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The barotropic MHD systems

oo + div (ou) = 0,
8, (ou) + div (ou ® u) + V(p + % I%’Iz)

= div(B® B) + pVe + uAu + (u + ) Vdiva, (1)
0, +div(Z@u)—diviu® B)—vAZ =0, divas =0,
-Ap=b-p, |1|im¢:o, (1,x) € (0, 00) X R,

** p, p = p(p) and u : density, pressure and velocity
** % and ¢ : magnetic field and electric potential
**y >0 : magnetic diffusivity

** uand A : constant viscosity coefficients satisfy

u>0, 34+2u>0.

* b= b(x) the doping profile, » > const. >0
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initial conditions in R?
t=0: (o,u,B) = (po, ug, By), x€R. 2)
the second equation in (1) can be written as
O+ u-Vu+Vh(p) = é(Vx%’)x%+V¢+/%(/uAu+(u+/l)VdiVu),

where h is the enthalpy function satisfying Vp(p) = pVh(p). Since p
is smooth and strictly increasing on (0, +), SO is h.
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Steady states solutions with zero velocity

Let (5, &, %, §) be such a solution of variable x with & = 0 and 2 = 0.

We get

Vh(p) =V,
{ _ 3)
- A¢ =b _:59
which implies p satisfies an elliptic equation :
-A(P)=b-p, InR>. (4)

By using a variational method or the classical fixed-point theorem.

Proposition 1. Existence of equilibrium solutions.
Let s; > 1. Assume b € L®(R?),Vb € H*'~}(R?) and b > const. > 0 a.e.

x € R3. Then problem (4) admits a unique solution p = 5(x) satisfying

p—be H'RY, p>const. > 0.
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Background

Neglecting the Coulomb force, system (1) becomes the general
compressible barotropic MHD equations. Then the equilibrium solution
with zero velocity will be constant.

Chen-Tan, Nonlinear Anal. 2010

— the optimal convergence rates of the small smooth solutions in
L1,2 < g < 6, provided that the initial data in L7, 1 < p < 6/5.

Hu-Wang, Arch. Ration. Mech. Anal. 2010

— the existence and large-time behavior of global weak solutions
for the initial-boundary value problem with large data.

Jiang-Jiang, SIAM J. Math. Anal. 2018

— Rayleigh-Taylor stability, presented a sufficient condition for the
linear ideal instability of plane parallel equilibria with antisymmetric shear
flow and symmetric or antisymmetric magnetic field.
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Kang-Kim, J. Funct. Anal. 2014

— a regularity criteria for suitable weak solutions of MHD equations
near boundary in dimension three,

— suitable weak solutions are Hélder continuous near boundary.

Kwon-Trivisa, J. Differential Equations, 2011

—the incompressible limits of weak solutions to the governing equa-
tions for MHD flows on both bounded and unbounded domains.

Li-Xu-Zhang, SIAM J. Math. Anal. 2013

— the Cauchy problem to barotropic MHD equations in R,

— the global well-posedness of classical solution provided that reg-
ular initial data satisfying small energy.
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Wang, SIAM J. Appl. Math. 2003

— the initial-boundary value problem for MHD equations in one
space dimension,

— The existence, uniqueness, and regularity of global solutions with
large initial data in H~.

Wang-Wang-Liu-Wang, J. Differential Equations, 2017

— the boundary layer problem and zero viscosity-diffusion limit of
the initial boundary value problem for the incompressible viscous and
diffusive MHD system with (no-slip characteristic) Dirichlet boundary
conditions,

— the corresponding Prandtl’s type boundary layer are stable with
respect to small viscosity-diffusion coefficients.
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Liu-Xie-Yang, CPAM 2019

—- 2D MHD Boundary layer system, Well-posedness and high
Reynolds number limit

Li-Yang, 2020

—- Well-posedness of 3D MHD Boundary layer system without
any structure assumption in Gevrey function space

Liu-Wang-Xie-Yang, JFA 2020

—- MHD system that show critical Gevrey index could be 2

Liu-Zhang-Yang, 2020

—-2D MHD system admits a unique solution, high Reynolds num-
ber limit of steady MHD in Sobolev space

J.H. Wu, Y.F. Wu, X.J. Xu,...
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All these results hold when the solution is near a constant equi-

librium state of the MHD system.

Wang-Tan, 2019

— the stability on the non-constant equilibrium solutions of MHD
equations (1) with an additional friction force —apu,

— the existence and uniqueness of the global solution.

A nature question is that how about the solution behave if there
is no friction force?
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Stability for the barotropic MHD system

Theorem 1. F. Li-Wang, JDDE. 2020

Let s > 3 be an integer. Then there exist constants 6y > 0,C > 0 s. t. if

Il (o = p. uo, o, Vo — V) Is < b0,
Problem (1)-(2) has a unique global solution (o, u, 4, ¢) satisfying

o) = . utt). B1). V1) - V)| ;
!
+ fo (o) = AlIZ + IVu@I + IVB@I) dr (5)

2
s

<C||(po — p. uo, B, Vo — V)|

V>0,

Yue-Hong Feng(:%#%4c) (BJUT) Stability for compressible viscous and diffusive 29th, November, 2020



which implies
lim flp(®) = plls—y =0, (6)
and

Lim [[Vu(0ll;3 = 0, lim IVE@l;-3 = 0. (7)

v

We pointed out that gradients of both the velocity and the magnetic
field converge to the equilibrium states with the same norm ||-||s-3, while
the density converges with stronger norm || - ||gs-1.

