Vanishing viscosity limit to the planar
rarefaction wave for the multi-dimensional
compressible Navier-Stokes equations

Lin-an Li
joint work with Professor Dehua Wang and Yi Wang

The 7th Young Researchers PDE Forum
CAMIS, South China Normal University
November 28, 2020



Contents

@ Background

© Vanishing viscosity limit to planar rarefaction wave for 2D isentropic
CNS

e Vanishing viscosity limit to planar rarefaction wave for 3D
non-isentropic CNS



Background

Background

Compressible Navier-Stokes equations(CNS):
pe +div(pu) =0,
(pu): + div(pu ® u) + Vp = divT, (1)
(pE): + div(pEu + pu + q) = div(uT),

0 t>0; x=(x,x, " ,x,) EQCR", n=2,3;
e p = p(t,x) > 0: density;
o u=u(t,x)=(ur,u, - ,uy)(t,x): velocity;
e p = p(t,x): pressure;
o E = e+ 3|ul? total energy; e = e(t, x): internal energy;
o T = 2u1D(u) + A\idivul: viscous stress tensor;
T
o D(u) = w: deformation tensor;
@ (i : shear viscosity and A; : bulk viscosity satisfying the physical

restrictions
p1 >0, 2p3+ni; >0.
@ g = —k1V0: heat flux; k1 > 0: heat-conductivity; 6: absolute
temperature.



Background

@ Polytropic fluids:
-1 R
p = Rpb = Ap” exp (%S), e= r& + const.,

where S: entropy, v > 1. adiabatic exponent, A > 0 and R > 0:
fluid constants.

For isentropic fluids, i.e. S = const., CNS (1) reduce to isentropic CNS:

(2)

pe +div(pu) =0,
(pu): + div(pu ® u) + Vp(p) = p1Au + (p1 + A1) Vdivu,

e p = p(p) = Ap": pressure; v > 1. adiabatic exponent, A > 0: fluid
constants.
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Non-isentropic CNS (1) and isentropic CNS (2) are both viscous
conservation laws:

U; + divF(U) = ediv(B(U)VU).
Formally, as € — 0, converge to hyperbolic conservation laws:
U; + divF(U) = 0.

Main feature of hyperbolic conservation laws:

@ Formation of shock no matter how smooth and small the initial
values are!

Riemann problem:(three basic wave patterns)

@ Shock wave (genuinely nonlinear characteristic field);
o Rarefaction wave (genuinely nonlinear characteristic field);

o Contact discontinuity (linearly degenerate characteristic field).
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Riemann (1860):

Pt + (PU1)X1 = 07
(pu1)e + (pui + p(p))x, =0,
pp) = Ap™.

(va u17)7 x1 < 07
(po, u10)(x1) =
YT (e uns), x>0,

Georg Friedrich Bernhard Riemann
Lax (1957) (1826 — 1866)

U; + F(U),, =0,

U, x<0,
Uo(x1) = {U+ x>0

Mathematical Theory of Conservation Laws.
Commun. Pure Appl. Math. 10, (1957).

Peter David Lax (1926-)

Lin-an Li
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A simple example:
Riemann problem for inviscid Burgers equation:

W + (%Wz)xl = 07

w_, x1<0,
w(0,x1) = wp(xy) =
(0.) o(x1) wy, x3>0.

x
. t -1
@ w_ < wy, Rarefaction wave: /it
w_ ¥
w_, x3 <w_t,
X1 /
wi(—) =93, wot<x < wt, S I
t Figure 1. Rarefactionwave w”

Wy, X1 > wyt.

e w_ > wy, Shock wave:

t xq = st
s w_, X < st, i w
wi(t, x) = *
Wy, X1 > st.
w_ 0 ‘ wy Xy
R—H condition: S[U] _ [F(U)],S _ w+-i2-w,. Figure 2. Shock wave w



Background

Burgers equation:

Wt + (%Wz)xl = EWX1X1)

W_, X4 — —00
w(0,x1) = w§(x1) — { o ’
Wy, X1 — +00.

o w_ < wyg,

we(t,x1) — W’(X—tl)7 as € >0+, or e=1,t— +oo.
o w_ > wy,
we(t,x1) = w(t,x1), as ¢ — 0+, away from the discontinuity.

we(t,x1) = w’(xy —st), as e =1t — +oo.

Travelling wave w*(x; — st), Anti-derivative, Zero mass condition - - -
Hopf(CPAM, 1950), II'in-Oleinik(1960) - - -
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Relation between viscous conservation laws and hyperbolic
conservation laws:
@ Vanishing viscosity limit (¢ — 0+):
(1D: Hopf, Goodman-Xin, Bressan-Bianchini,
Huang-Wang-Wang-Yang, - --)
@ Large-time behavior(e = 1,t — +o00):
(1D: I'in-Oleinik, Goodman, Huang, Matsumura-Nishihara, Liu, Xin,
Zhu, Zhao, ---)
Determined by Riemann solution to the corresponding inviscid hyperbolic
conservation laws.
Multi-D?
cf. Time-asymptotic stability of planar rarefaction wave
@ For scalar case: Xin (1990), Ito (1996), Nishikawa-Nishihara (2000).
o For artificial 2 x 2 system with uniformly positive viscosities:
Hokari-Matsumura (1997).
@ For relaxation approximation of conservation laws:
Luo (JDE, 1997), Zhao (JDE, 2000).
o For radiating gas model: Gao-Ruan-Zhu (JDE, 2008).
e For 2D/3D CNS: Li-Wang (SIAM, 2018), Li-Wang-Wang (ARMA,

e
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Goal: Vanishing viscosity limit to the planar rarefaction wave for the
multi-dimensional(MD) CNS (2) and (1).
Take dissipation coefficients

H1 = pE, AL = )\57 K1 = RE,

where € > 0: vanishing dissipation parameter, u, A and x: the given
uniform-in-¢ constants.
Initial data:

@ 2D isentropic CNS (2):

(p, u)(0,x) = (po, uo)(x) = (p+,us), asx3 — +oo, (3)

where pg > 0, ug := (u10, tzo), U+ := (t14,0) and py > 0, uyy are
prescribed constant states.
@ 3D non-isentropic CNS (1):

(pa U,g)(O,X) = (va u0700)(X) - (p:i:v u:l:,gzlz)v as x; — oo,
(4)
where p0,00 >0, ug := (U107 uog, U30), uy = (U1i7070) and
p+, 04 >0, up4 are prescribed constant states.
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The vanishing viscosity limit of CNS is expected to be determined by the
Riemann problem to the corresponding compressible Euler equations:

@ The Riemann problem to the isentropic compressible Euler equations

pe + div(pu) =0, (5)
(pu)e + div(pu ® u) + Vp(p) = 0,
(p77u1770)7 X1 < 07
r r r — 6
(Pos U0, U30)(x1) {(p+,u1+70), x> 0. (6)

@ The Riemann problem to the full compressible Euler equations
pt + div(pu) =0,
(pu): +div(pu @ u) + Vp =0, (M)
(pE)¢ + div(pEu + pu) = 0.

r r pr (p—7u—30—); X1 < Oa
p,u,0)(0,x) = (pi, uh, 05)(x1) = 8
(. u.0)(0. ) = (. . ) (x) {(p%um)’ RPN
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The above MD Riemann problem (5)-(6) or (7)-(8) has the essential
differences from the corresponding 1D Riemann problem:

@ 1D Riemann problem to the isentropic compressible Euler equations

pt+(pu1)xl :07 X1 ERa t> Oa
2 _ (9)
(pur)e + (pui + p(p))s =0,
(p,, ul*)a X1 < 07
(p0; u10)(x1) = (10)
0170 (p+7 ul+)a x1 > 0.
@ 1D Riemann problem to the full compressible Euler equations
Pt + (pul)xl =0, x1 €R, t >0,
(pur)e + (pui + p)sy =0, (11)
(PE)t + (pEun + pun)sx, =0,
roor r p—7u—79— ) X1<07
(9. 13,0)(0,52) = (.t B5)(xt) = 4 V40 (12)
(p4su14,05), x1>0.
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1D Riemann problem:

The weak solution to 1D Riemann problem is not unique (infinitely
many).
With the additional entropy condition:

up|? uy|?
(o145 1 (o)) + (045 + 5 (0) + plo))un) <0,

where the internal energy £ is given by
p(r) = r&'(r),

then the weak solution to the 1D Riemann problem is unique in BVj,. or
L.
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MD Riemann problem:

With the additional entropy condition:

Jul?

{p% + 05(0)} Hdiv {(p7 + pE(p) + P(P))U] <0,

@ Shock wave case
Exist infinitely many bounded admissible weak solutions:
Chiodaroli - De Lellis - Kreml (CPAM, 2015);
Chiodaroli - Kreml (Nonlinearity., 2018).
Global instability:
Lai - Xiang - Zhou (2018).

@ Shock + contact discontinuity or rarefaction case
Exist infinitely many bounded admissible weak solutions:
Klingenberg - Markfelder (ARMA, 2018);
Brezina - Chiodaroli - Kreml (Electron. J. Differential Equations.,
2018).
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MD Riemann problem:

o Rarefaction wave case
Unique even the rarefaction wave connected with vacuum states:
Chen - Chen (J. Hyperbolic Differ. Equ., 2007);
Feireisl - Kreml (J. Hyperbolic Differ. Equ., 2015);
Feireisl - Kreml - Vasseur (SIAM J. Math. Anal., 2015).
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Some known results on vanishing viscosity limit of CNS(1D):

@ Viscous Burgers equation:
e general initial data: Hopf (CPAM, 1950);

@ Conservation laws system with uniformly artificial viscosity:
o piecewise smooth shock: Goodman - Xin (ARMA, 1992);
o piecewise smooth shock with initial layer: Yu (ARMA, 1999);
o general small BV data: Bianchini - Bressan (Ann. of Math., 2005);

@ Isentropic CNS:

o piecewise constant shock with initial layer: Hoff - Liu(Indiana Univ.
Math. J., 1989);

o rarefaction: Xin(CPAM, 1993), Huang - Li - Wang(SIAM, 2012);

o piecewise smooth shock: Wang(J. Math. Anal. Appl., 2004).
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Some known results on vanishing viscosity limit of CNS(1D):

@ Non-isentropic CNS:

o rarefaction:
Jiang - Ni - Sun(SIAM, 2006), Xin - Zeng(JDE, 2010), Li -
Wang(Commun. Math. Sci., 2014);

e shock:
Wang(Acta Math. Sci. Ser. B., 2008);

e contact discontinuity:
Ma(JDE, 2010);

o rarefaction wave + contact discontinuity:
Huang - Wang - Yang(KRM, 2010), Huang - Jiang - Wang(CIS,
2013);

o rarefaction wave + shock wave:
Huang - Wang - Yang(ARMA, 2012);

o rarefaction wave + shock wave + contact discontinuity:
Huang - Wang - Wang - Yang(SIAM, 2013).
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2D isentropic CNS case

Goal:

Vanishing viscosity limit to the planar rarefaction wave for the 2D
isentropic CNS on R x T.

X1

The planar 2-rarefaction wave (p”, uf, 0)(%

Euler (5)-(6).

Where (p", uf)(%) is the 2-rarefaction wave solution for the Riemann

problem of 1D Euler (9)-(10), satisfying

S

) for Riemann problem of 2D

Uy — ds=uw_, U4 > u_.

p—
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Theorem 1: (Lin-an Li, Dehua Wang, Yi Wang, Comm. Math. Phys.
(2020))

Let (p", uf,0)(%) be the planar 2-rarefaction wave to the 2D Euler
system (5), T > 0 be any arbitrarily large but fixed time. Then there
exists a positive constant &g such that for any € € (0,¢p), we can
construct a family of smooth solutions (p=, u®) = (p°, uf, u5)(t, x1, x2) up
to time T with the initial value (23) to the CNS (2) satisfying

(p° — p",uf — uf,u5) € CO®0, T; L2(R x T)),

(Vp, Vuf) € CO(0, T; HY(R x T)),

V3u© € [2(0, T; L2(R x T)).
Moreover, for any small positive constant h, there exists a constant Cp 1
independent of ¢, such that:

X1 2
sup_|[(p%, ut, u3)(t, x1,x2) — (", 01, 0) ()l Lo (xm) < Ch7ed[Inel.
h<t<T t

As e — 0+,
(p%,u®)(t, x1,x2) — (p", u{,O)(X—tl), a.e. in RT xR x T.
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Proof of the 2D isentropic case:

Since the rarefaction wave is only Lipschitz continuous, we shall
construct a smooth approximate rarefaction wave solution to the Euler
system (9) through the Burgers equation.

Consider the Riemann problem for the inviscid Burgers equation:
We + wwy, = 0,

w_, x3<0, (13)

w(0,x1) = wg(x1) = Y >0
+> .

If w_ < wy, then (13) has the self-similar rarefaction wave fan:

w_, xp < w_t,
X
w'(t,x1) = Wf(Tl) =08 wot<x < wyt, (14)
Wy, X1 > W+t.
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The smooth rarefaction wave solution of the Burgers equation:

we + wwy, =0, N (15)
w(0,x1) = wy(x1) = ot 5 e W 5 Y= tanh %1,

where § = 6(¢) > 0. In fact, we take § = ¢5 finally.
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Lemma 1: Suppose wy > w_.Then the problem (15) has a unique
smooth global solution w(t, x;) such that

(1) we < w(t,x1) < wi, wy >0forxg € Rand t>0,6 > 0.

(2) The following estimates hold for all t > 0,6 > 0 and p € [1, +o0]:

W (8, )| oy < C(6 + £)7HF/P,
([ W (ts M oy < C(6 + 3 R
([ Wi (s )l o)y < C(6 + t)_ld—zﬂ/r)7

4
‘WX1X1(t7 Xl)‘ < gWX1(t7X1)-
(3) There exists a constant dy € (0, 1) such that for ¢ € (0, ] and t > 0,

Iw(t, ) = w'() ey < €Ot~ In(1 4 6) + | In ]
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Approximate rarefaction wave for the Euler system (9)-(10):

Set wy = Aa(ps, U1+).
The 2-rarefaction wave (p", uf)(t,x1) = (p", u])(x1/1t):

Aa(p", up)(t, x1) = w'(t, 1),
2(p", up)(t, x1) = z2(p+, u1+),

where z, is 2-Riemann invariant.
Smooth approximate rarefaction wave (5, i1)(t, x1):

)‘2(/37 gl)(tvxl) = W(t’ Xl)a
2(p, 0)(t,x1) = 22(px, t14).

(p, 01) satisfies the system:

pr + (ﬁﬁl)xl =0,
(pm)e + (P + p(P))x = O,
(57 Hl)(O,Xl) = (ﬁo; 510)(X1)-
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Lemma 2: The smooth approximate 2-rarefaction wave (p, iy ) satisfies
the following properties:

(1) o1y, = vil WX1 >0 forall x; e Rand t >0,p, = F'D ulx1 >0,
and ﬁX1><1 = \/*p u1X1X1 + 2A7p2 ’Y(U1X1)2'

(2) The following estimates hold for all t > 0,0 > 0 and p € [1,4+o0]:

”(ﬁxlv ﬁlxl)H[_p(R) < C(§ + t)_1+1/P,
1(Prase s ) oy < C(8 + £) 716 1H1/P,
[[(Pxixaxs > Tixpaxa) o) < C(6 + t)"tom 2P,

(3) There exists a constant dy € (0, 1) such that for § € (0, ] and t > 0,

(P, @)(t;-) = (", u{)(é)lle(R) < CotHin(L+ ) + [ Ino]].
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Main Difficulty:Error terms(2u + A) 1,5

o Sufficient time-decay in 1D time-asymptotic stability:
Matsumura-Nishihara(JJM 1986, CMP 1992), Liu-Xin(CMP 1988),
Nishihara-Yang-Zhao(SIAM 2004)

o Sufficient time-decay in 2D /3D time-asymptotic stability:

Li-Wang (SIAM 2018), Li-Wang-Wang (ARMA 2018), Wang-Wang
(KRM, 2019)

@ Enough decay rate with respect to the viscosity in 1D vanishing
viscosity limit:
Xin (CPAM 1993), Jiang-Ni-Sun (SIAM 2006)

@ NOT enough decay rate with respect to the viscosity in 2D
vanishing viscosity limit for the scaled variables.
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Key Observations (Hyperbolic Wave):

Introduce the hyperbolic wave (di, d»)(t, x1) to recover the physical
viscosities for inviscid approximate rarefaction wave profile.(Motivated by
Huang-Wang-Yang, ARMA, 2012)

dlt + d2><1 = 07

dae + (—';gdl +p'(p)dL + 'gldz) = (21 4+ N)elix (16)
x1

(dlu d2)(O7X1) = (07 0)7

where my := piiy is the momentum of the approximate rarefaction wave.
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We shall solve this linear hyperbolic system (16) on [0, T].
Diagonalize the above system. Rewrite the system (16) as

2] GLE D, =l et |

where

with two distinct eigenvalues

T = = m =~ 7 - - m =
M(p, m1) = 5 VP(P), Xo(p,mi) = St P (),
the corresponding left and right eigenvectors [, Fi(i = 1,2) satisfying

LAR = diag(/_\l, /_\2) = /_\, I:

X

= I’
where L = (1, )T, R = (7, %) and [ is 2 x 2 identity matrix.
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Set B
(D1, D5)" = L(ch,da)",

then _
(di,db)" = R(D1,D,)7,

and (D1, D») satisfies the diagonalized system

[ o ]t+(/‘\ [ D D _ (LR+L,AR) [ o }+z { ot Dt
(17)

Since the 2-Riemann invariant z is constant along the approximate
2-rarefaction wave curve, we have the structure relation

Ly = XLy, (18)
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Substituting (18) into (17), we obtain the diagonalized system

< V2 _ - e
Dy + ()‘1D1)X1 = 7(2:“ + )\)Eulxlxl + (311(,0)le + alQ(p)u1X1)D17

S

Dyt + (A2D2)y, = > — (21 + N)eling g + (321(P)pxy + a22(P) G1x, ) Dr,
(D1, D)(0,x1) = (0,0).
(19)
In the diagonalized system (19), the equation of D; is decoupled with D,
due to the rarefaction wave structure of the system as in (18).
Lemma 3: There exists a positive constant C7 independent of § and ¢,
such that
ok
Sketch of the Proof:
o Fully using the expanding properties of 2-rarefaction wave (/_\2x1 > 0)

and the decoupling structure of the diagonalized system.
@ Choosing the suitable weight function.

(d17d2)( )H%Z( CT((skJrl )27 k :0717273'
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Sketch of the Proof on Lemma 3:

Multiplying the second equation of (19) by D, and integrating the
resulting equation over [0, t] x R with ¢t € (0, T) imply

t t
/D22(t,X1)dX1 +/ /ﬁ1x1D22dX1dt1 < CT(E)z—f— CT/ /ﬁlxlDlzdxldtl.
R 0o JR d 0 JR
(20)

Multiplying the first equation of (19) by sV D; with N a sufficiently large
positive constant to be determined, and integrate the resulting equation
over [0, t] x R with t € (0, T) to get

D
/p > (t X1 dx1—|—/ /Np ulxlDldxldtl

< C/ / NDldX1dt1 + Ce? / /“1x1x1dxldt1 + C/ /p U1X1D1 dxydt;
< C/ /ﬁNDlzdxldt1+ C(7)2+C/ /ﬁNﬂlxlDfdxldtl.
0 JRr 0 0o Jr
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Choosing N large enough and using Gronwall's inequality give
2 Y €\2
/Dl(t,xl)dxl+/ /lelDldXIdtl < CT(,) . (21)
R o Jr 0
Combining (20) and (21), we can get
t
/(D12 + D22)(t7X1)dX1 +/ / Elxl(D12 + D22)dX1dt1 < CT(§)2
R o JR

This completes the proof of case k = 0 in Lemma 3. The other cases
k =1,2,3 can be considered similarly to the differentiated system with
respect to x; by k times.



Vanishing viscosity limit to planar rarefaction wave for 2D isentropic CNS

Approximate Solution Profile:

Define
p(t,x1) = (p+ di)(t,x1), mu(t,x) = (M1 + da)(t, x1) := piir(t, x1).

Then the approximate wave profile (g, ;) satisfies the system

ﬁt + (ﬁﬂl)xl = 07 (22)
(i) + (B3 + p(F))x, = (21 + A)elig, + @

with the initial data
(7, 01)(0,x1) = (po, tho)(x1)-
Where @ is the error terms
Q = (5if2 — pi + Bk — 2B ch)., + (p(5) — P(7) — P (P)ch )

= O(1) |I(ch, d2)[|(crxy > dox, )| + [(Pxy B )[|(ch1, )
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Reformulation of the Problem:

Set the perturbation around the approximate wave profile (g, 1, 0)(t, x1):

¢(ta X15X2) = ps(t7xl7x2) - ﬁ(taxl)v
\U(t7X]_7X2) = (w17w2)T(t7X17X2) = (ula_7 UE)T(t7X17X2) - (ﬁ170)—r(t7 Xl)u

with (p°, uf, u5) being the solution to the problem (2) with the following
initial data:

(0%, uf, u3)(0, x1, x2) == (Po, T10,0)(x1) + (Do, Y10, ¥20)(x1, x2).  (23)
Introducing a scaling for the independent variables

t X1 X2

T=-, n=—, Yo = —.
S e €

The superscription of (p°, uf, u5) will be omitted as (p, u1, up). We still

use the notations (p, u, u2)(7, y1, y2), (4, i1)(7, y1), (P, G1)(7, y1) and
(6, W)(7, y1, ¥2) in the scaled independent variables.
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The system for the perturbation (¢, W) :

¢‘r +u- qu + ple\U + 5y1¢1 + []].yl(b = 07
pUr+ pu - U+ P ()V0 + (i, v3,0) T+ (((0) = 5 (9))n )T
= pAV + (p+ A VdivW+((2u + N)(Z48E2%), | 0)T
(204 ) 252.6,0) 7 (5Q,0),
(24)
(¢7w)(0>}/17}/2) = (¢7 ¢17¢2)(07Y1a}/2) = (¢0a¢107¢20)(}/17)/2); (25)
where the initial perturbation is chosen to satisfy
(@0, w10, ¥20) (1, y2) ey = O(E9).
Functional space X(0, %) Where for 0 < 7 < % we define
X(O,Tl)
= {(¢, W) (6, V) € C°(0,m; H?), V¢ € L*(0,m1; H'), VW € L*(0,m1; H)} .
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Proposition 1: There exists a positive constant g < 1 such that if
0 < & < g, then the reformulated problem (24)-(25) admits a unique
solution (¢, W) € X(0, %) satisfying

sup_|(9, W)()I13 + / (1812 (6, 0| + (T, T3 + V22| dr
OSTSE

g2 )
< CTW + C”((ZSOa \UO)H27

where the constant Crt is independent of ¢, d, but may depend on T.
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Once the Proposition 1 is proved, we have

sup [[(&, W)(t, x1, %)L mxT) = sup [[(&, W)(7, y1, y2)llLo(mxT.)
0<t<T o<r<I

< C sup_[[(&,W)(7)ll2 < CT57/2 + Cll(¢0, Yo)l2-

-
0<r< <

Taking § = €?, we get

X
(s 1, 2) (8 31, 30) = (0", 0)(] ) ()
< (@ W)t 1,30 1=y + Cle, o)ty
— = rong X
+ 112, 3)(t, ) — (o ,ul)(f)nm
9
< Cr773 + Cll(9o, Wo)ll + CT53/2 + Cot Y In(1 4 t) + | Iné]]

= Crel= 3 4+ C|[(¢o, Wo)|l2 + Cre*= 32 + Cet Y In(1 + t) + | Ine]].

Taking a=2,ie. 0 = £2/9 and then the proof of Theorem 1 is
completed.
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Proposition 2:(a priori estimates) Suppose that the reformulated
problem (24)-(25) has a solution (¢, V) € X(0,71(¢)) for some

71(€)(> 0). Then there exists a positive constant €1 which is independent
of €,8 and 71(¢), such that if 0 < e <¢e; and

E=E@0,m(e))= sup [(o,V)(7)]2<1,
0<7<T71(¢)

then it holds

T1(€)
5P @I + /0 (132(, )| + (Yo, VW) |3 + |72 w[12] dr

52

< CTy + Cll(¢o, Vo)|[3-

(26)
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Sketch of the Proof:

Step 1. elementary L? estimates:
2 m) =1/2 2 2
sup )ll(cb,W)(T)H * [l agy, (¢, 001 + IVV]*]dr

0<7<Ti(e

2
)
< CTﬁ + Cl|(o, Wo)|I>.

@ Crucially used the periodicity in x-direction.

@ The hyperbolic wave (di, dp) are crucially used in the estimate. The
2
decay rate % comes from the error term %Q.
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Step 2. First-order derivative estimates of density:

sup  ([I(¢, W)(T)II* + V(7))

0<7<71(e)

T1(€)
+ / 182(6, 00|12 + (V6, VW) |2 dr

2 m1(€)
< Crig + (oo o)+ [aul?) + CE2 [ 72wl
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Observations:
Applying the operator V to the first equatlon of (24) and then
multiplying the resulting equation by 2 yield

Vo Vo, VdivVy -V
VOE) 4 (u|2p<§| ULAL

Vo -V  |Vo|2divw
_qsy,qs v IVoPdive
p? 2p?
Multiplying the second equation of (24) by % gives
(u+ AVdivV - Vo + uAV - Vo

(
(27)

(v V0). — divws,) + v

p
= —¢;div¥ — ¥, - Vo +--- |
(28)
Note that
HAV - Vo puVdivw - Vo

i :div(HV%(byJ—(EV%'V@W" p

2p}’1wy1 Vo — 2Py1V1/21 V.
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Step 3. First-order derivative estimates of velocity:

Tl(E)
032"( )Hw,w)mn% + / @2 (6, 0)1% + (Yo, VW) |2 + || V2¥|?]dr
< CT57 + Cll(¢o, Vo)l13.

Step 4. Second-order derivative estimates of density:

2 () 1/2 2 2
sup  ([[(4, W) + IV )+/ lay, (o, 001 + I(Ve, VW) |5]dr

O<7—<7—1(5)

Tl(E)
<ot C(lI(@o, Wo)lIF + 1V2ol|*) + CEQ/ IV3w|*dr.
0

o7

Step 5. Second-order derivative estimates of velocity:

2 ne) -1/2 2 2 34112
sup (&, W)(7)2 + ; [, (6, )|I> + (Vo, VW) + [|[V2V|]?]d7

0<7<7i(e)
e? )
< CTﬁ + Cl|(¢0, Vo)ll2-
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3D non-isentropic CNS case (R x T?)

Theorem 2: (Lin-an Li, Dehua Wang, and Yi Wang, Preprint.)

Let (p",u",0")(*) be the planar 3-rarefaction wave to the 3D
compre55|b|e Euler system (7) and T > 0 be any fixed time. Then there
exists a constant €9 > 0, such that for any € € (0,&g), the system (1)-(4)
has a family of smooth solutions (p°, u,6°)(t, x) up to time T satisfying

(p° — p"us —u", 05 —0") € CO0, T; L2(R x T?)),

(Vpe, Vue, Vo) € C°0, T; HY(R x T?)),

(V3uf,V36°) € L2(0, T; L2(R x T?)),
Moreover, for any small positive constant h, there exists a positive
constant C, 7 independent of ¢, such that

€ € QE A r 2
h;ltngH(p u 79 )(t,X) (p ,u ,0 ||L00(R><T2) < Ch T€6||n€|

As ¢ — 0+,
(p°,u,0%)(t, x) — (pr,ur,ﬁ’)(x—;)7 a.e. in RT x R x T2



Vanishing viscosity limit to planar rarefaction wave for 3D non-isentropic CNS

Sketch of the Proof:

In the setting of classical solution, we can rewrite the 3D full CNS (1) as

pr + div(pu) =0,

(pu): + div(pu @ u) + RV(p0) = peAu + (1 + N)eVdivu,
R

m((pﬁ)t + div(pfu)) + RpOdivu = ke A

+%|Vu + (V)T + Ae(divu)?.
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Define the approximate solution profile (4, i1, 0) by the rarefaction wave
(p, i1, 0) and the hyperbolic wave (di, da, d3):

bz

. . R ~ 1
p=p+dy, = m+d = piy, & =E+d;y=pE = ﬁ(mé—i—iﬂf).

Then the approximate wave profile (g, ﬁl,é) satisfies the system

(pul)t + ﬁﬁ% + Rﬁé) = (2/1' + )‘)Eﬁlxlxl + Qla
i10)s] + :‘?pﬁulx1 = ma@xlxl n+ /\)Eﬁiq + @

—~~

=]
T~
SN—r

ey

_l’_

A

Cbl

with the initial data

(ﬁv iy, é‘)(val) = (ﬁOa t10, 50)()(1)7
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and the error terms

M m m? 2m o _ B
QL= (3(51 - ?1 ngl - _1d2)x1 +(B—pP— Ppdh — P2 — Pgd3)
~: _
=555 (@ — &)L = O(D)[[1 [|(ch, )| + [(dh, )| (g, o),
mé  méE  mé & m .
Q2—( }. i + _12 dl*7d2*71dg)x1 *ulQl
p_ b P _ i i )
.m _m _m _m _ m - m
+(P71—pfl— ