{R}^{d}} f \mathrm{~d} \mu-\int_{\mathbb{R}^{d}} f \mathrm{~d} v\right|:\|f\|_{L^{\infty}} \leq 1 \text { and } \operatorname{Lip}(f):=\sup _{x \neq y \in \mathbb{R}^{d}} \frac{|f(x)-f(y)|}{|x-y|} \leq 1\right\} .
 $$