Yue-Hong Feng(:%#%4c) (BJUT) Stability for compressible viscous and diffusive 29th, November, 2020 12/96



Remark :

The equilibrium solution is large
Since b is large, the techniques used for constant equilibrium solution

no longer work due to the appearance of lower order terms which will
make essential difficulties in energy estimates.

| A\

The friction force is lost

By using the Theorem of the decomposition of divergence and curl,
Wang-Tan solve the problem in Wang-Tan (2019) Comm. Math. Sci.
Different from their work, we remove the friction force (the velocity dis-

sipation term).

v

We solve this problem by using an anti-symmetric matrix technique
and employing an induction argument on the order of the derivatives of
solutions in energy estimates.
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2. Techniques and an induction argument.

Barotropic Euler-Maxwell equations for electrons

o+ div(nu) =0
0(nu) + divinu ® u) + Vp(n) = —n(E + u X B) — nu
OE—-VXB=nu, divE=b-n

0B+VXE=0, divB=0

** n and u : density and velocity

** E and B : electric and magnetic fields

** p . pressure function, p’(n) >0, Yn >0

** b = b(x) is a given smooth periodic function, b > const. > 0
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initial conditions in a torus T3
t=0: (nukE,B)=un"u E° B

which satisfies the compatibility condition

divE’ =b-n°, divB" =0

(a) Equivalent momentum equation forn > 0 :

ou+ w-VYu+Vh(n)=—(E+uXB)—u

the enthalpy 4 :

Wmn)=p'(n)/n>0, ¥Yn>0
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(b) All physical parameters are set equal to 1.

Otherwise, perform asymptotic analysis with small parameters
B. Texier (2005-2007)

— convergence of Euler-Maxwell to Zakharov equation

— to Davey-Stewartson equation

Y.J. Peng - S. Wang (2008-2009)

— convergence of Euler-Maxwell to incompressible Euler equations
—to e-MHD equations

Y. Guo - X.K. Pu (2012)

— convergence of Euler-Poisson to KdV equations

—to KP equations

J.W. Yang

— series works on non-isentropic Euler-Maxwell systems
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Local existence of solutions

Symmetrizable hyperbolic system :

d
dw+ D Ajwdyw = gw),  w(0,x) = w’(x), xeR!
j=1

(@) 3 symmetrizer Ag(w), symmetric positive definite matrix
(b) A;w) € Ao(w)A;(w) is symmetric for all 1 <j < d

Consequence : energy estimate
d L
d—tho(w)w-wdxz f(dlvt,wa-w+2Ao(w)g(w)-w)dx

where

d
on(w)w swdx = ||w||i2, div,,xﬁ = 0;Ag(w) + Z 6xj;1j(w)
j=1
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Theorem T. Kato, ARMA, 1975
Let s > d/2 + 1 be an integer, Q@ = R? or Q = T4, w® € H5(Q).
There exist T > 0 and a unique smooth solution

w e CL([0, T1; H~1(©) N C([0, TT; H ()

Regularity :
we krjno ck([0, T1; H* ()

The Euler-Maxwell system is symmetrizable hyperbolic for n > 0
w=mukEB)", d=3 = 523

Then we have local existence of smooth solutions
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Steady states solutions with zero velocity

W = (i(x), 0, E(x), B(x))" J

Substitute w into

om + div(nu) = 0

o+ (u-VYu+Vh(n)=—(E+uXB)—u
OE—-VXB=nu, divE=b-n

0B+VXE=0, divB=0,

Vh(i) = —-E
—{ VxB=0, divB=0 = B is a constant
VXE=0, divE=b-7
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divE=b-ii = —-Ah() =b—1i
Let
$=h), q=h"
Then ¢ satisfies a semilinear monotone elliptic equation in T3 :
-Ap=b-q(p), 7 =q)
Consequence : there is a unique steady state periodic smooth solution

b>const. >0 = n>const. >0
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Stability problem :

Il 1l is anorm of H™(T?)
Vs>3, |w®—w|,is small

— global existence of solution w and stability estimate

Iw(t, ) — wlly < CIW® —wll;, V>0
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2.1 Stability of constant states for EM system

The unique steady state solution is constant w = (1,0,0, B)"
Denote

U=m-1u)!, W=w-w=m-1,u,E,B-B)"
When |w° — ||, is small, a classical energy estimate yields
d%IIW(t)IIf + Collu)ll; < CIUGIE IW s

Next, using the system and p’(n) > 0 yields

de
lIn(®) — 1112 < Cllu@|)? + CIUGOIZ W Ols + = ldl< U2
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Therefore, for € > 0 small
d 2 2 2
E(IIW(I)IIS —ge) + CIIUII; < CNIUDI WO, t>0
For ||W||, small, we obtain
!
IWGIE + f U@ dr < CIWO)IR. V1> 0
0

which yields global existence of solutions
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Theorem Y.J. Peng - S. Wang - Q.L. Gu, SIAM JMA, 2011

Let s > 3 be an integer. If |[W(0)]|, is sufficiently small, the Euler-Maxwell
system admits a unique global solution

W e C'(R*; H(T?) N C(R™; H (T?))

