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The barotropic MHD systems

∂tρ + div (ρu) = 0,

∂t (ρu) + div (ρu ⊗ u) + ∇
(
p +

1
2
|B|2

)
= div (B ⊗B) + ρ∇φ + µ∆u + (µ + λ)∇divu,

∂tB + div (B ⊗ u) − div (u ⊗B) − ν∆B = 0, divB = 0,

− ∆φ = b − ρ, lim
|x|→∞

φ = 0, (t, x) ∈ (0,∞) × R3,

(1)

** ρ, p = p(ρ) and u : density, pressure and velocity

** B and φ : magnetic field and electric potential

**ν > 0 : magnetic diffusivity

** µ and λ : constant viscosity coefficients satisfy

µ > 0, 3λ + 2µ ≥ 0.

** b = b(x) : the doping profile, b ≥ const. > 0
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initial conditions in R3

t = 0 : (ρ, u,B) = (ρ0, u0,B0), x ∈ R3. (2)

the second equation in (1) can be written as

∂tu + u · ∇u + ∇h (ρ) =
1
ρ

(∇ ×B) ×B + ∇φ +
1
ρ

(µ∆u + (µ + λ)∇divu) ,

where h is the enthalpy function satisfying ∇p(ρ) = ρ∇h(ρ). Since p

is smooth and strictly increasing on (0,+∞), so is h.
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Steady states solutions with zero velocity

Let
(
ρ̄, ū,B, φ̄

)
be such a solution of variable x with ū = 0 and B = 0.

We get ∇h (ρ̄) = ∇φ̄,

− ∆φ̄ = b − ρ̄,
(3)

which implies ρ̄ satisfies an elliptic equation :

− ∆h (ρ̄) = b − ρ̄, in R3. (4)

By using a variational method or the classical fixed-point theorem.

Proposition 1. Existence of equilibrium solutions.
Let s1 ≥ 1. Assume b ∈ L∞(R3),∇b ∈ Hs1−1(R3) and b ≥ const. > 0 a.e.

x ∈ R3. Then problem (4) admits a unique solution ρ̄ = ρ̄(x) satisfying

ρ̄ − b ∈ Hs1(R3), ρ̄ ≥ const. > 0.
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Background

Neglecting the Coulomb force, system (1) becomes the general

compressible barotropic MHD equations. Then the equilibrium solution

with zero velocity will be constant.

Chen-Tan, Nonlinear Anal. 2010

– the optimal convergence rates of the small smooth solutions in

Lq, 2 ≤ q ≤ 6, provided that the initial data in Lp, 1 ≤ p < 6/5.

Hu-Wang, Arch. Ration. Mech. Anal. 2010

– the existence and large-time behavior of global weak solutions

for the initial-boundary value problem with large data.

Jiang-Jiang, SIAM J. Math. Anal. 2018

– Rayleigh-Taylor stability, presented a sufficient condition for the

linear ideal instability of plane parallel equilibria with antisymmetric shear

flow and symmetric or antisymmetric magnetic field.
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Kang-Kim, J. Funct. Anal. 2014

– a regularity criteria for suitable weak solutions of MHD equations

near boundary in dimension three,

– suitable weak solutions are Hölder continuous near boundary.

Kwon-Trivisa, J. Differential Equations, 2011

– the incompressible limits of weak solutions to the governing equa-

tions for MHD flows on both bounded and unbounded domains.

Li-Xu-Zhang, SIAM J. Math. Anal. 2013

– the Cauchy problem to barotropic MHD equations in R3,

– the global well-posedness of classical solution provided that reg-

ular initial data satisfying small energy.
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Wang, SIAM J. Appl. Math. 2003

– the initial-boundary value problem for MHD equations in one

space dimension,

– The existence, uniqueness, and regularity of global solutions with

large initial data in H−1.

Wang-Wang-Liu-Wang, J. Differential Equations, 2017

– the boundary layer problem and zero viscosity-diffusion limit of

the initial boundary value problem for the incompressible viscous and

diffusive MHD system with (no-slip characteristic) Dirichlet boundary

conditions,

– the corresponding Prandtl’s type boundary layer are stable with

respect to small viscosity-diffusion coefficients.
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Liu-Xie-Yang, CPAM 2019

—- 2D MHD Boundary layer system, Well-posedness and high

Reynolds number limit

Li-Yang, 2020

—- Well-posedness of 3D MHD Boundary layer system without

any structure assumption in Gevrey function space

Liu-Wang-Xie-Yang, JFA 2020

—- MHD system that show critical Gevrey index could be 2

Liu-Zhang-Yang, 2020

—-2D MHD system admits a unique solution, high Reynolds num-

ber limit of steady MHD in Sobolev space

J.H. Wu, Y.F. Wu, X.J. Xu,...
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Motivation

All these results hold when the solution is near a constant equi-
librium state of the MHD system.

Wang-Tan, 2019

– the stability on the non-constant equilibrium solutions of MHD

equations (1) with an additional friction force −αρu,

– the existence and uniqueness of the global solution.

A nature question is that how about the solution behave if there
is no friction force?
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Stability for the barotropic MHD system

Theorem 1. F. Li-Wang, JDDE. 2020
Let s ≥ 3 be an integer. Then there exist constants δ0 > 0,C > 0 s. t. if

‖
(
ρ0 − ρ̄, u0,B0,∇φ0 − ∇φ̄

)
‖s ≤ δ0,

Problem (1)-(2) has a unique global solution (ρ, u,B, φ) satisfying∥∥∥(ρ(t) − ρ̄, u(t),B(t),∇φ(t) − ∇φ̄
)∥∥∥2

s

+

∫ t

0

(
‖ρ(τ) − ρ̄‖2s + ‖∇u(τ)‖2s + ‖∇B(τ)‖2s

)
dτ (5)

≤C
∥∥∥(ρ0 − ρ̄, u0,B0,∇φ0 − ∇φ̄

)∥∥∥2
s , ∀ t ≥ 0,

Yue-Hong Feng(¾�ù) (BJUT) Stability for compressible viscous and diffusive MHD equations with the Coulomb force29th, November, 2020 11 / 96



which implies

lim
t→∞
‖ρ(t) − ρ̄‖s−1 = 0, (6)

and

lim
t→∞
‖∇u(t)‖s−3 = 0, lim

t→∞
‖∇B(t)‖s−3 = 0. (7)

We pointed out that gradients of both the velocity and the magnetic

field converge to the equilibrium states with the same norm ‖·‖Hs−3 , while

the density converges with stronger norm ‖ · ‖Hs−1 .
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Remark :

The equilibrium solution is large
Since b is large, the techniques used for constant equilibrium solution

no longer work due to the appearance of lower order terms which will

make essential difficulties in energy estimates.

The friction force is lost
By using the Theorem of the decomposition of divergence and curl,

Wang-Tan solve the problem in Wang-Tan (2019) Comm. Math. Sci.

Different from their work, we remove the friction force (the velocity dis-

sipation term).

We solve this problem by using an anti-symmetric matrix technique

and employing an induction argument on the order of the derivatives of

solutions in energy estimates.
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2. Techniques and an induction argument.

Barotropic Euler-Maxwell equations for electrons

∂tn + div(nu) = 0

∂t(nu) + div(nu ⊗ u) + ∇p(n) = −n(E + u × B) − nu

∂tE − ∇ × B = nu, div E = b − n

∂tB + ∇ × E = 0, div B = 0

** n and u : density and velocity

** E and B : electric and magnetic fields

** p : pressure function, p′(n) > 0, ∀ n > 0

** b = b(x) is a given smooth periodic function, b ≥ const. > 0
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initial conditions in a torus T3

t = 0 : (n, u,E,B) = (n0, u0,E0,B0)

which satisfies the compatibility condition

div E0 = b − n0, div B0 = 0

(a) Equivalent momentum equation for n > 0 :

∂tu + (u · ∇)u + ∇h(n) = −(E + u × B) − u

the enthalpy h :

h′(n) = p′(n)/n > 0, ∀ n > 0
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(b) All physical parameters are set equal to 1.

Otherwise, perform asymptotic analysis with small parameters

B. Texier (2005-2007)

– convergence of Euler-Maxwell to Zakharov equation

– to Davey-Stewartson equation

Y.J. Peng - S. Wang (2008-2009)

– convergence of Euler-Maxwell to incompressible Euler equations

– to e-MHD equations

Y. Guo - X.K. Pu (2012)

– convergence of Euler-Poisson to KdV equations

– to KP equations

J.W. Yang

– series works on non-isentropic Euler-Maxwell systems
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Local existence of solutions

Symmetrizable hyperbolic system :

∂tw +
d∑

j=1

Aj(w)∂xjw = g(w), w(0, x) = w0(x), x ∈ Rd

(a) ∃ symmetrizer A0(w), symmetric positive definite matrix

(b) Ãj(w)
def
= A0(w)Aj(w) is symmetric for all 1 ≤ j ≤ d

Consequence : energy estimate

d
dt

∫
A0(w)w · w dx =

∫ (
divt,x~Aw · w + 2A0(w)g(w) · w

)
dx

where ∫
A0(w)w · w dx ≈ ‖w‖2L2 , divt,x~A = ∂tA0(w) +

d∑
j=1

∂xjÃj(w)
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Theorem T. Kato, ARMA, 1975
Let s > d/2 + 1 be an integer, Ω = Rd or Ω = Td, w0 ∈ Hs(Ω).

There exist T > 0 and a unique smooth solution

w ∈ C1([0,T]; Hs−1(Ω)
)
∩ C

(
[0,T]; Hs(Ω)

)
Regularity :

w ∈
s
∩

k=0
Ck([0,T]; Hs−k(Ω)

)
The Euler-Maxwell system is symmetrizable hyperbolic for n > 0

w = (n, u,E,B)T , d = 3 =⇒ s ≥ 3

Then we have local existence of smooth solutions
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Steady states solutions with zero velocity

w̄ =
(
n̄(x), 0, Ē(x), B̄(x)

)T

Substitute w̄ into

∂tn + div(nu) = 0

∂tu + (u · ∇)u + ∇h(n) = −(E + u × B) − u

∂tE − ∇ × B = nu, div E = b − n

∂tB + ∇ × E = 0, div B = 0,

=⇒


∇h(n̄) = −Ē

∇ × B̄ = 0, div B̄ = 0 =⇒ B̄ is a constant

∇ × Ē = 0, div Ē = b − n̄
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div Ē = b − n̄ =⇒ −∆h(n̄) = b − n̄

Let

φ̄ = h(n̄), q = h−1

Then φ̄ satisfies a semilinear monotone elliptic equation in T3 :

−∆φ̄ = b − q(φ̄), n̄ = q(φ̄)

Consequence : there is a unique steady state periodic smooth solution

b ≥ const. > 0 =⇒ n̄ ≥ const. > 0

b = 1 =⇒ n̄ = 1, Ē = 0
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Stability problem :

‖ · ‖m is a norm of Hm(T3)

∀ s ≥ 3, ‖w0 − w̄‖s is small

=⇒ global existence of solution w and stability estimate

‖w(t, ·) − w̄‖s ≤ C‖w0 − w̄‖s, ∀ t > 0
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2.1 Stability of constant states for EM system

The unique steady state solution is constant w̄ = (1, 0, 0, B̄)T

Denote

U = (n − 1, u)T , W = w − w̄ = (n − 1, u,E,B − B̄)T

When ‖w0 − w̄‖s is small, a classical energy estimate yields

d
dt
‖W(t)‖2s + C0‖u(t)‖2s ≤ C‖U(t)‖2s ‖W(t)‖s

Next, using the system and p′(n) > 0 yields

‖n(t) − 1‖2s ≤ C‖u(t)‖2s + C‖U(t)‖2s ‖W(t)‖s +
de
dt
, |e| ≤ C2‖U‖2s
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Therefore, for ε > 0 small

d
dt

(
‖W(t)‖2s − εe

)
+ C1‖U(t)‖2s ≤ C‖U(t)‖2s ‖W(t)‖s, t > 0

For ‖W‖s small, we obtain

‖W(t)‖2s +
∫ t

0
‖U(τ)‖2s dτ ≤ C‖W(0)‖2s , ∀ t > 0

which yields global existence of solutions
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Theorem Y.J. Peng - S. Wang - Q.L. Gu, SIAM JMA, 2011
Let s ≥ 3 be an integer. If ‖W(0)‖s is sufficiently small, the Euler-Maxwell

system admits a unique global solution

W ∈ C1(R+; Hs−1(T3)
)
∩ C

(
R+; Hs(T3)

)
Theorem R.J. Duan, J. Hyper. Differ. Equations, 2011
Let s ≥ 4. If ‖W(0)‖Hs+2(R3)∩L1(R3) is small, then∥∥∥n(t) − 1

∥∥∥
L2(R3) ≤ C(1 + t)−1, ‖u(t)‖L2(R3) ≤ C(1 + t)−

5
8 ,

‖E(t)‖L2(R3) ≤ C(1 + t)−
3
4 ln (3 + t) , ‖B(t)‖L2(R3) ≤ C(1 + t)−

3
8 .

Theorem Y. Ueda - S. Wang - S. Kawashima, SIAM JMA, 2012
Let s ≥ 6. If ‖W(0)‖Hs(R3) is small, then

‖W(t)‖Hs−2k(R3) ≤ C‖W(0)‖Hs(R3)(t + 1)−k/2, ∀ 0 ≤ k ≤ [s/2]
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For b is a small perturbation of 1

Theorem Q.Q. Liu - C.J. Zhu, Indiana. Univ. Math. J., 2013
Let s ≥ 3 be an integer. Suppose ‖b(x) − 1‖Ws+1,2

0
is small enough. If

‖(n0 − nst, u0,E0 − Est,B0)‖s is sufficiently small, the Euler-Maxwell sys-

tem admits a unique global solution

(n − nst, u,E − Est,B) ∈ C1(R+; Hs−1(R3)
)
∩ C

(
R+; Hs(R3)

)
Theorem W.K. Wang and X. Xu, Z. Angew. Math. Phys., 2016
Let s ≥ 3 be an integer. Suppose ‖b(x) − 1‖s+1 is small enough. If

‖(n0 − nst, u0, θ0 − 1,E0 − Est,B0)‖s is sufficiently small, the non-isentropic

Euler-Maxwell system admits a unique global solution

(n − nst, u, θ − 1,E − Est,B) ∈ C1(R+; Hs−1(R3)
)
∩ C

(
R+; Hs(R3)

)
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A more general framework

Quasilinear symmetrizable hyperbolic system

∂tw +
d∑

j=1

∂xj fj(w) = g(w), w(0, x) = w0(x), x ∈ Rd

w(t, x) ∈ RN , w̄ = 0 and g(0) = 0

Entropy-flux (E,F) : F′(w) = E′(w)
(
f ′1(w), · · · , f ′d(w)

