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Diploid Population at Single Locus

Alleles A1, A2, . . ., An; genotypes AiAj (=AjAi)

E.g., At ABO locus for human blood type, there are 3 major alleles
A, B, O; and 6 genotypes AA, AB, AO, BO, BB, OO
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Selection Equation by Mendel’s Laws1

dpi
dt

= pi[ri(p)− r̄(p)] (S)

pi(t): frequency of allele Ai at time t, 1 6 i 6 n

p = (p1, p2, . . . , pn): gene freq. vector;

p ∈ ∆n = {p ∈ Rn : 0 6 pi 6 1,
∑

i pi = 1} (n-simplex)

rij : fitness of genotype AiAj , 1 6 i, j 6 n; rij = rji

ri =
∑

j rijpj : fitness of allele Ai

r̄ =
∑

i ripi =
∑

i,j rijpipj : mean fitness

Selection is relative fitness of alleles

I p(0) ∈ ∆n ⇒ p(t) ∈ ∆n ∀ t > 0

I dr̄/dt = 2
∑

i pi(ri − r̄)2 > 0, “=” holds iff at equilibrium

1Nagylaki 1992, Chap. 4.10
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Sir Ronald Aylmer Fisher (17 Feb 1890 ⧵29 Jul 1962)
British statistician and geneticist

Fisher’s Fundamental Theorem of Natural Selection (1930)

“The rate of increase in fitness of any organism at any
time is equal to its genetic variance at that time.”

This integrates the principles of Mendelian genetics with Darwinian
natural selection.
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Selection with Spatial Structure
Ω: smooth bounded domain in RN , habitat.

pi(x, t): freq. of allele Ai at location x ∈ Ω and time t, 1 6 i 6 n

∂pi
∂t

= ∆pi + λpi[ri(x, p)− r̄(x, p)], x ∈ Ω, t > 0 (MS)

with zero Neumann b.c.

I λ > 0 is ratio of selection intensity s to migration rate d

I p = (p1, . . . , pn), ri(x, p) =
∑

j rij(x)pj , r̄(x, p) =
∑

i ripi
I p(x, 0) ∈ ∆n ⇒ p(x, t) ∈ ∆n ∀x ∈ Ω, ∀ t > 0

Core questions: protection/elimination of certain allele(s);
existence, uniqueness, multiplicity of pos. equilibriums; stability of
equilibriums; global dynamics, etc.

(Lou, Nagylaki 2002, 2004, 2006 JDE; Lou, Nagylaki, Ni 2013 DCDS;

Hofbauer, Su 2016 SIAP)
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2. Theory of two-allele migration-selection models
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Two Alleles and Degree of Dominance
p1 = u(x, t): freq. of allele A1 at location x ∈ Ω ⊂ RN and time t,
p2 = 1− u: freq. of allele A2.

Fitness of genotype AiAj : rij(x) = cijg(x), where

c11 = 1, c12 = c21 = h, c22 = −1;

h ∈ [−1, 1] degree of dominance.

Effect of selection on A1:

p1[r1(x, p)− r̄(x, p)] = g(x)u(1− u)[1 + h− 2hu]︸ ︷︷ ︸
fh(u)

I h = 0: fh(u) = u(1− u), no dominance (as in Fisher’s eq.)

I h = −1: fh(u) = 2u2(1− u), A1 recessive (or A2 completely
dominant to A1)

I h = 1: fh(u) = 2u(1− u)2, A2 recessive
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Migration-Selection Equation for Two Alleles

ut = ∆u+ λg(x)f(u), x ∈ Ω, t > 0 (MS2)

with zero Neumann b.c.