Theorem R.J. Duan, J. Hyper. Differ. Equations, 2011
Lets > 4. If ||W(0)||H”2(R3)0L1(R3) is Sma”, then

— _3
@) = 1| oggsy < CA+ 07 Nu@llppes) < C1+0)75,

_3 _3
IE@ 2@ < CA+07 TG +0), 1BOlpgs, < C(1+1)75.

Theorem Y. Ueda - S. Wang - S. Kawashima, SIAM JMA, 2012

Lets > 6. If [W(0)|lpsgs3) is small, then
IW@)llgs-2xg3) < CUWONlgsay(® + D72, VO <k < [s/2]
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For b is a small perturbation of 1

Theorem Q.Q. Liu - C.J. Zhu, Indiana. Univ. Math. J., 2013

Let s > 3 be an integer. Suppose |[/b(x) — 1|12 is small enough. If
0

l(no — ny, uo, Eo — Eg, Bo)ll, is sufficiently small, the Euler-Maxwell sys-

tem admits a unique global solution

(n —ng,u, E — Eg, B) € C'(R*; H*"'(R?) n C(R*; H*(R?))

Theorem W.K. Wang and X. Xu, Z. Angew. Math. Phys., 2016

Let s > 3 be an integer. Suppose ||b(x) — 1|4, is small enough. If
l(no — ng, uo, 6o — 1, Eg — Eg, Bo)|ls is sufficiently small, the non-isentropic
Euler-Maxwell system admits a unique global solution

(n—ng,u,0 - 1,E — Eg,B) € C'(R™; H* ' (R*)) n C(RT; H*(R?))
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A more general framework

Quasilinear symmetrizable hyperbolic system

d
Aw + Z Oefiw) = gw),  w(0,x) = w(x), xeRY
j=1

wit,x)eRY, w=0 and g0)=0

Entropy-flux (E,F):  F'(w) = E'W)({f{(w), - .f,(w))

@ partial dissipation

@ Shizuta-Kawashima condition

= global existence
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Two stability conditions

partial dissipation :
there exist a strictly convex entropy E(w) and a change of variables

w— (u,v)", u e RN"", v e R”, such that

(E'(w) — E'(0))g(w) < —colv[>, |-] is a norm of R

which implies

! !
w2 + fo vl dr < CIW°|? + C ) Iw@Is(IVu@IZ_; + V(@I dr
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Shizuta-Kawashima condition :

VyeSi! YaeC, Ny-AG,v)NNE W) =1{0}
d

AOw,v) = D ViAW), Aw) =fw), V=, vg) € ST
=1

This condition implies

A t
f VI, dr < CIWIE + C f W@ AVa@IE, + IO dr
0 0

Thus, for small solutions, we have
f
w2 + f (IVu@IZ, + V@I dr < W2, >0
0

which yields global existence of solutions when ||w’|| is small

Yue-Hong Feng(#&#k4c) (BJUT) Stability for compressible viscous and diffusive 29th, November, 2020 28/96



B. Hanouzet - R. Natalini, ARMA, 2003,

global existence 1-d

W.A. Yong, ARMA, 2004,

global existence d > 1

S. Bianchini - B. Hanouzet - R. Natalini, CPAM, 2007
algebraic decay of solutions O(+ ™), u > 0

K. Beauchard - E. Zuazua, ARMA, 2011

refined results O(t )

Shizuta-Kawashima condition is not fulfilled by Euler-Maxwell systems

Y. Lv, 2019

The zakharov approximation to Euler-Maxwell is unstable
J. Xu, 2011

stability of Euler-Maxwell in Besov space
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EM system without velocity dissipation

o+ div(nu) = 0
Oiu+ (u-Vu+Vh(n) = —(E+uXxB)
OGE-VXB=nu, divE=1-n

OB+VXE=0, divB=0

P. Germain-N. Masmoudi ( Ann. Sci. Ec. Norm. Supér 2014)

one-fluid

0 (B-VxXu)=Vxux(B-Vxu))

B -Vxu’=0 = B-Vxu=0
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Guo-lonescu-Pausader ( Ann. math. 2016)
two-fluid

i) linearized system around constant states is of Klein-Gordon type
time decay O(t_%)

i) link with Euler-Poisson system for potential flows (Y. Guo, 1998)
B=0 = Vxu=0

Deng-lonescu-Pausader ( ARMA 2017)
2D
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2.2 Stability of non constant states for EM system

Il-1l=1-1lo, anormof L*(T%)

FormeNand ve n, C([0,T]; H"(T%)), define
1
el = () 1985w )IF)?, 1€ 0,T]
k+|al<m
@ e N3, o] = a1 + ap + a3
= -l isanormand ||+ [lm < Il lln

unknown: w = (n,u, E,B)’, initial data w’

steady state solution: w(x) = (i(x), 0, E(x), B(x))"
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Theorem Y.J. Peng, JMPA 2015

Let s > 3. If [w° — w|| is small, the periodic problem for the barotropic
Euler-Maxwell equations admits a unique global smooth solution :