)
partial dissipation

Shizuta-Kawashima condition

=⇒ global existence
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Two stability conditions

partial dissipation :
there exist a strictly convex entropy E(w) and a change of variables

w 7−→ (u, v)T , u ∈ RN−r, v ∈ Rr, such that

(
E′(w) − E′(0)

)
g(w) ≤ −c0|v|2, | · | is a norm of Rr

which implies

‖w(t)‖2s +
∫ t

0
‖v(τ)‖2s dτ ≤ C‖w0‖2s + C

∫ t

0
‖w(τ)‖s

(
‖∇u(τ)‖2s−1 + ‖v(τ)‖2s

)
dτ
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Shizuta-Kawashima condition :

∀ ν ∈ Sd−1, ∀ λ ∈ C, N(λIN − A(w̄, ν)) ∩ N(g′(w̄)) = {0}

A(w, ν) =
d∑

j=1

νjAj(w), Aj(w) = f ′j (w), ν = (ν1, · · · , νd) ∈ Sd−1

This condition implies∫ t

0
‖∇u(τ)‖2s−1 dτ ≤ C‖w0‖2s + C

∫ t

0
‖w(τ)‖s

(
‖∇u(τ)‖2s−1 + ‖v(τ)‖2s

)
dτ

Thus, for small solutions, we have

‖w(t)‖2s +
∫ t

0

(
‖∇u(τ)‖2s−1 + ‖v(τ)‖2s

)
dτ ≤ C‖w0‖2s , t > 0

which yields global existence of solutions when ‖w0‖ is small
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B. Hanouzet - R. Natalini, ARMA, 2003,

global existence 1-d

W.A. Yong, ARMA, 2004,

global existence d ≥ 1

S. Bianchini - B. Hanouzet - R. Natalini, CPAM, 2007

algebraic decay of solutions O
(
t−µ

)
, µ > 0

K. Beauchard - E. Zuazua, ARMA, 2011

refined results O
(
t−µ

)
Remark
Shizuta-Kawashima condition is not fulfilled by Euler-Maxwell systems

Y. Lv, 2019

The zakharov approximation to Euler-Maxwell is unstable

J. Xu, 2011

stability of Euler-Maxwell in Besov space
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EM system without velocity dissipation



∂tn + div(nu) = 0

∂tu + (u · ∇)u + ∇h(n) = −(E + u × B)

∂tE − ∇ × B = nu, div E = 1 − n

∂tB + ∇ × E = 0, div B = 0

P. Germain-N. Masmoudi ( Ann. Sci. Ec. Norm. Supér 2014)
one-fluid

∂t
(
B − ∇ × u

)
= ∇ ×

(
u × (B − ∇ × u)

)
B0 − ∇ × u0 = 0 =⇒ B − ∇ × u = 0
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Guo-Ionescu-Pausader ( Ann. math. 2016)
two-fluid

i) linearized system around constant states is of Klein-Gordon type

time decay O
(
t−

3
2
)

ii) link with Euler-Poisson system for potential flows (Y. Guo, 1998)

B = 0 =⇒ ∇ × u = 0

Deng-Ionescu-Pausader ( ARMA 2017)
2D
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2.2 Stability of non constant states for EM system

Notation :

‖ · ‖ = ‖ · ‖0, a norm of L2(T3)

For m ∈ N and v ∈ ∩m
k=0 Ck([0,T]; Hm−k(T3)

)
, define

‖|v(t, ·)‖|m =
( ∑

k+|α|≤m

‖∂k
t ∂
α
x v(t, ·)‖2

) 1
2 , t ∈ [0,T]

α ∈ N3, |α| = α1 + α2 + α3

=⇒ ‖| · ‖|m is a norm and ‖ · ‖m ≤ ‖| · ‖|m

unknown: w = (n, u,E,B)T , initial data w0

steady state solution: w̄(x) =
(
n̄(x), 0, Ē(x), B̄(x)

)T
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Theorem Y.J. Peng, JMPA 2015

Let s ≥ 3. If ‖w0 − w̄‖s is small, the periodic problem for the barotropic

Euler-Maxwell equations admits a unique global smooth solution :

w − w̄ ∈
s
∩

k=0
Ck(R+; Hs−k(T3)

)
‖|w(t) − w̄‖|2s +

∫ t

0
‖|
(
n(τ) − n̄, u(τ)

)
‖|2s ≤ C‖w0 − w̄‖2s , t > 0

Moreover, if ∫
T3

B0(x) dx = B̄

then

lim
t→+∞

‖|w(t) − w̄‖|s−1 = 0
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Reformulation

Let

N = n − n̄, F = E − Ē, G = B − B̄

The Euler-Maxwell system is

∂tN + u · ∇N + n div u + ∇n̄ · u = 0

∂tu + (u · ∇)u + ∇
(
h(n) − h(n̄)

)
+ u × G + (u + F + u × B̄) = 0

∂tF − ∇ × G = (N + n̄)u, div F = −N

∂tG + ∇ × F = 0, div G = 0

where

∇(h(n) − h(n̄)) = h′(n)∇N + ∇h′(n̄)N + r

r =
(
h′(N + n̄) − h′(n̄) − h′′(n̄)N

)
∇n̄ = O(N2)
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U = (n − n̄, u)T , W = w − w̄

Then Euler equations are written as

∂tU +
3∑

j=1

Aj(n, u)∂xjU + L(x)U +M(W) = f

f = −

 0
r + u × G

 = O(U) O(W), M(W) =

 0
u + F + u × B̄


In M(W)

u stands for velocity dissipation

F can be treated together with Maxwell equations

u · (u × B̄) = 0
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Aj(n, u) =

 uj neT
j

h′(n)ej ujI3

 , L(x) =

 0 (∇n̄)T

∇h′(n̄) 0


Symmetrizer

A0(n) =

 h′(n) 0

0 nI3

 =⇒ 〈
A0(n)U,U

〉
≈ ‖U‖2

Case b = 1

n̄ = 1 =⇒ L(x) = 0 =⇒ no linear term in the system

∇xn = ∇x(n − 1) =⇒ ∂xAj(n, u) = O
(
∂xU

)
Case b = b(x) : main difficulties in higher order energy estimates
(1) L(x) , 0 =⇒ L(x)U = O(U)

(2) ∂xAj(n, u) = ∂xAj(N + n̄, u) = O(1)
Yue-Hong Feng(¾�ù) (BJUT) Stability for compressible viscous and diffusive MHD equations with the Coulomb force29th, November, 2020 36 / 96



L2 estimates

L2-inner product
〈
·, ·

〉
d
dt

〈
A0(n)U,U

〉
=

〈
∂tA0(n)U,U

〉
+ 2

〈
A0(n)f ,U

〉
−2

〈
A0(n)M(W),U

〉
+

〈
Q(x, n, u)U,U

〉
1. Estimate for

〈
∂tA0(n)U,U

〉
‖∂tn‖∞ = ‖∂tN‖∞ ≤ C‖|U‖|s =⇒

〈
∂tA0(n)U,U

〉
≤ C‖|U‖|3s

2. Estimate for
〈
A0(n)f ,U

〉
f = O(U) O(W) =⇒ 2

〈
A0(n)f ,U

〉
≤ C‖|U‖|2s ‖|W‖|s

3. Estimate for
〈
A0(n)M(W),U

〉
−2

〈
A0(n)M(W),U

〉
= −2

〈
nu, u

〉
− 2

〈
nu,F

〉
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4. Estimate for
〈
Q(x, n, u)U,U

