Dynamics and Equilibrium Structure of Migration-Selection Models

Linlin Su
Department of Mathematics
Southern University of Science and Technology

29 Nov. 2020

Outline

1. A semilinear parabolic system pertaining to selection and migration
2. Theory of two-allele migration-selection models
3. The complexity of the complete dominance case
4. Various extensions of migration-selection models
5. A semilinear parabolic system pertaining to selection and migration

Diploid Population at Single Locus

Alleles $A_{1}, A_{2}, \ldots, A_{n}$; genotypes $A_{i} A_{j}\left(=A_{j} A_{i}\right)$
E.g., At ABO locus for human blood type, there are 3 major alleles A, B, O; and 6 genotypes $A A, A B, A O, B O, B B, O O$

Selection Equation by Mendel's Laws ${ }^{1}$

$$
\begin{equation*}
\frac{d p_{i}}{d t}=p_{i}\left[r_{i}(p)-\bar{r}(p)\right] \tag{S}
\end{equation*}
$$

$p_{i}(t)$: frequency of allele A_{i} at time $t, 1 \leqslant i \leqslant n$
$p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$: gene freq. vector;
$p \in \Delta_{n}=\left\{p \in \mathbb{R}^{n}: 0 \leqslant p_{i} \leqslant 1, \sum_{i} p_{i}=1\right\}$ (n-simplex)

Selection Equation by Mendel's Laws ${ }^{1}$

$$
\begin{equation*}
\frac{d p_{i}}{d t}=p_{i}\left[r_{i}(p)-\bar{r}(p)\right] \tag{S}
\end{equation*}
$$

$p_{i}(t)$: frequency of allele A_{i} at time $t, 1 \leqslant i \leqslant n$
$p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$: gene freq. vector;
$p \in \Delta_{n}=\left\{p \in \mathbb{R}^{n}: 0 \leqslant p_{i} \leqslant 1, \sum_{i} p_{i}=1\right\}$ (n-simplex)
$r_{i j}$: fitness of genotype $A_{i} A_{j}, 1 \leqslant i, j \leqslant n ; r_{i j}=r_{j i}$

Selection Equation by Mendel's Laws ${ }^{1}$

$$
\begin{equation*}
\frac{d p_{i}}{d t}=p_{i}\left[r_{i}(p)-\bar{r}(p)\right] \tag{S}
\end{equation*}
$$

$p_{i}(t)$: frequency of allele A_{i} at time $t, 1 \leqslant i \leqslant n$
$p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$: gene freq. vector;
$p \in \Delta_{n}=\left\{p \in \mathbb{R}^{n}: 0 \leqslant p_{i} \leqslant 1, \sum_{i} p_{i}=1\right\}$ (n-simplex)
$r_{i j}$: fitness of genotype $A_{i} A_{j}, 1 \leqslant i, j \leqslant n ; r_{i j}=r_{j i}$
$r_{i}=\sum_{j} r_{i j} p_{j}$: fitness of allele A_{i}

Selection Equation by Mendel's Laws ${ }^{1}$

$$
\begin{equation*}
\frac{d p_{i}}{d t}=p_{i}\left[r_{i}(p)-\bar{r}(p)\right] \tag{S}
\end{equation*}
$$

$p_{i}(t)$: frequency of allele A_{i} at time $t, 1 \leqslant i \leqslant n$
$p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$: gene freq. vector;
$p \in \Delta_{n}=\left\{p \in \mathbb{R}^{n}: 0 \leqslant p_{i} \leqslant 1, \sum_{i} p_{i}=1\right\}$ (n-simplex)
$r_{i j}$: fitness of genotype $A_{i} A_{j}, 1 \leqslant i, j \leqslant n ; r_{i j}=r_{j i}$
$r_{i}=\sum_{j} r_{i j} p_{j}$: fitness of allele A_{i}
$\bar{r}=\sum_{i} r_{i} p_{i}=\sum_{i, j} r_{i j} p_{i} p_{j}$: mean fitness

Selection Equation by Mendel's Laws ${ }^{1}$

$$
\begin{equation*}
\frac{d p_{i}}{d t}=p_{i}\left[r_{i}(p)-\bar{r}(p)\right] \tag{S}
\end{equation*}
$$

$p_{i}(t)$: frequency of allele A_{i} at time $t, 1 \leqslant i \leqslant n$
$p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$: gene freq. vector;
$p \in \Delta_{n}=\left\{p \in \mathbb{R}^{n}: 0 \leqslant p_{i} \leqslant 1, \sum_{i} p_{i}=1\right\}$ (n-simplex)
$r_{i j}$: fitness of genotype $A_{i} A_{j}, 1 \leqslant i, j \leqslant n ; r_{i j}=r_{j i}$
$r_{i}=\sum_{j} r_{i j} p_{j}$: fitness of allele A_{i}
$\bar{r}=\sum_{i} r_{i} p_{i}=\sum_{i, j} r_{i j} p_{i} p_{j}$: mean fitness
Selection is relative fitness of alleles