T ;ﬁo CH(R*; HS(T3))
=2 ! — 2 0 =112
Iw(2) — wll +f l(n(t) = A, u()Il; < Clw” =wll;, >0
0

f B%x)dx =B
™

lim [jw(#) = wlls-1 =0
f—+00

Moreover, if

then
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Reformulation

Let
N=n-n, F=FE-E, G=B-B J

The Euler-Maxwell system is
ON~+u-VN+ndivu+Vin-u=0

Ou+ u-Vu+V(hn)—h@) +uxG+wu+F+uxB)=0
OF -V XG=(N+nu, divF=-N

0G+VXF=0, divG=0

where

V(h(n) — h(@)) = I (W)VN + VI (@)N + r

r= (N +7)—h (@) - K [R)N)Vii = O(N?)
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U=(n—ﬁ,u)T, W=w-w

Then Euler equations are written as

3
OU + > Ai(n,pdyU + LU + M(W) = f
=1

f:_( 0 ]:O(U)O(W), M(W)=( 0 )

r+uxG u+F+uxB

@ u stands for velocity dissipation

@ F can be treated together with Maxwell equations

@ u-(uxB)=0
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wj  nel 0o (v
Aj(n,u) = , Lx)= .
W (e ul; VI () 0

MW=V“)
0

)zﬂ%@&@zww

ni3

Casep=t |

n=1 = Lkx)=0 = no linear term in the system

Ven=Vin-1) = 8,A;(n,u) = 00,U)

Case b = b(x) : main difficulties in higher order energy estimates
(1) Lx) #0 = Lx)U = 0(U)
(2) 8,Aj(n,u) = 0 Aj(N + i, u) = O(1)
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L?-inner product (-, -)

d
d_;<AO(n)U’ Uy = (0AcmU,U)+ 2{Ao(n)f,U)

=2(Ao(m)M(W), U) + {Q(x,n,u)U, U)
1. Estimate for (9,Ao(n)U, U)

I6mllee = 10:Nlleo < CIUIl; = (8:A0(m)U, U) < CIIUII;

2. Estimate for (Ao(n)f, U)

f=0W)0W) = 2(Am)f, Uy < CIIUII; Il

3. Estimate for (Ao(n)M (W), U)

=2{Ag(mM(W),U) = -2 {(nu,uy —2{(nu, F)
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4. Estimate for (Q(x, n,u)U, U) (Guo-Strauss, ARMA 2005 )

M-

Q(x,n, u) 0, Aj(n, u) — 2A0(n)L(x)

~
Il
—_

div(h’ (n)u) (Vp'(n) — 20 (n)Vi)"
Vp'(n) - 2nVH () div(nu) I

is an anti-symmetric matrix at (n, u) = (,0), because

Vp'(n) — 2K’ (n)Vn = —(Vp'(n) — 2nVH' (n))

= |<Q(x, n,u)U, U}' < C|||U|||3

Similar treatment for Q in higher order estimates
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Energy estimates for Maxwell equations

d
E(uFu2 +IGII*) = 2 (nu, F)

[*-estimate

d
Enwn2 + Collull* < CIIUIIZ IW]]
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Higher order estimates

Fora e N, |o| < s, we have

3
d (04 103 103 103 (04
—H{AmILU.U) =2 D {AD(DTU) = FH(A0, U), Agd U + - -
j=1

Noticing 0,A;(n, u) = O(1) and using Moser inequality, we have
(4j0,,(02U) — 3%(A;0,U), Agd U = O(||U|12)
d
WOl + Collu®liy < CING; + CIUDITIW @l + -

IN@IIZ, < Cllu(@)lif, + CHU@IE WOl + -+

||

= these energy estimates are not sufficient to conclude
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Idea : estimates on 6*9*W + induction argument

Time derivative estimates : a =0

d

TWIE + Colldgul® < CHUIE IWIl,, VO <k <s
The momentum equation implies

105N < Clliokull* + ClOF ull® + CINUIZ W], 0 <k<s—1

The density equation implies

IBNIP < ClIay™"ull? + CIUI Wl (k = s)

Time-space derivative estimates : || > 1, Vk + || < s

d
9T WG, + Collog Ully < CI9; Ul + 1107wl 1) + CIUIE W,
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Induction argument : for k and |/

d _
(k,lal) = (s,0), Euaiwn2 + CollofUII* < Cllas™"ull} + CIUIIE I,

d y .
(K la)= (s=1, 1), 4103~ WIR+Collo; ™ U} < Cllg; ™ UIP+ClagulP+CINUIE Wl

By induction we obtain
d 2 2 2
EIIIWIIIS +2C1IIUIIS < ClIUIE W Ils
For small solutions, we have
!
IWOIIZ + Cy f NU@IIZ dr < CIWO)IZ, V>0
0

which yields the global existence of solutions
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Long-time behavior of solutions

Forallk+|a| <s—1,
0°U € L*(R*; LA(T?)) n Wh°(R*; LA(T?))

which implies
Jim [I(n() = 72, u@)lls-1 = 0

Similarly for E and B
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3.1 Reformulation of the barotropic MHD system.

let us introduce the perturbation variables as

where

& =po—p, VO =Ve¢y— V.
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System (1) can be written as
&+ u-Vé+pdivu+u-Vp =0,
Au+u - V)Y u+Vh(p)—Vh(p)
1 1
= ;(Vx%)x%@V(IH; (uAu+(u+2) Vdivu), (10)

0B +V X (Bxu)=vAB, divaA =0,
AD =¢, (1,x) € (0,00) X R>.