〉
(Guo-Strauss, ARMA 2005 )

Q(x, n, u) =
3∑

j=1

∂xjÃj(n, u) − 2A0(n)L(x)

=

 div(h′(n)u)
(
∇p′(n) − 2h′(n)∇n̄

)T

∇p′(n) − 2n∇h′(n̄) div(nu) I3


is an anti-symmetric matrix at (n, u) = (n̄, 0), because

∇p′(n) − 2h′(n)∇n = −
(
∇p′(n) − 2n∇h′(n)

)
=⇒

∣∣∣〈Q(x, n, u)U,U
〉∣∣∣ ≤ C‖|U‖|3s

Similar treatment for Q in higher order estimates
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Energy estimates for Maxwell equations

d
dt

(
‖F‖2 + ‖G‖2

)
= 2

〈
nu,F

〉
L2-estimate

d
dt
‖W‖2 + C0‖u‖2 ≤ C‖|U‖|2s ‖|W‖|s
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Higher order estimates

For α ∈ N3, |α| ≤ s, we have

d
dt

〈
A0(n)∂αx U, ∂αx U

〉
= 2

3∑
j=1

〈
Aj∂xj(∂

α
x U) − ∂αx (Aj∂xjU),A0∂

α
x U

〉
+ · · ·

Noticing ∂xAj(n, u) = O(1) and using Moser inequality, we have

〈
Aj∂xj(∂

α
x U) − ∂αx (Aj∂xjU),A0∂

α
x U

〉
= O

(
‖U‖2s

)
d
dt
‖W(t)‖2

|α| + C0‖u(t)‖2
|α| ≤ C‖N(t)‖2

|α| + C‖U(t)‖2s ‖W(t)‖s + · · ·

‖N(t)‖2
|α| ≤ C‖u(t)‖2

|α| + C‖U(t)‖2s ‖W(t)‖s + · · ·

=⇒ these energy estimates are not sufficient to conclude
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Idea : estimates on ∂k
t ∂
α
x W + induction argument

Time derivative estimates : α = 0

d
dt
‖∂k

t W‖2 + C0‖∂
k
t u‖2 ≤ C‖|U‖|2s ‖|W‖|s, ∀ 0 ≤ k ≤ s

The momentum equation implies

‖∂k
t N‖21 ≤ C‖∂k

t u‖2 + C‖∂k+1
t u‖2 + C‖|U‖|2s ‖|W‖|s, 0 ≤ k ≤ s − 1

The density equation implies

‖∂s
t N‖

2 ≤ C‖∂s−1
t u‖21 + C‖|U‖|2s ‖|W‖|s (k = s)

Time-space derivative estimates : |α| ≥ 1, ∀ k + |α| ≤ s

d
dt
‖∂k

t W‖2
|α| + C0‖∂

k
t U‖2

|α| ≤ C
(
‖∂k

t U‖2
|α|−1 + ‖∂

k+1
t u‖2

|α|−1
)
+ C‖|U‖|2s ‖|W‖|s
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Induction argument : for k ↓ and |α| ↑

(k, |α|) = (s, 0),
d
dt
‖∂s

t W‖
2 + C0‖∂

s
t U‖

2 ≤ C‖∂s−1
t u‖21 + C‖|U‖|2s ‖|W‖|s

(k, |α|)= (s−1, 1),
d
dt
‖∂s−1

t W‖21+C0‖∂
s−1
t U‖21≤ C‖∂s−1

t U‖2+C‖∂s
t u‖

2+C‖|U‖|2s ‖|W‖|s

By induction we obtain

d
dt
‖|W‖|2s + 2C1‖|U‖|2s ≤ C‖|U‖|2s ‖|W‖|s

For small solutions, we have

‖|W(t)‖|2s + C1

∫ t

0
‖|U(τ)‖|2s dτ ≤ C‖W(0)‖2s , ∀ t > 0

which yields the global existence of solutions
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Long-time behavior of solutions

For all k + |α| ≤ s − 1,

∂k
t ∂
α
x U ∈ L2(R+; L2(T3)

)
∩W1,∞(

R+; L2(T3)
)

which implies

lim
t→+∞

‖|
(
n(t) − n̄, u(t)

)
‖|s−1 = 0

Similarly for E and B
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3.1 Reformulation of the barotropic MHD system.

let us introduce the perturbation variables as

ξ = ρ − ρ̄, Φ = φ − φ̄, (8)

U I =

 ξu
 , V I =

 U I

B

 , W I =

 V I

∇Φ

 ,
U I

0 =

 ξ0u0

 , V I
0 =

 U I
0

B0

 , W I
0 =

 V I
0

∇Φ0

 ,
(9)

where

ξ0 = ρ0 − ρ̄, ∇Φ0 = ∇φ0 − ∇φ̄.
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System (1) can be written as

∂tξ + u · ∇ξ + ρdivu + u · ∇ρ̄ = 0,

∂tu+(u · ∇) u+∇h (ρ)−∇h (ρ̄)

=
1
ρ

(∇ ×B) ×B+∇Φ+
1
ρ

(µ∆u+(µ+λ)∇divu) ,

∂tB + ∇ × (B × u) = ν∆B, divB = 0,

∆Φ = ξ, (t, x) ∈ (0,∞) × R3.

(10)

A straightforward computation implies

∇h (ρ) − ∇h (ρ̄) = h′ (ρ)∇ξ + ∇h′ (ρ̄) ξ +RI ,

where

RI =
(
h′ (ρ) − h′ (ρ̄) − h′′ (ρ̄) ξ

)
∇ρ̄ ∼ ξ2.
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The first two equations in (10) can be rewritten as

∂tU
I +

3∑
j=1

A I
j (ρ, u) ∂jU

I +L I (x) U I +M I (u,Φ) = F I(B,RI), (11)

with

A I
j (ρ, u) =

 uj ρeT
j

h′ (ρ) ej ujI3

 , j = 1, 2, 3, (12)

L I (x) =

 0 (∇ρ̄)T

∇h′ (ρ̄) 0

 , (13)
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M I (u,Φ) =


0

−∇Φ −
1
ρ

(µ∆u+(µ+λ)∇divu)

 , (14)

and

F I
(
B,RI

)
=


0

1
ρ

(∇ ×B) ×B −RI

 . (15)
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It is clear that the matrix A I
0 (ρ) defined by

A I
0 (ρ) =

 h′(ρ) 0

0 ρI3

 , (16)

is symmetric and uniformly positive definite for ρ > 0, and

Ã I
j (ρ, u) = A I

0 (ρ)A I
j (ρ, u) =

 h′(ρ)uj h′(ρ)ρeT
j

h′(ρ)ρej ρujI3

 (17)

is symmetric.