I λ > 0: ratio of selection intensity s to migration rate d

I throughout assume

f(0) = f(1) = 0; f(u) > 0, u ∈ (0, 1); f ∈ C1([0, 1])

(cf., fh(u) = u(1− u)[1 + h− 2hu])

I trivial equils. u ≡ 0 and u ≡ 1

I 0 =
´

Ω[∆u+ λgf(u)] dx =
´

Ω λgf(u) dx

⇒ ∃ nontrivial equil. only if g(x) changes sign

I By strong maximum principle,

every nontrivial equil. u(x) ∈ (0, 1) in Ω̄

u(x, 0) ∈ [0, 1], 6≡ 0, 6≡ 1 ⇒ u(x, t) ∈ (0, 1), ∀ x ∈ Ω̄, t > 0
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Migration-Selection Balance
Without migration ut = λg(x)f(u):

g(x) > 0 ⇒ u(x, t)→ 1 as t→∞;
g(x) < 0 ⇒ u(x, t)→ 0 as t→∞.

Q: Does migration facilitate the maintenance of genetic variety
(i.e., nontrivial equilibriums)?

Theorem. Assume f ′(0) > 0, f ′(1) < 0 (e.g., fh with |h| < 1).
(i) If

´
Ω g(x) dx = 0, then a nontrivial equil. always exists with

migration.

(ii) If
´

Ω g(x) dx 6= 0, then a nontrivial equil. exists if migration is
not too strong (compared to selection), i.e., λ > λ∗.

I Fleming 1975 JMB (∆): variational approach

I Hess & Senn 1982 Math. Ann. (elliptic L): indefinite-weight
eigenvalue problem with principal eigenvalue λ∗ (Lϕ+λm(x)ϕ = 0)

I Senn 1983 CPDE (elliptic L): linearization at u = 0, 1, upper and
lower solutions, global bifurcation w.r.t. λ
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Uniqueness of Nontrivial Equilibrium

Theorem. If f ′′(u) < 0 in (0, 1) (e.g., fh with |h| 6 1/3), then
nontrivial equil. (if ∃) is unique and globally asymptotically stable.
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Nontrivial Equilibrium near Bifurcation.I

Theorem. (i) If
´

Ω g(x) dx = 0 and f ′(0) > 0, f ′(1) < 0, then
max. (min.) points of f lead to stable (unstable) branches

I Brown and Lin 1981 (∆ with stability); Senn 1983 (elliptic L)
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Nontrivial Equilibrium near Bifurcation.II

Theorem. (ii) If
´

Ω g(x) dx < 0 and f ′(0) > 0, then

I Fleming 1975 (∆), Senn 1983 (elliptic L)

(iii) The case
´

Ω g(x) dx > 0 and f ′(1) < 0 is similar.
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3. The complexity of the complete dominance case
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The Complete Dominance Case
When allele A2 is completely dominant to allele A1, h = −1 and

fh(u) = u(1− u)[1 + h− 2hu] = 2u2(1− u).

Thus, (MS2) becomes

ut = ∆u+ λg(x)u2(1− u), x ∈ Ω, t > 0 (CD)

Difficulties
I degeneracy: f ′(0) = 0
I f is unimodal but not concave in (0, 1)

Conjecture of Lou-Nagylaki (2002 JDE, 2008 Tutorials in

mathematical biosciences IV):
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Positive Answers to LN Conjecture

I Existence: Nakashima, Ni, Su 2010 DCDS; Lou, Ni, Su 2010
DCDS

I Uniqueness for
´
g > 0: Ω = (−1, 1), large λ, g(x) > b1(x),

Nakashima 2016, 2018 JDE
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Negative Answers to LN Conjecture
For Ω = (−1, 1) and large λ,

I
´
g < 0: Nakashima 2020 JDE (∃ g with 2 pos. nodal

domains, g(x) < b2(x), ∃ 8 equils. )

I For λg+ − µg−, g has m pos. domains, λ > λ̃, µ > µ̃(λ),
then ∃ (3m − 1) equils. Feltrin, Sovrano 2018 Nonlinearity;
Boscaggin, Feltrin, Sovrano 2020 Adv. Nonlinear Stud.

Fig. 1 in F-S 2018, λ = 20, µ = 500, g = sin(πt), Ω = (0, 3)
I
´
g > 0: Nakashima, Su 2020 JDE (∃ g with 2 pos. domains,

g(x) < b3(x), 3 equils.)
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Some Open Problems

I For the complete dominance case f(u) = u2(1− u),
when Ω = (−1, 1) and g(x) changes sign only once, does LN
Conjecture hold?