A straightforward computation implies
Vh(p) = VR (D) = I (0) VE + VI (B)é + ',

where
%l — (h/ (p) W ([—)) K (ﬁ_))f)vl_) - 62.
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The first two equations in (10) can be rewritten as

3
0 + Y A oW + L DU + M 1, 0) = FBA), (1)

j=1
with
u; pel
! (p,u) = Tl j=1,2,3, (12)
h(p)e; uls
0 (Vp)'
% x) = , (13)
Vi () 0
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0
M (u, @) = , (14)

-Vo - ’% (uAu+(u+2) Vdivu)

and
0
F(B.2")=| 4 . (15)
—(VXB)XB-FR
P
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It is clear that the matrix %’(p) defined by

W) 0
5 (p) = : (16)
0 pl3
is symmetric and uniformly positive definite for p > 0, and
W (o K (p)pe!
A (p,1) = A ()7} (p, 1) = [ ’ ’ ] (17)
W (p)pej  pujlz

is symmetric.

Local existence of smooth solution
Then it follows from Kato’s theory that there exists an unique local

smooth solution of the Cauchy problem to system (10).
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3.2 Energy estimates for barotropic MHD systems

Let #! be smooth solution of (10) defined on time interval [0, T]
with initial data /. From now on, we denote

¢ = sup 177 @)ll;. (18)

0<t<T

For s > 3, we assume that “//T’ is uniformly sufficiently small with respect
to 7. Then from the continuous embedding H*~!' < L*, we get

- 3_ 7
pSpﬁzp,h(p)Zmo,

N —

where my is a positive constant independent of any time.
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Lemma 1.
For all ¢ € [0, T, it holds

10:&11 + 10,1l + |01y W)||, < ClIVulla, (19)

and

< ClZ"s2:#'1), (20)

3
<Z & (p,u) = 2 ()L U, U >
=1

v

where
DV (0) = 1€+ IVu @) |12 (21)
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L? estimates for the barotropic MHD system.

For all ¢ € [0, T, it holds
4
dt
+2 (u+ ) |\divul® + 2v VB (22)

<c|z'||, z:#" ).

(o @ 2", ") + 1B + IVDIP) + 24 I Vudl?
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Higher order energy estimates

Let @ € N* with 1 < |a| < 5. Applying 8% on (11) gives

3
0O U' + Y A0 U + LU + M (1, ®)
i (23)
=" 7" (B, %" + 9",

where

W

glo = 3 (Ao’ - o (Aou'))+ Lou -0t (L' u').  (24)
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For all r € [0, T] and @ € N3 with 1 < |e| < s, it holds

4 (ot ay« el « forvaff )« ulorsil?

+ (u+ D ||odiva]* +2v |07 V| (25)
<CTp W) + C|[V||, 2007 @),

where
D @) = VD) + VB D IIZ, (26)

Yue-Hong Feng(:%#%4c) (BJUT) Stability for compressible viscous and diffusive 29th, November, 2020 53 /96



from Lemma 2 and Lemma 3, we obtain

Proposition 2.

Forall z € [0,T], @ € N? with 1 < |a| < s, it holds

%ﬁz (et ") + |5 + P90l + i,

+ (u+ ) |ldivull, + 2VIV I, (27)
<CGpy (W' )+ C|[V|, 2. (1)).
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Dissipation estimate for ¢

Estimate (27) contains a recurrence relation on the time dissipation
of Vu. It is clear that this estimate is not sufficient to control the higher
order term in (27) and the dissipation estimates of ¢ is necessary.
Proposition 3.

Forall z € [0,T], @ € N? with 1 < |a| < s, it holds

&3 PV + Gyl
Ai<ial (28)

<CIIVullg, + CliEllEy, + C |||, Zs# (1),

|-

d
— WV H P&) + Coliglli < CIVully + C[[ 7| 207 @), (29)

v
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% Z ((Molaa%l,aa%l> + ||80%||2 + ||8(yvq)”2) +u ||Vl/l”%
lal<1

+ (u+ ) |ldivall? + 2v VB2 (30)
<eo lEll} + CIIVull® + C |||, 257 ).

where Cj is a positive constant independent of any time and the positive

constant gy > 0 is determined later.
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Proposition 4.
There exists small positive constants n and C; such that, for all z € [0, T,
a € N3 with 1 <a| < s, it holds

d 2 2

d_’LZ‘ ((%’aﬁ%l,aﬂazA +|P 2| + ||Pva| )+n| |ZT 1<am, avvg)]

<a yI<l|a|—
+ C1 GV (1))
(31)

<Cpy W' ) + C|[V||, 257 ).

v
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3.3 Proof of Theorem 1.

We carry on the induction on |e|(1 < |e| < s) of space derivatives
for (31) and (29)-(30).

The step of the induction is increasing from |a| = 1 to |a| = s.

More precisely, for |a] = 1, we first multiplies n on both sides of
(29).

We point out that the term Cr|[Vul|? can be controlled by [[Vu|? on
the left-hand side of (30),

and the term so||.§-‘||% on the right-hand side of (30) can be controlled
by [I€[* provided that & > 0 is small enough.
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Thus, there exists a positive constant «; such that

d
(D (o w! 0w o 2 +10" YOI 41w,V (0 () 6)))

le|<1
+ (WD)
<C||Vul* + CI /s 2,7 (1)).

(32)

In the same way, for |a| > 2, C@I’(;l_l(%’(t)) on the right-hand side of (31)
can be controlled by Z,(#(t)) in the preceding step on the left-hand
side of (31) multiplying an appropriate large positive constant. Then we
get
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dﬂt Dk Y (ot wt o u'y + |on A + 107Vl

m=1 |l<m

w1 Y (PudE))+ 20 1) (33)

YI<lel-1

<C|IVull* + CIV N, 2,7 (1)),

where k,, > 0(m = 1,--- ,s) are some constants.
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By use of formulas (22) and (33) and noting ||#/||, is small, we have

% Dkl Y o wiorw’y +||on A + 10"Vl

m=1 lal<m

0 Y (PuwI))

lyI<lal-1

+92,7 (1) <0, (34)

where the constant «,, > 0(m = 1, --- ,s) may be modified again.
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When n > 0 is small enough,

N

S Y ot oy + |0 B + 107V +n Y. (@ 8VE)

k=1 |ov|<m [yI<lal-1

is equivalent to
ENT D)= 1EDO N+l @) >+ 1B @) 12 + VD (1) |12 (35)

Integrating (34) from 0 to ¢, we obtain (5).
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Moreover, (5) implies that
Fee L™ (R LPR®RY), ViBl<s-1,
PVu, PVBeL®(RYLARY), Vhl<s-3,
and

0,0P¢ € L (R, LA(RY), VIBl<s-1,
0,0"Vu, 8,VH e L™ (R*,L*(RY)), Vhl<s-3.
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Then,
e e W (RY, LX®RY), VBl <s—1,
IVu, VB e W (RYLRY), Vi <s-3.
Furthermore,
Fee (R LARY), ViBl<s-—1,
OVu, VA e *(RYLARY), Viyl<s-3.
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We deduce that
Pe e’ (RY, LR n W (RY,L2RY), VIBI<s-—1,
OVu, VR e L* (R, L2RY)) W (RY, LXR?)), Viyl<s-3,

which implies (6)-(7),
lim [lo(®) - plls-y =0,
and
tlirglo IVu(@®ll;-3 = 0, }g}}o IVA©I;-—5 = 0.

This completes the proof of Theorem 1.
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4. The full MHD systems

0o + div (pu) = 0,

3 (pu)+div (pu ® u)+V (p+% I%IZ)

=div(B ® B)+pV¢ +ulAu + (u+ ) Vdivu, (36)
0,6+div (Eu+pu) = pu - Vo—(E—pep)+u (uAu+(u+A) Vdivu) ,
0B +div(#BRu)—diviue B)—vA% =0, div#h =0,

—A¢ = b(x) - p, |xl|i_l>noo¢ =0,

** p, e and 0 : pressure, internal energy and absolute temperature
** &= 1plul* + pe : total energy

** ¢; >0 : background internal energy

** b = b(x) : the doping profile, b > const. >0
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The initial condition to system (36) is given as
(0, t, 8, B)li=o = (0o, o, b0, Bo), x € R>. (37)
For convenience, we consider the case of ideal polytropic gas
p=p0, e=0, (38)

Then for smooth solutions in any non-vacuum field, the momentum and
energy equations in (36) can be written as

atu+u-Vu+lV(n9)— (Vx%’)x%+v¢+ (uAu+(u+2) vdivu),  (39)
P
and

1
6,0+u-V@+9divu+u-((Vx%’)x%’)+§|u|2+(9—91):0. (40)
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equilibrium solutions of (36)

Let (, i, 6, B, ) be such a solution of variable x with # = 0 and
2% = 0. It follows from (36) and (38)-(40) that
Vp=pVa, p=pb,
0 =6, (41)
_Ab=b-p.
This implies p satisfies an elliptic equation:

—9AInp+p=bx), xeR>. (42)

Since the function g — Inp is strictly increasing, by use of the classical
fixed-point theorem or a variational method, (42) admits a unique solu-
tion. The existence of solutions to the elliptic equation is also stated as
Proposition 1.
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Background

Hu-Wang, Comm. Math. Phys. 2008

—the initial-boundary value problem of the 3-d full MHD system,
— an approximation scheme and a weak convergence method,

— the existence of a global variational weak solution with large data.

Jiang-Ju-Li, Adv. Math. 2014

— the low Mach number limit for the full compressible MHD equations
with general initial data in R,
— by using a theorem due to Metivier-Schochet, Arch. Ration. Mech.
Anal. 2001 for the Euler equations that gives the local energy decay of
the acoustic wave equations.
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Ju-Li-Li (2013) SIAM J. Math. Anal.

— as the Mach number, the viscosity coefficients, the heat conductivity,
and the magnetic diffusion coefficient go to zero simultaneously

— for the general initial data, the weak solutions of the full compress-
ible MHD equations in R? converge to the strong solution of the ideal
incompressible MHD equations

Pu-Guo, Z. Angew. Math. Phys. 2013

— by energy method, the full compressible MHD equations in R?,

— the global existence of smooth solutions near the constant state
— the convergence rates of the L” norm of these solutions to this state

when the L7 norm of the perturbation is bounded.
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What do we want to do?

We want to prove the stability of the steady-state solution (3, 0, 6;, 0, ¢)
provided that the initial data (oo, uo, 60, o) are close to this steady-state.

step 1. choose a new perturbation variable Q

O=Inp-Inp
with
p = poi,

| A\

step 2. use a non-diagonal positive matrix as symmetrizer
This allows us to use again the technique of anti-symmetric matrix in

the energy estimates.
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step 3. establish the recurrence relation

By the equations satisfied by the new variables, we establish the relation
that the derivatives of (Vu, 8) can be controlled by lower order derivatives
with respect to x of (Q, Vu,6), and Q depends only on the same order
derivative with respect to x of (u, 6) in refined estimates.
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Stability for the full MHD system

Theorem 2. F. Li-Wang (2020) JDDE
Let s > 3. Then there exist constants 6y, > 0, C > 0 such that if

Il (0o — B uo, 8o — 61, Bo, Vo — V) Il < bo,
Problem (36)-(37) has a global smooth solution (n, u, 6, 2, ¢) satisfying
G = 5, u(@), 6t) — 61, B(1), Vo0) - Vo)
+ fo t (Il = AlIZ + IVu@I + 16() - 6/l + IVB@IF)dr  (43)
2

<C ||(p() — P, ugy, 8y — 6;, By, Voo — V¢_5)| Yi>0.
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for all > 0,
lim [lo(t) = pll,-y = 0, lim [0(1) = 64l = 0, (44)
and
tllrg IVu@®lls—3 = 0, tlgglo IVA@)ls—3 = 0. (45)

v

It should be pointed out that both the density and the temperature
converge to the equilibrium states with the same norm || - || s-1.
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4.1 Reformulation of the full MHD system.

let us set
'3 éo
@=0-0, w'=|ul|, % = u | (46)
® B

where ®y = 6y — 6;. From (36), (38) and (40), it is easy to check that the
pressure p satisfies the equation

8[p+u~Vp+2pdivu+%w((V><%’)><%’)+2£9|M|2+%®:0. (47)
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Let

) Qo
g=Inp, g=Inp, Q0=q-q 7"=lu |, % =| uw |
0 (ON
(48)
B B Vo Vo,

where Qp = In(poby) — In(p6;) . By (36) and (48), and noticing (41), the
perturbation variables (Q, u, ®, £, ®) satisfy
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1 1 C)
8,;0+u-VQ +2V-u+u-Vg+—u- (VX B)x B) = —— lu*— =,

0 26 0
O+ -Vyu+6VQ0+ OVg

= l (VXB)YXx B+ VD +l (uAu + (u+2) Vdivu) ,
P Y (49)

1 1
0,®+u-V®+9divu+;u-((Vx<%’)><%):—§|u|2—®,

0B +V X (B xu)=vAB, div# =0,
AD =¢, (t,x) € (0,00) X R?,

with the initial condition
Pl =77 (50)

Here ¢ is regarded as a function of Q and ©

= —_:E—é_
E=p—p 5

q
7 -—=0(Q)+0(). (51)

e
6 6
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Next, we denote
u; 2ejT 0
A0 =| 6e; uly 0|, j=123,
0 HejT uj
0 V)t o
LEo=o o vzl

0 0 0
0

1 1,
—Ql/t . ((Vx%’)xe@)—z—elul —5

1 1
H(o,u, 0, B,VD)=| — (VXB)XLB+VO+— (uAu+(u + ) Vdivu)
p P

—lu-((Vx%)x%)— l|u|2 -0
P 2
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Then the first three equations in (49) can be rewritten as:

3
OYVE+ Y f (u,0)0,VF + LF¥ () vF = 4 (o,u,0, B,VD). (55)
J J

J=1

From (37) and (48), the initial condition for (55) is
7/F|t:0 = 7/0F« (56)

We denote by 7] (p,0) the symmetrizer defined by

p 0 —p
g (p,)=| 0 pls 0 |, (57)
2p
— 0o =
P 0

which is symmetric and positive definite when p > 0 and 6 > 0.
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It is easy to check that
puj  pel  —pu;
A (p,u,0) = A (p,0) A w.0)=| pej puls 0
—pouj 0 —-u

is symmetric.
Let us introduce matrix

3
B(pu,0,x)= Y 6T (p,u,0) - 257 (p,0) L7 (x).

=
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Since

Vg =L,
we have
V- (pu) (vm’—%”(va v (2)
Bp.uox=| p v (2 -z—ng . (58
V(5w ()

which is antisymmetric at the point (p, u, 6) = (5,0, 6).
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4.2 Energy estimates for the full MHD system.

Let T > 0 and # be a smooth solution to the Cauchy problem
(49)-(50) defined on time interval [0, T]. Let

wE = sup [#F @)

0<t<T

We suppose that s > 3 and %7 is sufficiently small with respect to
T. Then it follows that

3 1 3 _ 3_
ﬁﬁpﬁiﬁ, EQISQSEGZ, psp=s3p (59)

N =
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lemma 5.

For all ¢ € [0, T7], it holds
18:pIl + 18,61 < C ([Vully + 1©],) » (60)
[0:pll + 10:8ll < C(IVull, + 1IVOll), (61)
and
B, u,6.07F, )| < W 1I,2; # T vy, (62)
where
DEAT@) =100 1P + IVu @) |2 +110 (1) 2. (63)
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Next, we want to establish an energy estimate of the form

EWE@) + f W F(t))dr < CEHT(0)), te[0,T].  (64)
0

where
EXT@) =IQDO I+ @I+ 10D |2 + 1B )| + VO (1) |2, (65)

and
2 EW) = ZEHT @) +IVB () |12 (66)
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lemma 6. (L? estimates for the full MHD system.)
For all ¢ € [0, T, it holds

4
dt
+2 (uIVull? + (u + ) lldival*) +2 <§, |®|2> +2v||[VA|? (67)

(e @) * 7Y+ 121 + IvalP)

<C |||, 2.7 @0y).
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Lemma 7. (Higher order estimates for the full MHD system).

For all r € [0,T] and @ € N3 with 1 < |e| < s, there is a constant Cy > 0
such that

d% ((eror s o) + ez + e val)

+ o loval” + lordivad+ 0@ + lomverf (68)

<CGpy W)+ [T, 2,077 ).

where we have used

Il < (I, + l1l1,).- (69)
_ 1 1 &
which is deduced from — = - — = and (51).
p P pp
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From Lemma 6 and Lemma 7, we obtain

Proposition 5.

Forall z € [0,T], @ € N? with 1 < |a| < s, it holds

% > (<%Faﬁ7/F, FrrY + |2 + ||aﬂvq>||2)
pa

+ Co (IVully + Idivaly, + IOIF, + VI,
<Cpy W) + C |||, 27 ().
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Dissipation estimates for Q

Estimate (70) contains a recurrence relation on the time dissipation
of Vu and @. It is clear that this estimate is not sufficient to complete the
proof of (64). The dissipation estimates of Q is necessary.
Proposition 6.

Forall z € [0,T], @ € N? with 1 < |a| < s, it holds
d
BI<lal-1
+ CollQlly,

<CGpy W)+ C|#F||, 207" ),

(71)

d
— . YO+ GolIQI < CIVuli +ClOP+C 7| 2,7 ). (72)
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and

E3 (s vy + o s + Jorval)

lal<1
+ Co(IVull} + 1011} + IV}
<o (IIIP + 18IP) + CIVull? + C|[#F||, 2 (#F @),

where gy > 0 is a small constant to be chosen later.
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Proposition 7.
There exist positive constants 7 and C; such that, for all € [0, T], @ € N

with 1 < |a] < s, it holds

E(Z(<%F637F,63“//F>+||65g3||2+||8"Vq)||2)+ S 10 0v0))

dt
Ba lyl<lal-1

+ C PP (1)
<C W)+ C|#F|| 2,077 ).

|-

(74)
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4.3 Proof of Theorem 2.

We still carry on the induction on || for (74) and (72)-(73).

For |a| = 1, we multiplies 7 on both sides of (72).

We observe that the term Cr(|[Vull? + ||®]|*) can be controlled by
IVull? +11©I? on the left-hand side of (73),

and the term &y(||Q|I* + ||®]|?) on the right-hand side of (73) can be
controlled by [|Q|I + |®]I7 when &, > 0 is sufficiently small.

Then, there is a constant a; > 0 such that

aj d%( l;q«%FaWF, oV Fy+ 0”2 +10° vVl

+7 (. VO) )+ Z(H T (1)
<C|\Vull + C|[# ", 27 ).
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In this way, for |o| > 2, 2, ,(#7 (1)) on the right-hand side of (74)
can be controlled by .@|(,|(77 (1) in the preceding step on the left-hand
side of (74) multiplying an appropriate large positive constant. So, we
obtain that there are positive constants a; > 0(1 < k < s) such that
d A

2 al ) (Al Ty + o B+ 10V 47 Y (0.7 V))
k=1 |lr|<k [y<lal-1

+ 2,0 (1) < CIIVull® + I F I, 2, T (1), (76)
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By use of formulas (22) and (33) and noting ||#7||; is small, we

have
% Dlal D (oo Ty + 07 B + 16V +n Y (0w, 67V0))
k=1 ler|<k lyI<led-1
+2,WF (1) <0, (77)

where the constant a; > 0 may be amended again.
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When 7 > 0 is small enough,

x al S (aF v EF YTy + |00 B + 10*VOI? + 1 (@ u, PV Q))
0

k=1 la|<k [yl<|er|-1

is equivalent to
EXTD) = 10O 12+ u@ 1 +10 @) | + 1B @) |2 + VO (1) 2.

Integrating (77) from 0 to ¢, and with the help of (69), we get (43).
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Moreover, (43) implies that, forall 8| <s—1and |y| < s -3,

Plp-p).0P0-6) € L*(R*, L*(R})) n W (R, L*(RY)),

and
OVu, VB € L* (R, L*(RY)) n W (RY, L2(RY)),

which implies (44)-(45). The proof of Theorem 2 is finished.
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Thanks a lot for your attention
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