Local existence of smooth solution
Then it follows from Kato’s theory that there exists an unique local

smooth solution of the Cauchy problem to system (10).
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3.2 Energy estimates for barotropic MHD systems

Let W I be smooth solution of (10) defined on time interval [0,T]

with initial data W I
0 . From now on, we denote

V I
T = sup

0≤t≤T
||V I (t)||s. (18)

For s ≥ 3, we assume that V I
T is uniformly sufficiently small with respect

to T. Then from the continuous embedding Hs−1 ↪→ L∞, we get

1
2
ρ̄ ≤ ρ ≤

3
2
ρ̄, h′(ρ) ≥ m0,

where m0 is a positive constant independent of any time.
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Lemma 1.
For all t ∈ [0,T], it holds

‖∂tξ‖ + ‖∂tξ‖∞ +
∥∥∥∂tA

I
0 (n)

∥∥∥
∞
≤ C||∇u||2, (19)

and ∣∣∣∣∣∣∣∣
〈 3∑

j=1

∂jÃ
I

j (ρ, u) − 2A I
0 (ρ)L I(x)U I ,U I

〉∣∣∣∣∣∣∣∣ ≤ C||U I ||sD
∗
s (W I(t)), (20)

where

D∗s (W I(t)) = ||ξ (t) ||2s + ||∇u (t) ||2s . (21)
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L2 estimates for the barotropic MHD system.

Lemma 2.
For all t ∈ [0,T], it holds

d
dt

(〈
A I

0 (ρ) U I ,U I
〉
+ ‖B‖2 + ‖∇Φ‖2

)
+ 2µ ‖∇u‖2

+ 2 (µ + λ) ‖divu‖2 + 2ν ‖∇B‖2

≤C
∥∥∥U I

∥∥∥
s D∗s (W I(t)).

(22)
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Higher order energy estimates

Let α ∈ N3 with 1 ≤ |α| ≤ s. Applying ∂α on (11) gives

∂t∂
αU I +

3∑
j=1

A I
j ∂j∂

αU I +L I∂αU I + ∂αM I(u,Φ)

=∂αF I(B,RI) + G Iα,

(23)

where

G Iα =

3∑
j=1

(
A I

j ∂j∂
αU I − ∂α

(
A I

j ∂jU
I
))
+L I∂αU I − ∂α

(
L IU I

)
. (24)
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Lemma 3.
For all t ∈ [0,T] and α ∈ N3 with 1 ≤ |α| ≤ s, it holds

d
dt

(〈
A I

0 ∂
αU I , ∂αU I

〉
+

∥∥∥∂αB∥∥∥2
+

∥∥∥∂α∇Φ∥∥∥2
)
+ µ

∥∥∥∂α∇u
∥∥∥2

+ (µ + λ)
∥∥∥∂αdivu

∥∥∥2
+ 2ν

∥∥∥∂α∇B∥∥∥2

≤CD∗
|α|−1(W I(t)) + C

∥∥∥V I
∥∥∥

s Ds(W I(t)),

(25)

where

Ds(W I(t)) = D∗s (W I(t)) + ||∇B (t) ||2s , (26)
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from Lemma 2 and Lemma 3, we obtain

Proposition 2.
For all t ∈ [0,T], α ∈ N3 with 1 ≤ |α| ≤ s, it holds

d
dt

∑
β≤α

(〈
A I

0 ∂
βU I , ∂βU I

〉
+

∥∥∥∂βB∥∥∥2
+

∥∥∥∂β∇Φ∥∥∥2
)
+ µ ‖∇u‖2

|α|

+ (µ + λ) ‖divu‖2
|α| + 2ν‖∇B‖2|α| (27)

≤CD∗
|α|−1(W I(t)) + C

∥∥∥V I
∥∥∥

s Ds(W I(t)).
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Dissipation estimate for ξ

Estimate (27) contains a recurrence relation on the time dissipation

of ∇u. It is clear that this estimate is not sufficient to control the higher

order term in (27) and the dissipation estimates of ξ is necessary.

Proposition 3.
For all t ∈ [0,T], α ∈ N3 with 1 ≤ |α| ≤ s, it holds

d
dt

∑
|β|<|α|

〈∂βu, ∂β∇ξ〉 + C0 ‖ξ‖
2
|α|

≤C ‖∇u‖2
|α| + C ‖ξ‖2

|α|−1 + C
∥∥∥V I

∥∥∥
s Ds(W I(t)),

(28)

d
dt

〈
u,∇

(
h′ (ρ̄) ξ

)〉
+ C0 ‖ξ‖

2
1 ≤ C ‖∇u‖21 + C

∥∥∥V I
∥∥∥

s Ds(W I(t)), (29)
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d
dt

∑
|α|≤1

(
〈A I

0 ∂
αU I , ∂αU I〉 +

∥∥∥∂αB∥∥∥2
+ ‖∂α∇Φ‖2

)
+ µ ‖∇u‖21

+ (µ + λ) ‖divu‖21 + 2ν ‖∇B‖21 (30)

≤ε0 ‖ξ‖
2
1 + C ‖∇u‖2 + C

∥∥∥V I
∥∥∥

s Ds(W I(t)),

where C0 is a positive constant independent of any time and the positive

constant ε0 > 0 is determined later.
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Proposition 4.
There exists small positive constants η and C1 such that, for all t ∈ [0,T],

α ∈ N3 with 1 ≤ |α| ≤ s, it holds

d
dt

∑
β≤α

(〈
A I

0 ∂
βU I , ∂βU I

〉
+

∥∥∥∂βB∥∥∥2
+

∥∥∥∂β∇Φ∥∥∥2
)
+ η

∑
|γ|≤|α|−1

〈
∂γu, ∂γ∇ξ

〉
+ C1D|α|(W I(t))

≤CD∗
|α|−1(W I(t)) + C

∥∥∥V I
∥∥∥

s Ds(W I(t)). (31)
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3.3 Proof of Theorem 1.

We carry on the induction on |α|(1 ≤ |α| ≤ s) of space derivatives

for (31) and (29)-(30).

The step of the induction is increasing from |α| = 1 to |α| = s.

More precisely, for |α| = 1, we first multiplies η on both sides of

(29).

We point out that the term Cη‖∇u‖21 can be controlled by ‖∇u‖21 on

the left-hand side of (30),

and the term ε0‖ξ‖
2
1 on the right-hand side of (30) can be controlled

by ‖ξ‖21 provided that ε0 > 0 is small enough.

Yue-Hong Feng(¾�ù) (BJUT) Stability for compressible viscous and diffusive MHD equations with the Coulomb force29th, November, 2020 58 / 96



Thus, there exists a positive constant κ1 such that

κ1
d
dt

(∑
|α|≤1

(
〈A I

0 ∂
αU I , ∂αU I〉+

∥∥∥∂αB∥∥∥2
+‖∂α∇Φ‖2

)
+η

〈
u,∇

(
h′ (ρ̄) ξ

)〉 )
+D1(W I(t))

≤C‖∇u‖2 + C‖V I‖sDs(W I(t)).

(32)

In the same way, for |α| ≥ 2, CD∗
|α|−1(W I(t)) on the right-hand side of (31)

can be controlled by D|α|(W I(t)) in the preceding step on the left-hand

side of (31) multiplying an appropriate large positive constant. Then we

get
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d
dt

s∑
m=1

κm
( ∑
|α|≤m

(〈
A I

0 ∂
αU I , ∂αU I〉 + ∥∥∥∂αB∥∥∥2

+ ‖∂α∇Φ‖2

+ η
∑
|γ|≤|α|−1

〈∂γu, ∂γ∇ξ〉
))
+Ds(W I(t)) (33)

≤C‖∇u‖2 + C‖V I‖sDs(W I(t)),

where κm > 0(m = 1, · · · , s) are some constants.
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By use of formulas (22) and (33) and noting ‖V I‖s is small, we have

d
dt

s∑
m=1

κm
( ∑
|α|≤m

(〈
A I

0 ∂
αU I, ∂αU I〉 + ∥∥∥∂αB∥∥∥2

+ ‖∂α∇Φ‖2

+ η
∑
|γ|≤|α|−1

〈∂γu, ∂γ∇ξ〉
))

+Ds(W I(t)) ≤ 0, (34)

where the constant κm > 0(m = 1, · · · , s) may be modified again.
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When η > 0 is small enough,

s∑
k=1

κm
( ∑
|α|≤m

(〈
A I

0 ∂
αU I , ∂αU I〉 + ∥∥∥∂αB∥∥∥2

+ ‖∂α∇Φ‖2 + η
∑
|γ|≤|α|−1

〈∂γu, ∂γ∇ξ〉
))

is equivalent to

Es(W I(t)) = ||ξ (t) ||2s + ||u (t) ||2s + ||B (t) ||2s + ||∇Φ (t) ||2s . (35)

Integrating (34) from 0 to t, we obtain (5).
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Moreover, (5) implies that

∂βξ ∈ L∞
(
R+,L2(R3)

)
, ∀|β| ≤ s − 1,

∂γ∇u, ∂γ∇B ∈ L∞
(
R+,L2(R3)

)
, ∀|γ| ≤ s − 3,

and

∂t∂
βξ ∈ L∞

(
R+,L2(R3)

)
, ∀|β| ≤ s − 1,

∂t∂
γ∇u, ∂t∂

γ∇B ∈ L∞
(
R+,L2(R3)

)
, ∀|γ| ≤ s − 3.
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Then,

∂βξ ∈ W1,∞
(
R+,L2(R3)

)
, ∀|β| ≤ s − 1,

∂γ∇u, ∂γ∇B ∈ W1,∞
(
R+,L2(R3)

)
, ∀|γ| ≤ s − 3.

Furthermore,

∂βξ ∈ L2
(
R+,L2(R3)

)
, ∀|β| ≤ s − 1,

∂γ∇u, ∂γ∇B ∈ L2
(
R+,L2(R3)

)
, ∀|γ| ≤ s − 3.
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We deduce that

∂βξ ∈ L2
(
R+,L2(R3)

)
∩W1,∞

(
R+,L2(R3)

)
, ∀|β| ≤ s − 1,

∂γ∇u, ∂γ∇B ∈ L2
(
R+,L2(R3)

)
W1,∞

(
R+,L2(R3)

)
, ∀|γ| ≤ s − 3,

which implies (6)-(7),

lim
t→∞
‖ρ(t) − ρ̄‖s−1 = 0,

and

lim
t→∞
‖∇u(t)‖s−3 = 0, lim

t→∞
‖∇B(t)‖s−3 = 0.

This completes the proof of Theorem 1.
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4. The full MHD systems



∂tρ + div (ρu) = 0,

∂t (ρu)+div (ρu ⊗ u)+∇
(
p+

1
2
|B|2

)
= div (B ⊗B)+ρ∇φ +µ∆u + (µ+λ)∇divu,

∂tE+div (Eu+pu) = ρu · ∇φ−(E−ρel)+u (µ∆u+(µ+λ)∇divu) ,

∂tB + div (B ⊗ u) − div (u ⊗B) − ν∆B = 0, divB = 0,

− ∆φ = b(x) − ρ, lim
|x|→∞

φ = 0,

(36)

** p, e and θ : pressure, internal energy and absolute temperature

** E = 1
2ρ|u|

2 + ρe : total energy

** el > 0 : background internal energy

** b = b(x) : the doping profile, b ≥ const. > 0
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The initial condition to system (36) is given as

(ρ, u, θ,B)|t=0 = (ρ0, u0, θ0,B0), x ∈ R3. (37)

For convenience, we consider the case of ideal polytropic gas

p = ρθ, e = θ, (38)

Then for smooth solutions in any non-vacuum field, the momentum and

energy equations in (36) can be written as

∂tu+u·∇u+
1
ρ
∇ (nθ) =

1
ρ

(∇×B)×B+∇φ+
1
ρ

(µ∆u+(µ+λ)∇divu) , (39)

and

∂tθ + u · ∇θ + θdivu + u · ((∇ ×B) ×B) +
1
2
|u|2 + (θ − θl) = 0. (40)
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equilibrium solutions of (36)

Let (ρ̄, ū, θ̄,B, φ̄) be such a solution of variable x with ū = 0 and

B = 0. It follows from (36) and (38)-(40) that
∇p̄ = ρ̄∇φ̄, p̄ = ρ̄θ̄,

θ̄ = θl,

− ∆φ̄ = b − ρ̄.

(41)

This implies ρ̄ satisfies an elliptic equation:

− θl∆ ln ρ̄ + ρ̄ = b(x), x ∈ R3. (42)

Since the function ρ̄ 7→ ln ρ̄ is strictly increasing, by use of the classical

fixed-point theorem or a variational method, (42) admits a unique solu-

tion. The existence of solutions to the elliptic equation is also stated as

Proposition 1.
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Background

Hu-Wang, Comm. Math. Phys. 2008
–the initial-boundary value problem of the 3-d full MHD system,

– an approximation scheme and a weak convergence method,

– the existence of a global variational weak solution with large data.

Jiang-Ju-Li, Adv. Math. 2014
– the low Mach number limit for the full compressible MHD equations

with general initial data in R3,

– by using a theorem due to Metivier-Schochet, Arch. Ration. Mech.

Anal. 2001 for the Euler equations that gives the local energy decay of

the acoustic wave equations.
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Ju-Li-Li (2013) SIAM J. Math. Anal.
– as the Mach number, the viscosity coefficients, the heat conductivity,

and the magnetic diffusion coefficient go to zero simultaneously

– for the general initial data, the weak solutions of the full compress-

ible MHD equations in R3 converge to the strong solution of the ideal

incompressible MHD equations

Pu-Guo, Z. Angew. Math. Phys. 2013

– by energy method, the full compressible MHD equations in R3,

– the global existence of smooth solutions near the constant state

– the convergence rates of the Lp norm of these solutions to this state

when the Lq norm of the perturbation is bounded.
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What do we want to do?

We want to prove the stability of the steady-state solution (ρ̄, 0, θl, 0, φ̄)
provided that the initial data (ρ0, u0, θ0, φ0) are close to this steady-state.

step 1. choose a new perturbation variable Q

Q = ln p − ln p̄

with

p̄ = ρ̄θl,

step 2. use a non-diagonal positive matrix as symmetrizer
This allows us to use again the technique of anti-symmetric matrix in

the energy estimates.
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step 3. establish the recurrence relation
By the equations satisfied by the new variables, we establish the relation

that the derivatives of (∇u, θ) can be controlled by lower order derivatives

with respect to x of (Q,∇u, θ), and Q depends only on the same order

derivative with respect to x of (u, θ) in refined estimates.
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Stability for the full MHD system

Theorem 2. F. Li-Wang (2020) JDDE
Let s ≥ 3. Then there exist constants δ0 > 0,C > 0 such that if

‖
(
ρ0 − ρ̄, u0, θ0 − θl,B0,∇φ0 − ∇φ̄

)
‖s ≤ δ0,

Problem (36)-(37) has a global smooth solution (n, u, θ,B, φ) satisfying∥∥∥(ρ(t) − ρ̄, u(t), θ(t) − θl,B(t),∇φ(t) − ∇φ̄
)∥∥∥2

s

+

∫ t

0

(
‖ρ(τ) − ρ̄‖2s + ‖∇u(τ)‖2s + ‖θ(τ) − θl‖

2
s + ‖∇B(τ)‖2s

)
dτ

≤C
∥∥∥(ρ0 − ρ̄, u0, θ0 − θl,B0,∇φ0 − ∇φ̄

)∥∥∥2
s , ∀ t ≥ 0.

(43)

Yue-Hong Feng(¾�ù) (BJUT) Stability for compressible viscous and diffusive MHD equations with the Coulomb force29th, November, 2020 73 / 96



for all t > 0,

lim
t→∞
‖ρ(t) − ρ̄‖s−1 = 0, lim

t→∞
‖θ(t) − θl‖s−1 = 0, (44)

and

lim
t→∞
‖∇u(t)‖s−3 = 0, lim

t→∞
‖∇B(t)‖s−3 = 0. (45)

It should be pointed out that both the density and the temperature

converge to the equilibrium states with the same norm ‖ · ‖Hs−1 .
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4.1 Reformulation of the full MHD system.

let us set

Θ = θ − θl, U F =


ξ

u

Θ

 , U F
0 =


ξ0

u0

Θ0

 , (46)

where Θ0 = θ0 − θl. From (36), (38) and (40), it is easy to check that the

pressure p satisfies the equation

∂tp + u · ∇p + 2pdivu +
p
θ

u · ((∇ ×B) ×B) +
p
2θ
|u|2 +

p
θ
Θ = 0. (47)
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Let

q = ln p, q̄ = ln p̄, Q = q − q̄, V F =


Q

u

Θ

 , V F
0 =


Q0

u0

Θ0

 ,

W F =

 V F

B

 , W F
0 =

 V F
0

B0

 , W̃ F =

 W F

∇Φ

 , W̃ F
0 =

 W F
0

∇Φ0

 ,
(48)

where Q0 = ln (ρ0θ0) − ln (ρ̄θl) . By (36) and (48), and noticing (41), the

perturbation variables (Q, u,Θ,B,Φ) satisfy
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∂tQ+u · ∇Q +2∇·u+u · ∇q̄+
1
θ

u · ((∇ ×B) ×B) = −
1
2θ
|u|2−

Θ

θ
,

∂tu+(u · ∇) u + θ∇Q+ Θ∇q̄

=
1
ρ

(∇ ×B) ×B + ∇Φ +
1
ρ

(µ∆u + (µ+λ)∇divu) ,

∂tΘ + u · ∇Θ + θdivu +
1
ρ

u · ((∇ ×B) ×B) = −
1
2
|u|2 − Θ,

∂tB + ∇ × (B × u) = ν∆B, divB = 0,

∆Φ = ξ, (t, x) ∈ (0,∞) × R3,

(49)

with the initial condition

W̃ F |t=0 = W̃ F
0 . (50)

Here ξ is regarded as a function of Q and Θ

ξ = ρ − ρ̄ =
p
θ
−

p̄
θ̄
=

eq

θ
−

eq̄

θl
= O (Q) + O (Θ) . (51)
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Next, we denote

A F
j (u, θ) =


uj 2eT

j 0

θej ujI3 0

0 θeT
j uj

 , j = 1, 2, 3, (52)

L F (x) =


0 (∇q̄)T 0

0 0 ∇q̄

0 0 0

 , (53)

K (ρ, u, θ,B,∇Φ)=



−
1
θ

u · ((∇×B)×B)−
1
2θ
|u|2−

Θ

θ
1
ρ

(∇×B)×B+∇Φ+
1
ρ

(µ∆u+(µ + λ)∇divu)

−
1
ρ

u · ((∇ ×B) ×B) −
1
2
|u|2 − Θ


. (54)
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Then the first three equations in (49) can be rewritten as:

∂tV
F +

3∑
j=1

A F
j (u, θ) ∂jVF +L F (x) V F = K (ρ, u, θ,B,∇Φ) . (55)

From (37) and (48), the initial condition for (55) is

V F |t=0 = V F
0 . (56)

We denote by A F
0 (p, θ) the symmetrizer defined by

A F
0 (p, θ) =


p 0 −ρ

0 ρI3 0

−ρ 0
2ρ
θ


, (57)

which is symmetric and positive definite when p > 0 and θ > 0.
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It is easy to check that

˜A F
j (p, u, θ) = A F

0 (p, θ) A F
j (u, θ) =


puj peT

j −ρuj

pej ρujI3 0

−ρuj 0
2ρ
θ

uj


is symmetric.

Let us introduce matrix

B (p, u, θ, x) =
3∑

j=1

∂j ˜A F
j (p, u, θ) − 2A F

0 (p, θ) L F (x) .

Yue-Hong Feng(¾�ù) (BJUT) Stability for compressible viscous and diffusive MHD equations with the Coulomb force29th, November, 2020 80 / 96



Since

∇q̄ =
1
p̄
∇p̄,

we have

B (p, u, θ, x) =



∇ · (pu) (∇p)T −
2p
p̄

(∇p̄)T −∇ ·

(pu
θ

)
∇p ∇ ·

(pu
θ

)
I3 −

2p
θp̄
∇p̄

−∇ ·

(pu
θ

) 2p
θp̄

(∇p̄)T 2∇ ·
(pu
θ2

)


, (58)

which is antisymmetric at the point (p, u, θ) = (p̄, 0, θl).
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4.2 Energy estimates for the full MHD system.

Let T > 0 and W̃ be a smooth solution to the Cauchy problem

(49)-(50) defined on time interval [0,T]. Let

W F
T = sup

0≤t≤T
||W F (t)||s.

We suppose that s ≥ 3 and W F
T is sufficiently small with respect to

T. Then it follows that

1
2
ρ̄ ≤ ρ ≤

3
2
ρ̄,

1
2
θl ≤ θ ≤

3
2
θl,

1
2

p̄ ≤ p ≤
3
2

p̄. (59)
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lemma 5.
For all t ∈ [0,T], it holds

‖∂tp‖ + ‖∂tθ‖ ≤ C (‖∇u‖1 + ‖Θ‖1) , (60)

‖∂tp‖L∞ + ‖∂tθ‖L∞ ≤ C (‖∇u‖2 + ‖∇Θ‖1) , (61)

and ∣∣∣〈B(p, u, θ, x)V F,V F〉
∣∣∣ ≤ C||V F ||sD

∗
s (W̃ F(t)), (62)

where

D∗s (W̃ F(t)) = ||Q (t) ||2s + ||∇u (t) ||2s + ||Θ (t) ||2s . (63)
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Next, we want to establish an energy estimate of the form

Es(W̃ F(t)) +
∫ t

0
Ds(W̃ F(τ))dτ ≤ CEs(W̃ F(0)), t ∈ [0,T]. (64)

where

Es(W̃ F(t)) = ||Q (t) ||2s + ||u (t) ||2s + ||Θ (t) ||2s + ||B (t) ||2s + ||∇Φ (t) ||2s , (65)

and

Ds(W̃ F(t)) = D∗s (W̃ F(t)) + ||∇B (t) ||2s . (66)
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lemma 6. (L2 estimates for the full MHD system.)
For all t ∈ [0,T], it holds

d
dt

(〈
A F

0 (ρ) V F,V F
〉
+ ‖B‖2 + ‖∇Φ‖2

)
+2

(
µ ‖∇u‖2 + (µ + λ) ‖divu‖2

)
+ 2

〈
ρ

θ
, |Θ|2

〉
+ 2ν ‖∇B‖2

≤C
∥∥∥W F

∥∥∥
s Ds(W̃ F(t)).

(67)
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Lemma 7. (Higher order estimates for the full MHD system).

For all t ∈ [0,T] and α ∈ N3 with 1 ≤ |α| ≤ s, there is a constant C0 > 0

such that

d
dt

(〈
A F

0 ∂
αV F, ∂αV F

〉
+

∥∥∥∂αB∥∥∥2
+

∥∥∥∂α∇Φ∥∥∥2
)

+ C0

(∥∥∥∂α∇u
∥∥∥2
+

∥∥∥∂αdivu
∥∥∥2
+

∥∥∥∂αΘ∥∥∥2
+

∥∥∥∂α∇B∥∥∥2
)

≤CD∗
|α|−1(W̃ F(t))+ C

∥∥∥W F
∥∥∥

s Ds(W̃ F(t)).

(68)

where we have used

‖ξ‖2m ≤ C
(
‖Q‖2m + ‖Θ‖

2
m

)
. (69)

which is deduced from
1
ρ
=

1
ρ̄
−
ξ

ρρ̄
and (51).
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From Lemma 6 and Lemma 7, we obtain

Proposition 5.
For all t ∈ [0,T], α ∈ N3 with 1 ≤ |α| ≤ s, it holds

d
dt

∑
β≤α

(〈
A F

0 ∂
βV F, ∂βV F

〉
+

∥∥∥∂βB∥∥∥2
+

∥∥∥∂β∇Φ∥∥∥2
)

+ C0
(
‖∇u‖2

|α| + ‖divu‖2
|α| + ‖Θ‖

2
|α| + ‖∇B‖

2
|α|

)
≤CD∗

|α|−1(W̃ F(t)) + C
∥∥∥W F

∥∥∥
s Ds(W̃ F(t)).

(70)
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Dissipation estimates for Q

Estimate (70) contains a recurrence relation on the time dissipation

of ∇u and Θ. It is clear that this estimate is not sufficient to complete the

proof of (64). The dissipation estimates of Q is necessary.

Proposition 6.
For all t ∈ [0,T], α ∈ N3 with 1 ≤ |α| ≤ s, it holds

d
dt

∑
|β|≤|α|−1

〈
∂βu, ∂β∇Q

〉
+ C0 ‖Q‖2|α|

≤CD∗
|α|−1(W̃ F(t)) + C

∥∥∥W F
∥∥∥

s Ds(W̃ F(t)),

(71)

d
dt
〈u,∇Q〉+ C0‖Q‖21 ≤ C‖∇u‖21+C‖Θ‖2+C

∥∥∥W F
∥∥∥

s D∗s (W̃ F(t)), (72)
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and

d
dt

∑
|α|≤1

(〈
A F

0 ∂
αV F, ∂αV F

〉
+

∥∥∥∂αB∥∥∥2
+

∥∥∥∂α∇Φ∥∥∥2
)

+ C0
(
‖∇u‖21 + ‖Θ‖

2
1 + ‖∇B‖

2
1

)
≤ε0

(
‖Q‖2 + ‖Θ‖2

)
+ C ‖∇u‖2 + C

∥∥∥W F
∥∥∥

s D∗s (W̃ F(t)),

(73)

where ε0 > 0 is a small constant to be chosen later.
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Proposition 7.
There exist positive constants π and C1 such that, for all t ∈ [0,T], α ∈ N3

with 1 ≤ |α| ≤ s, it holds

d
dt

(∑
β≤α

(〈
A F

0 ∂
βV F, ∂βV F

〉
+

∥∥∥∂βB∥∥∥2
+

∥∥∥∂β∇Φ∥∥∥2
)
+

∑
|γ|≤|α|−1

π
〈
∂γu, ∂γ∇Q

〉 )
+ C1D|α|(W̃ F(t))

≤CD∗
|α|−1(W̃ F(t)) + C

∥∥∥W F
∥∥∥

s Ds(W̃ F(t)).

(74)
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4.3 Proof of Theorem 2.

We still carry on the induction on |α| for (74) and (72)-(73).

For |α| = 1, we multiplies π on both sides of (72).

We observe that the term Cπ
(
‖∇u‖21 + ‖Θ‖

2) can be controlled by

‖∇u‖21 + ‖Θ‖
2
1 on the left-hand side of (73),

and the term ε0
(
‖Q‖2 + ‖Θ‖2

)
on the right-hand side of (73) can be

controlled by ‖Q‖21 + ‖Θ‖
2
1 when ε0 > 0 is sufficiently small.

Then, there is a constant a1 > 0 such that

a1
d
dt

( ∑
|α|≤1

(
〈A F

0 ∂
αV F, ∂αV F〉+

∥∥∥∂αB∥∥∥2
+‖∂α∇Φ‖2

)
+π 〈u,∇Q〉

)
+D1(W̃ F(t))

≤C‖∇u‖2 + C
∥∥∥W F

∥∥∥
s Ds(W̃ F(t)).

(75)
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In this way, for |α| ≥ 2, D∗
|α|−1(W̃ F(t)) on the right-hand side of (74)

can be controlled by D|α|(W̃ F(t)) in the preceding step on the left-hand

side of (74) multiplying an appropriate large positive constant. So, we

obtain that there are positive constants ak > 0(1 ≤ k ≤ s) such that

d
dt

s∑
k=1

ak
( ∑
|α|≤k

(〈
A F

0 ∂
αV F, ∂αV F〉 + ∥∥∥∂αB∥∥∥2

+ ‖∂α∇Φ‖2 + π
∑
|γ|≤|α|−1

〈∂γu, ∂γ∇Q〉
))

+Ds(W̃ F(t)) ≤ C‖∇u‖2 + C‖W F‖sDs(W̃ F(t)). (76)
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By use of formulas (22) and (33) and noting ‖W F‖s is small, we

have

d
dt

s∑
k=1

ak
( ∑
|α|≤k

(〈
A F

0 ∂
αV F, ∂αV F〉 + ∥∥∥∂αB∥∥∥2

+ ‖∂α∇Φ‖2 +π
∑
|γ|≤|α|−1

〈∂γu, ∂γ∇Q〉
))

+Ds(W̃ F(t)) ≤ 0, (77)

where the constant ak > 0 may be amended again.
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When π > 0 is small enough,

s∑
k=1

ak
( ∑
|α|≤k

(〈
A F

0 ∂
αV F, ∂αV F〉 + ∥∥∥∂αB∥∥∥2

+ ‖∂α∇Φ‖2 + π
∑
|γ|≤|α|−1

〈∂γu, ∂γ∇Q〉
))

is equivalent to

Es(W̃ F(t)) = ||Q (t) ||2s + ||u (t) ||2s + ||Θ (t) ||2s + ||B (t) ||2s + ||∇Φ (t) ||2s .

Integrating (77) from 0 to t, and with the help of (69), we get (43).
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Moreover, (43) implies that, for all |β| ≤ s − 1 and |γ| ≤ s − 3,

∂β(ρ − ρ̄), ∂β(θ − θl) ∈ L2
(
R+,L2(R3)

)
∩W1,∞

(
R+,L2(R3)

)
,

and

∂γ∇u, ∂γ∇B ∈ L2
(
R+,L2(R3)

)
∩W1,∞

(
R+,L2(R3)

)
,

which implies (44)-(45). The proof of Theorem 2 is finished.
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Thanks a lot for your attention

��
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