Selection Equation by Mendel's Laws ${ }^{1}$

$$
\begin{equation*}
\frac{d p_{i}}{d t}=p_{i}\left[r_{i}(p)-\bar{r}(p)\right] \tag{S}
\end{equation*}
$$

$p_{i}(t)$: frequency of allele A_{i} at time $t, 1 \leqslant i \leqslant n$
$p=\left(p_{1}, p_{2}, \ldots, p_{n}\right):$ gene freq. vector;
$p \in \Delta_{n}=\left\{p \in \mathbb{R}^{n}: 0 \leqslant p_{i} \leqslant 1, \sum_{i} p_{i}=1\right\}$ (n-simplex)
$r_{i j}$: fitness of genotype $A_{i} A_{j}, 1 \leqslant i, j \leqslant n ; r_{i j}=r_{j i}$
$r_{i}=\sum_{j} r_{i j} p_{j}$: fitness of allele A_{i}
$\bar{r}=\sum_{i} r_{i} p_{i}=\sum_{i, j} r_{i j} p_{i} p_{j}$: mean fitness
Selection is relative fitness of alleles

- $p(0) \in \Delta_{n} \Rightarrow p(t) \in \Delta_{n} \forall t>0$

Selection Equation by Mendel's Laws ${ }^{1}$

$$
\begin{equation*}
\frac{d p_{i}}{d t}=p_{i}\left[r_{i}(p)-\bar{r}(p)\right] \tag{S}
\end{equation*}
$$

$p_{i}(t)$: frequency of allele A_{i} at time $t, 1 \leqslant i \leqslant n$
$p=\left(p_{1}, p_{2}, \ldots, p_{n}\right):$ gene freq. vector;
$p \in \Delta_{n}=\left\{p \in \mathbb{R}^{n}: 0 \leqslant p_{i} \leqslant 1, \sum_{i} p_{i}=1\right\}$ (n-simplex)
$r_{i j}$: fitness of genotype $A_{i} A_{j}, 1 \leqslant i, j \leqslant n ; r_{i j}=r_{j i}$
$r_{i}=\sum_{j} r_{i j} p_{j}$: fitness of allele A_{i}
$\bar{r}=\sum_{i} r_{i} p_{i}=\sum_{i, j} r_{i j} p_{i} p_{j}$: mean fitness
Selection is relative fitness of alleles

- $p(0) \in \Delta_{n} \Rightarrow p(t) \in \Delta_{n} \forall t>0$
- $d \bar{r} / d t=2 \sum_{i} p_{i}\left(r_{i}-\bar{r}\right)^{2} \geqslant 0, \quad "="$ holds iff at equilibrium

[^0]

Sir Ronald Aylmer Fisher (17 Feb 1890 - 29 Jul 1962)
British statistician and geneticist
Fisher's Fundamental Theorem of Natural Selection (1930)
"The rate of increase in fitness of any organism at any
time is equal to its genetic variance at that time."

Sir Ronald Aylmer Fisher (17 Feb 1890 - 29 Jul 1962)
British statistician and geneticist
Fisher's Fundamental Theorem of Natural Selection (1930)
"The rate of increase in fitness of any organism at any time is equal to its genetic variance at that time."

This integrates the principles of Mendelian genetics with Darwinian natural selection.

Selection with Spatial Structure

Ω : smooth bounded domain in \mathbb{R}^{N}, habitat.
$p_{i}(x, t)$: freq. of allele A_{i} at location $x \in \Omega$ and time $t, 1 \leqslant i \leqslant n$

$$
\begin{equation*}
\frac{\partial p_{i}}{\partial t}=\Delta p_{i}+\lambda p_{i}\left[r_{i}(x, p)-\bar{r}(x, p)\right], \quad x \in \Omega, \quad t>0 \tag{MS}
\end{equation*}
$$

with zero Neumann b.c.

- $\lambda>0$ is ratio of selection intensity s to migration rate d
- $p=\left(p_{1}, \ldots, p_{n}\right), r_{i}(x, p)=\sum_{j} r_{i j}(x) p_{j}, \quad \bar{r}(x, p)=\sum_{i} r_{i} p_{i}$
- $p(x, 0) \in \Delta_{n} \Rightarrow p(x, t) \in \Delta_{n} \quad \forall x \in \Omega, \forall t>0$

Selection with Spatial Structure

Ω : smooth bounded domain in \mathbb{R}^{N}, habitat.
$p_{i}(x, t)$: freq. of allele A_{i} at location $x \in \Omega$ and time $t, 1 \leqslant i \leqslant n$

$$
\begin{equation*}
\frac{\partial p_{i}}{\partial t}=\Delta p_{i}+\lambda p_{i}\left[r_{i}(x, p)-\bar{r}(x, p)\right], \quad x \in \Omega, \quad t>0 \tag{MS}
\end{equation*}
$$

with zero Neumann b.c.

- $\lambda>0$ is ratio of selection intensity s to migration rate d
- $p=\left(p_{1}, \ldots, p_{n}\right), r_{i}(x, p)=\sum_{j} r_{i j}(x) p_{j}, \quad \bar{r}(x, p)=\sum_{i} r_{i} p_{i}$
- $p(x, 0) \in \Delta_{n} \Rightarrow p(x, t) \in \Delta_{n} \quad \forall x \in \Omega, \forall t>0$

Core questions: protection/elimination of certain allele(s); existence, uniqueness, multiplicity of pos. equilibriums; stability of equilibriums; global dynamics, etc.