I Equilibrium structure of (SM2) when f is not concave in (0, 1)
and not degenerate at 0 and 1 (e.g., |h| < 1)?

I Dynamics and euqil. structure of system (SM) for multiple
alleles?
(Many open problems in Lou-Nagylaki-Ni 2013 DCDS)
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4. Various extensions of migration-selection models
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(MS) + Long-Distance Migration

In Nagylaki 2012a TPB, long-distance migration was approximated
by panmixia:

∂pi
∂t

= ∆pi + pi[ri(x, p)− r̄(x, p)] + b[p̄i(t)− pi], x ∈ Ω, t > 0

with zero Neumann b.c., where

p̄i(t) = 1
|Ω|
´

Ω pi(x, t) dx, b > 0 rescaled panmictic rate.

(Nagylaki 2012b TPB; Lou, Nagylaki, Su 2013 JDE; Su, Nagylaki 2015

DCDS; Li, Nakashima, Ni 2017 Eur. J. Appl. Math., etc.)
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(MS) + Long-Distance Migration + Geographical Barrier

Nagylaki (2016 TPB) proposed

∂pi
∂t

= ∆pi + pi[ri(x, p)− r̄(x, p)] + b[p̄i(t)− pi], x ∈ Ω, t > 0

with zero Neumann b.c. on ∂Ω and transition condition

∇νpi(x±, t) = γ±[pi(x+, t)− pi(x−, t)], x ∈ Γ, t > 0. (TC)

Here Γ barrier, Ω = Ω− ∪ Γ ∪ Ω+, Ω− ∩ Ω+ = ∅, ν unit normal
vector along Γ from Ω− to Ω+, x± limit of x as x→ Γ from Ω±,
γ+ and γ− rescaled rightward and leftward transmissivities.
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(MS) + Long-Distance Migration + Geographical Barrier

∇νpi(x±, t) = γ±[pi(x+, t)− pi(x−, t)], x ∈ Γ, t > 0 (TC)

I Earlier work that includes barrier: Slatkin 1973 Genetics,
Nagylaki 1996 JMB, Piálek and Barton 1997 Genetics, etc.

I Nagylaki (2016 TPB) derived (TC) for Ω ⊂ R and Γ = {0}
and did analysis for f(u) = u(1− u) (no dominance).

I Wang and Su (2020 DCDS) treated general f .

I Question: Can (TC) be derived by the method of effective
boundary conditions? Yes, if γ+ = γ− (Li and Wang 2017
Nonlinearity).
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Nagylaki 1996 JMB, Piálek and Barton 1997 Genetics, etc.

I Nagylaki (2016 TPB) derived (TC) for Ω ⊂ R and Γ = {0}
and did analysis for f(u) = u(1− u) (no dominance).

I Wang and Su (2020 DCDS) treated general f .

I Question: Can (TC) be derived by the method of effective
boundary conditions? Yes, if γ+ = γ− (Li and Wang 2017
Nonlinearity).

23 / 25



(MS) + Recombination
Locus A: alleles A, a; locus B: alleles B, b
4 types of gametes: AB, Ab, aB, ab
Recombination of two loci during meiosis

Freqs. of gametes p = (p1, . . . , p4) ∈ ∆4 and obey

∂tpi = d∆pi + λSi(x, p)− ηiρD, x ∈ Ω, t > 0 (MS+R)

with zero Neumann b.c. Here ρ rescaled recombination rate,
D = p1p4 − p2p3 (linkage disequilibrium),
η1 = η4 = −η2 = −η3 = 1,
S1(x, p) = p1[α(x)(p3 + p4) + β(x)(p2 + p4)], · · · (selection)

(Slatkin 1975 Genetics, Barton 1986 Heredity, Bürger 2017 TPB,

Su-Lam-Bürger 2019 JDE)
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