Selection with Spatial Structure

Ω : smooth bounded domain in \mathbb{R}^{N}, habitat.
$p_{i}(x, t)$: freq. of allele A_{i} at location $x \in \Omega$ and time $t, 1 \leqslant i \leqslant n$

$$
\begin{equation*}
\frac{\partial p_{i}}{\partial t}=\Delta p_{i}+\lambda p_{i}\left[r_{i}(x, p)-\bar{r}(x, p)\right], \quad x \in \Omega, \quad t>0 \tag{MS}
\end{equation*}
$$

with zero Neumann b.c.

- $\lambda>0$ is ratio of selection intensity s to migration rate d
- $p=\left(p_{1}, \ldots, p_{n}\right), r_{i}(x, p)=\sum_{j} r_{i j}(x) p_{j}, \bar{r}(x, p)=\sum_{i} r_{i} p_{i}$
- $p(x, 0) \in \Delta_{n} \Rightarrow p(x, t) \in \Delta_{n} \quad \forall x \in \Omega, \forall t>0$

Core questions: protection/elimination of certain allele(s); existence, uniqueness, multiplicity of pos. equilibriums; stability of equilibriums; global dynamics, etc.
(Lou, Nagylaki 2002, 2004, 2006 JDE; Lou, Nagylaki, Ni 2013 DCDS; Hofbauer, Su 2016 SIAP)
2. Theory of two-allele migration-selection models

Two Alleles and Degree of Dominance

$p_{1}=u(x, t)$: freq. of allele A_{1} at location $x \in \Omega \subset \mathbb{R}^{N}$ and time t, $p_{2}=1-u$: freq. of allele A_{2}.

Two Alleles and Degree of Dominance

$p_{1}=u(x, t)$: freq. of allele A_{1} at location $x \in \Omega \subset \mathbb{R}^{N}$ and time t, $p_{2}=1-u$: freq. of allele A_{2}.

Fitness of genotype $A_{i} A_{j}: r_{i j}(x)=c_{i j} g(x)$, where

$$
c_{11}=1, \quad c_{12}=c_{21}=h, \quad c_{22}=-1 ;
$$

$h \in[-1,1]$ degree of dominance.

Two Alleles and Degree of Dominance

$p_{1}=u(x, t)$: freq. of allele A_{1} at location $x \in \Omega \subset \mathbb{R}^{N}$ and time t, $p_{2}=1-u$: freq. of allele A_{2}.

Fitness of genotype $A_{i} A_{j}: r_{i j}(x)=c_{i j} g(x)$, where

$$
c_{11}=1, \quad c_{12}=c_{21}=h, \quad c_{22}=-1 ;
$$

$h \in[-1,1]$ degree of dominance.
Effect of selection on A_{1} :

$$
p_{1}\left[r_{1}(x, p)-\bar{r}(x, p)\right]=g(x) \underbrace{u(1-u)[1+h-2 h u]}_{f_{h}(u)}
$$

Two Alleles and Degree of Dominance

$p_{1}=u(x, t)$: freq. of allele A_{1} at location $x \in \Omega \subset \mathbb{R}^{N}$ and time t, $p_{2}=1-u$: freq. of allele A_{2}.

Fitness of genotype $A_{i} A_{j}: r_{i j}(x)=c_{i j} g(x)$, where

$$
c_{11}=1, \quad c_{12}=c_{21}=h, \quad c_{22}=-1
$$

$h \in[-1,1]$ degree of dominance.
Effect of selection on A_{1} :

$$
p_{1}\left[r_{1}(x, p)-\bar{r}(x, p)\right]=g(x) \underbrace{u(1-u)[1+h-2 h u]}_{f_{h}(u)}
$$

- $h=0: f_{h}(u)=u(1-u)$, no dominance (as in Fisher's eq.)
- $h=-1: f_{h}(u)=2 u^{2}(1-u), A_{1}$ recessive (or A_{2} completely dominant to A_{1})
- $h=1: f_{h}(u)=2 u(1-u)^{2}, A_{2}$ recessive

Migration-Selection Equation for Two Alleles

$$
\begin{equation*}
u_{t}=\Delta u+\lambda g(x) f(u), \quad x \in \Omega, \quad t>0 \tag{2}
\end{equation*}
$$

with zero Neumann b.c.

- $\lambda>0$: ratio of selection intensity s to migration rate d

Migration-Selection Equation for Two Alleles

$$
\begin{equation*}
u_{t}=\Delta u+\lambda g(x) f(u), \quad x \in \Omega, \quad t>0 \tag{2}
\end{equation*}
$$

with zero Neumann b.c.

- $\lambda>0$: ratio of selection intensity s to migration rate d
- throughout assume

$$
\begin{aligned}
& \quad f(0)=f(1)=0 ; f(u)>0, u \in(0,1) ; f \in C^{1}([0,1]) \\
& \left(c f ., f_{h}(u)=u(1-u)[1+h-2 h u]\right)
\end{aligned}
$$

Migration-Selection Equation for Two Alleles

$$
\begin{equation*}
u_{t}=\Delta u+\lambda g(x) f(u), \quad x \in \Omega, \quad t>0 \tag{2}
\end{equation*}
$$

with zero Neumann b.c.

- $\lambda>0$: ratio of selection intensity s to migration rate d
- throughout assume

$$
\begin{aligned}
& \quad f(0)=f(1)=0 ; f(u)>0, u \in(0,1) ; f \in C^{1}([0,1]) \\
& \left(\text { cf., } f_{h}(u)=u(1-u)[1+h-2 h u]\right)
\end{aligned}
$$

- trivial equils. $u \equiv 0$ and $u \equiv 1$

Migration-Selection Equation for Two Alleles

$$
\begin{equation*}
u_{t}=\Delta u+\lambda g(x) f(u), \quad x \in \Omega, \quad t>0 \tag{2}
\end{equation*}
$$

with zero Neumann b.c.

- $\lambda>0$: ratio of selection intensity s to migration rate d
- throughout assume

$$
\begin{aligned}
& \quad f(0)=f(1)=0 ; f(u)>0, u \in(0,1) ; f \in C^{1}([0,1]) \\
& \left(\text { cf., } f_{h}(u)=u(1-u)[1+h-2 h u]\right)
\end{aligned}
$$

- trivial equils. $u \equiv 0$ and $u \equiv 1$
- $0=\int_{\Omega}[\Delta u+\lambda g f(u)] d x=\int_{\Omega} \lambda g f(u) d x$

Migration-Selection Equation for Two Alleles

$$
\begin{equation*}
u_{t}=\Delta u+\lambda g(x) f(u), \quad x \in \Omega, \quad t>0 \tag{2}
\end{equation*}
$$

with zero Neumann b.c.

- $\lambda>0$: ratio of selection intensity s to migration rate d
- throughout assume

$$
\begin{aligned}
& \quad f(0)=f(1)=0 ; f(u)>0, u \in(0,1) ; f \in C^{1}([0,1]) \\
& \left(\text { cf., } f_{h}(u)=u(1-u)[1+h-2 h u]\right)
\end{aligned}
$$

- trivial equils. $u \equiv 0$ and $u \equiv 1$
- $0=\int_{\Omega}[\Delta u+\lambda g f(u)] d x=\int_{\Omega} \lambda g f(u) d x$
$\Rightarrow \exists$ nontrivial equil. only if $g(x)$ changes sign

Migration-Selection Equation for Two Alleles

$$
\begin{equation*}
u_{t}=\Delta u+\lambda g(x) f(u), \quad x \in \Omega, \quad t>0 \tag{2}
\end{equation*}
$$

with zero Neumann b.c.

- $\lambda>0$: ratio of selection intensity s to migration rate d
- throughout assume

$$
\begin{aligned}
& \quad f(0)=f(1)=0 ; f(u)>0, u \in(0,1) ; f \in C^{1}([0,1]) \\
& \left(\text { cf., } f_{h}(u)=u(1-u)[1+h-2 h u]\right)
\end{aligned}
$$

- trivial equils. $u \equiv 0$ and $u \equiv 1$
- $0=\int_{\Omega}[\Delta u+\lambda g f(u)] d x=\int_{\Omega} \lambda g f(u) d x$ $\Rightarrow \exists$ nontrivial equil. only if $g(x)$ changes sign
- By strong maximum principle, every nontrivial equil. $u(x) \in(0,1)$ in $\bar{\Omega}$ $u(x, 0) \in[0,1], \not \equiv 0, \not \equiv 1 \Rightarrow u(x, t) \in(0,1), \forall x \in \bar{\Omega}, t>0$

Migration-Selection Balance

Without migration $u_{t}=\lambda g(x) f(u)$:

$$
\begin{aligned}
& g(x)>0 \Rightarrow u(x, t) \rightarrow 1 \text { as } t \rightarrow \infty ; \\
& g(x)<0 \Rightarrow u(x, t) \rightarrow 0 \text { as } t \rightarrow \infty .
\end{aligned}
$$

Migration-Selection Balance

Without migration $u_{t}=\lambda g(x) f(u)$:

$$
\begin{aligned}
& g(x)>0 \Rightarrow u(x, t) \rightarrow 1 \text { as } t \rightarrow \infty ; \\
& g(x)<0 \Rightarrow u(x, t) \rightarrow 0 \text { as } t \rightarrow \infty .
\end{aligned}
$$

Q: Does migration facilitate the maintenance of genetic variety (i.e., nontrivial equilibriums)?

Migration-Selection Balance

Without migration $u_{t}=\lambda g(x) f(u)$:

$$
\begin{aligned}
& g(x)>0 \Rightarrow u(x, t) \rightarrow 1 \text { as } t \rightarrow \infty ; \\
& g(x)<0 \Rightarrow u(x, t) \rightarrow 0 \text { as } t \rightarrow \infty .
\end{aligned}
$$

Q: Does migration facilitate the maintenance of genetic variety (i.e., nontrivial equilibriums)?

Theorem. Assume $f^{\prime}(0)>0, f^{\prime}(1)<0$ (e.g., f_{h} with $|h|<1$).
(i) If $\int_{\Omega} g(x) d x=0$, then a nontrivial equil. always exists with migration.
(ii) If $\int_{\Omega} g(x) d x \neq 0$, then a nontrivial equil. exists if migration is not too strong (compared to selection), i.e., $\lambda>\lambda^{*}$.

Migration-Selection Balance

Without migration $u_{t}=\lambda g(x) f(u)$:

$$
\begin{aligned}
& g(x)>0 \Rightarrow u(x, t) \rightarrow 1 \text { as } t \rightarrow \infty ; \\
& g(x)<0 \Rightarrow u(x, t) \rightarrow 0 \text { as } t \rightarrow \infty .
\end{aligned}
$$

Q: Does migration facilitate the maintenance of genetic variety (i.e., nontrivial equilibriums)?

Theorem. Assume $f^{\prime}(0)>0, f^{\prime}(1)<0$ (e.g., f_{h} with $|h|<1$).
(i) If $\int_{\Omega} g(x) d x=0$, then a nontrivial equil. always exists with migration.
(ii) If $\int_{\Omega} g(x) d x \neq 0$, then a nontrivial equil. exists if migration is not too strong (compared to selection), i.e., $\lambda>\lambda^{*}$.

- Fleming $1975 \mathrm{JMB}(\Delta)$: variational approach
- Hess \& Senn 1982 Math. Ann. (elliptic L): indefinite-weight eigenvalue problem with principal eigenvalue $\lambda^{*}(L \varphi+\lambda m(x) \varphi=0)$
- Senn 1983 CPDE (elliptic L): linearization at $u=0,1$, upper and lower solutions, global bifurcation w.r.t. λ

Uniqueness of Nontrivial Equilibrium

Theorem. If $f^{\prime \prime}(u)<0$ in $(0,1)$ (e.g., f_{h} with $|h| \leqslant 1 / 3$), then nontrivial equil. (if \exists) is unique and globally asymptotically stable.

Uniqueness of Nontrivial Equilibrium

Theorem. If $f^{\prime \prime}(u)<0$ in $(0,1)$ (e.g., f_{h} with $|h| \leqslant 1 / 3$), then nontrivial equil. (if \exists) is unique and globally asymptotically stable.

- Henry 1981 (Δ)
- Lou and Nagylaki 2002 (elliptic L)

(i) $\int g=0$

(ii) $\int g<0$

(iii) $\int g>0$

Nontrivial Equilibrium near Bifurcation.I

Theorem. (i) If $\int_{\Omega} g(x) d x=0$ and $f^{\prime}(0)>0, f^{\prime}(1)<0$, then max. (min.) points of f lead to stable (unstable) branches

- Brown and Lin 1981 (Δ with stability); Senn 1983 (elliptic L)

Nontrivial Equilibrium near Bifurcation.II

Theorem. (ii) If $\int_{\Omega} g(x) d x<0$ and $f^{\prime}(0)>0$, then

- Fleming 1975 (Δ), Senn 1983 (elliptic L)

Nontrivial Equilibrium near Bifurcation.II

Theorem. (ii) If $\int_{\Omega} g(x) d x<0$ and $f^{\prime}(0)>0$, then

- Fleming 1975 (Δ), Senn 1983 (elliptic L)
(iii) The case $\int_{\Omega} g(x) d x>0$ and $f^{\prime}(1)<0$ is similar.

3. The complexity of the complete dominance case

The Complete Dominance Case

When allele A_{2} is completely dominant to allele $A_{1}, h=-1$ and

$$
f_{h}(u)=u(1-u)[1+h-2 h u]=2 u^{2}(1-u) .
$$

Thus, $\left(\mathrm{MS}_{2}\right)$ becomes

$$
\begin{equation*}
u_{t}=\Delta u+\lambda g(x) u^{2}(1-u), \quad x \in \Omega, \quad t>0 \tag{CD}
\end{equation*}
$$

Difficulties

- degeneracy: $f^{\prime}(0)=0$
- f is unimodal but not concave in $(0,1)$

The Complete Dominance Case

When allele A_{2} is completely dominant to allele $A_{1}, h=-1$ and

$$
f_{h}(u)=u(1-u)[1+h-2 h u]=2 u^{2}(1-u) .
$$

Thus, $\left(\mathrm{MS}_{2}\right)$ becomes

$$
\begin{equation*}
u_{t}=\Delta u+\lambda g(x) u^{2}(1-u), \quad x \in \Omega, \quad t>0 \tag{CD}
\end{equation*}
$$

Difficulties

- degeneracy: $f^{\prime}(0)=0$
- f is unimodal but not concave in $(0,1)$

Conjecture of Lou-Nagylaki (2002 JDE, 2008 Tutorials in mathematical biosciences IV):

(i) $\int g=0$

(ii) $\int g<0$

(iii) $\int g>0$

Positive Answers to LN Conjecture

- Existence: Nakashima, Ni, Su 2010 DCDS; Lou, Ni, Su 2010 DCDS
- Uniqueness for $\int g \geqslant 0: \Omega=(-1,1)$, large $\lambda, g(x) \geqslant b_{1}(x)$, Nakashima 2016, 2018 JDE

Negative Answers to LN Conjecture

For $\Omega=(-1,1)$ and large λ,

- $\int g<0$: Nakashima 2020 JDE ($\exists g$ with 2 pos. nodal domains, $g(x)<b_{2}(x)$, $\exists 8$ equils.)

Negative Answers to LN Conjecture

For $\Omega=(-1,1)$ and large λ,

- $\int g<0$: Nakashima 2020 JDE ($\exists g$ with 2 pos. nodal domains, $g(x)<b_{2}(x)$, $\exists 8$ equils.)
- For $\lambda g^{+}-\mu g^{-}, g$ has m pos. domains, $\lambda>\tilde{\lambda}, \mu>\tilde{\mu}(\lambda)$, then $\exists\left(3^{m}-1\right)$ equils. Feltrin, Sovrano 2018 Nonlinearity; Boscaggin, Feltrin, Sovrano 2020 Adv. Nonlinear Stud.

Negative Answers to LN Conjecture

For $\Omega=(-1,1)$ and large λ,

- $\int g<0$: Nakashima 2020 JDE ($\exists g$ with 2 pos. nodal domains, $g(x)<b_{2}(x)$, $\exists 8$ equils.)
- For $\lambda g^{+}-\mu g^{-}, g$ has m pos. domains, $\lambda>\tilde{\lambda}, \mu>\tilde{\mu}(\lambda)$, then $\exists\left(3^{m}-1\right)$ equils. Feltrin, Sovrano 2018 Nonlinearity; Boscaggin, Feltrin, Sovrano 2020 Adv. Nonlinear Stud.

Fig. 1 in F-S 2018, $\lambda=20, \mu=500, g=\sin (\pi t), \Omega=(0,3)$

- $\int g \geqslant 0$: Nakashima, Su 2020 JDE ($\exists g$ with 2 pos. domains, $g(x)<b_{3}(x), 3$ equils.)

Negative Answers to LN Conjecture

For $\Omega=(-1,1)$ and large λ,

- $\int g<0$: Nakashima 2020 JDE ($\exists g$ with 2 pos. nodal domains, $g(x)<b_{2}(x)$, $\exists 8$ equils.)
- For $\lambda g^{+}-\mu g^{-}, g$ has m pos. domains, $\lambda>\tilde{\lambda}, \mu>\tilde{\mu}(\lambda)$, then $\exists\left(3^{m}-1\right)$ equils. Feltrin, Sovrano 2018 Nonlinearity; Boscaggin, Feltrin, Sovrano 2020 Adv. Nonlinear Stud.

Fig. 1 in F-S 2018, $\lambda=20, \mu=500, g=\sin (\pi t), \Omega=(0,3)$

- $\int g \geqslant 0$: Nakashima, Su 2020 JDE ($\exists g$ with 2 pos. domains, $g(x)<b_{3}(x), 3$ equils.)

Some Open Problems

- For the complete dominance case $f(u)=u^{2}(1-u)$, when $\Omega=(-1,1)$ and $g(x)$ changes sign only once, does LN Conjecture hold?

Some Open Problems

- For the complete dominance case $f(u)=u^{2}(1-u)$, when $\Omega=(-1,1)$ and $g(x)$ changes sign only once, does LN Conjecture hold?
- Equilibrium structure of $\left(\mathrm{SM}_{2}\right)$ when f is not concave in $(0,1)$ and not degenerate at 0 and 1 (e.g., $|h|<1$)?

Some Open Problems

- For the complete dominance case $f(u)=u^{2}(1-u)$, when $\Omega=(-1,1)$ and $g(x)$ changes sign only once, does LN Conjecture hold?
- Equilibrium structure of $\left(\mathrm{SM}_{2}\right)$ when f is not concave in $(0,1)$ and not degenerate at 0 and 1 (e.g., $|h|<1$)?
- Dynamics and euqil. structure of system (SM) for multiple alleles?
(Many open problems in Lou-Nagylaki-Ni 2013 DCDS)

4. Various extensions of migration-selection models

(MS) + Long-Distance Migration

In Nagylaki 2012a TPB, long-distance migration was approximated by panmixia:

$$
\frac{\partial p_{i}}{\partial t}=\Delta p_{i}+p_{i}\left[r_{i}(x, p)-\bar{r}(x, p)\right]+b\left[\bar{p}_{i}(t)-p_{i}\right], \quad x \in \Omega, \quad t>0
$$

with zero Neumann b.c., where

$$
\bar{p}_{i}(t)=\frac{1}{|\Omega|} \int_{\Omega} p_{i}(x, t) d x, \quad b>0 \text { rescaled panmictic rate. }
$$

(MS) + Long-Distance Migration

In Nagylaki 2012a TPB, long-distance migration was approximated by panmixia:

$$
\frac{\partial p_{i}}{\partial t}=\Delta p_{i}+p_{i}\left[r_{i}(x, p)-\bar{r}(x, p)\right]+b\left[\bar{p}_{i}(t)-p_{i}\right], \quad x \in \Omega, \quad t>0
$$

with zero Neumann b.c., where

$$
\bar{p}_{i}(t)=\frac{1}{|\Omega|} \int_{\Omega} p_{i}(x, t) d x, \quad b>0 \text { rescaled panmictic rate. }
$$

(Nagylaki 2012b TPB; Lou, Nagylaki, Su 2013 JDE; Su, Nagylaki 2015 DCDS; Li, Nakashima, Ni 2017 Eur. J. Appl. Math., etc.)

(MS) + Long-Distance Migration + Geographical Barrier

Nagylaki (2016 TPB) proposed

$$
\frac{\partial p_{i}}{\partial t}=\Delta p_{i}+p_{i}\left[r_{i}(x, p)-\bar{r}(x, p)\right]+b\left[\bar{p}_{i}(t)-p_{i}\right], \quad x \in \Omega, \quad t>0
$$

with zero Neumann b.c. on $\partial \Omega$ and transition condition

$$
\begin{equation*}
\nabla_{\nu} p_{i}(x \pm, t)=\gamma_{ \pm}\left[p_{i}(x+, t)-p_{i}(x-, t)\right], \quad x \in \Gamma, \quad t>0 . \tag{TC}
\end{equation*}
$$

Here Γ barrier, $\Omega=\Omega_{-} \cup \Gamma \cup \Omega_{+}, \Omega_{-} \cap \Omega_{+}=\emptyset, \nu$ unit normal vector along Γ from Ω_{-}to $\Omega_{+}, x \pm$ limit of x as $x \rightarrow \Gamma$ from $\Omega_{ \pm}$, γ_{+}and γ_{-}rescaled rightward and leftward transmissivities.

(MS) + Long-Distance Migration + Geographical Barrier

$$
\nabla_{\nu} p_{i}(x \pm, t)=\gamma_{ \pm}\left[p_{i}(x+, t)-p_{i}(x-, t)\right], \quad x \in \Gamma, t>0 \quad \text { (TC) }
$$

- Earlier work that includes barrier: Slatkin 1973 Genetics, Nagylaki 1996 JMB, Piálek and Barton 1997 Genetics, etc.

(MS) + Long-Distance Migration + Geographical Barrier

$$
\nabla_{\nu} p_{i}(x \pm, t)=\gamma_{ \pm}\left[p_{i}(x+, t)-p_{i}(x-, t)\right], \quad x \in \Gamma, t>0 \quad \text { (TC) }
$$

- Earlier work that includes barrier: Slatkin 1973 Genetics, Nagylaki 1996 JMB, Piálek and Barton 1997 Genetics, etc.
- Nagylaki (2016 TPB) derived (TC) for $\Omega \subset \mathbb{R}$ and $\Gamma=\{0\}$ and did analysis for $f(u)=u(1-u)$ (no dominance).

(MS) + Long-Distance Migration + Geographical Barrier

$$
\begin{equation*}
\nabla_{\nu} p_{i}(x \pm, t)=\gamma_{ \pm}\left[p_{i}(x+, t)-p_{i}(x-, t)\right], \quad x \in \Gamma, \quad t>0 \tag{TC}
\end{equation*}
$$

- Earlier work that includes barrier: Slatkin 1973 Genetics, Nagylaki 1996 JMB, Piálek and Barton 1997 Genetics, etc.
- Nagylaki (2016 TPB) derived (TC) for $\Omega \subset \mathbb{R}$ and $\Gamma=\{0\}$ and did analysis for $f(u)=u(1-u)$ (no dominance).
- Wang and Su (2020 DCDS) treated general f.

(MS) + Long-Distance Migration + Geographical Barrier

$$
\begin{equation*}
\nabla_{\nu} p_{i}(x \pm, t)=\gamma_{ \pm}\left[p_{i}(x+, t)-p_{i}(x-, t)\right], \quad x \in \Gamma, \quad t>0 \tag{TC}
\end{equation*}
$$

- Earlier work that includes barrier: Slatkin 1973 Genetics, Nagylaki 1996 JMB, Piálek and Barton 1997 Genetics, etc.
- Nagylaki (2016 TPB) derived (TC) for $\Omega \subset \mathbb{R}$ and $\Gamma=\{0\}$ and did analysis for $f(u)=u(1-u)$ (no dominance).
- Wang and Su (2020 DCDS) treated general f.
- Question: Can (TC) be derived by the method of effective boundary conditions?

(MS) + Long-Distance Migration + Geographical Barrier

$$
\begin{equation*}
\nabla_{\nu} p_{i}(x \pm, t)=\gamma_{ \pm}\left[p_{i}(x+, t)-p_{i}(x-, t)\right], \quad x \in \Gamma, \quad t>0 \tag{TC}
\end{equation*}
$$

- Earlier work that includes barrier: Slatkin 1973 Genetics, Nagylaki 1996 JMB, Piálek and Barton 1997 Genetics, etc.
- Nagylaki (2016 TPB) derived (TC) for $\Omega \subset \mathbb{R}$ and $\Gamma=\{0\}$ and did analysis for $f(u)=u(1-u)$ (no dominance).
- Wang and $\mathrm{Su}(2020 \mathrm{DCDS})$ treated general f.
- Question: Can (TC) be derived by the method of effective boundary conditions? Yes, if $\gamma_{+}=\gamma_{-}$(Li and Wang 2017 Nonlinearity).

$(\mathrm{MS})+$ Recombination

Locus \mathcal{A} : alleles A, a; locus \mathcal{B} : alleles B, b 4 types of gametes: $A B, A b, a B, a b$ Recombination of two loci during meiosis

$(\mathrm{MS})+$ Recombination

Locus \mathcal{A} : alleles A, a; locus \mathcal{B} : alleles B, b 4 types of gametes: $A B, A b, a B, a b$
Recombination of two loci during meiosis

Freqs. of gametes $p=\left(p_{1}, \ldots, p_{4}\right) \in \Delta_{4}$ and obey

$$
\begin{equation*}
\partial_{t} p_{i}=d \Delta p_{i}+\lambda S_{i}(x, p)-\eta_{i} \rho D, \quad x \in \Omega, \quad t>0 \tag{MS+R}
\end{equation*}
$$

with zero Neumann b.c. Here ρ rescaled recombination rate,

$(\mathrm{MS})+$ Recombination

Locus \mathcal{A} : alleles A, a; locus \mathcal{B} : alleles B, b 4 types of gametes: $A B, A b, a B, a b$
Recombination of two loci during meiosis

Freqs. of gametes $p=\left(p_{1}, \ldots, p_{4}\right) \in \Delta_{4}$ and obey

$$
\partial_{t} p_{i}=d \Delta p_{i}+\lambda S_{i}(x, p)-\eta_{i} \rho D, \quad x \in \Omega, \quad t>0
$$

with zero Neumann b.c. Here ρ rescaled recombination rate,
$D=p_{1} p_{4}-p_{2} p_{3}$ (linkage disequilibrium),
$\eta_{1}=\eta_{4}=-\eta_{2}=-\eta_{3}=1$,
$S_{1}(x, p)=p_{1}\left[\alpha(x)\left(p_{3}+p_{4}\right)+\beta(x)\left(p_{2}+p_{4}\right)\right], \cdots$ (selection)

$(\mathrm{MS})+$ Recombination

Locus \mathcal{A} : alleles A, a; locus \mathcal{B} : alleles B, b 4 types of gametes: $A B, A b, a B, a b$
Recombination of two loci during meiosis

Freqs. of gametes $p=\left(p_{1}, \ldots, p_{4}\right) \in \Delta_{4}$ and obey

$$
\begin{equation*}
\partial_{t} p_{i}=d \Delta p_{i}+\lambda S_{i}(x, p)-\eta_{i} \rho D, \quad x \in \Omega, \quad t>0 \tag{MS+R}
\end{equation*}
$$

with zero Neumann b.c. Here ρ rescaled recombination rate,

$$
\begin{aligned}
& D=p_{1} p_{4}-p_{2} p_{3} \text { (linkage disequilibrium), } \\
& \eta_{1}=\eta_{4}=-\eta_{2}=-\eta_{3}=1 \\
& S_{1}(x, p)=p_{1}\left[\alpha(x)\left(p_{3}+p_{4}\right)+\beta(x)\left(p_{2}+p_{4}\right)\right], \cdots \text { (selection) }
\end{aligned}
$$

(Slatkin 1975 Genetics, Barton 1986 Heredity, Bürger 2017 TPB, Su-Lam-Bürger 2019 JDE)

Thank you for your attention!

Thank you for your attention!

Many thanks to my collaborators:

- Reinhard Bürger, Univ. of Vienna
- Josef Hofbauer, Univ. of Vienna
- King-Yeung Lam, The Ohio State Univ.
- Yuan Lou, The Ohio State Univ. \& Renmin Univ. of China
- Thomas Nagylaki ${ }^{\dagger}$, The Univ. of Chicago
- Kimie Nakashima, Tokyo Univ. of Marine Science and Technology
- Wei-Ming Ni, Univ. of Minnesota \& The Chinese Univ. of Hong Kong (Shenzhen)
- Yantao Wang, Southern Univ. of Science and Technology

Thank you for your attention!

Many thanks to my collaborators:

- Reinhard Bürger, Univ. of Vienna
- Josef Hofbauer, Univ. of Vienna
- King-Yeung Lam, The Ohio State Univ.
- Yuan Lou, The Ohio State Univ. \& Renmin Univ. of China
- Thomas Nagylaki ${ }^{\dagger}$, The Univ. of Chicago
- Kimie Nakashima, Tokyo Univ. of Marine Science and Technology
- Wei-Ming Ni, Univ. of Minnesota \& The Chinese Univ. of Hong Kong (Shenzhen)
- Yantao Wang, Southern Univ. of Science and Technology

Grants: NSFC and SUSTech Startup found

[^0]: ${ }^{1}$ Nagylaki 1992, Chap. 4.10

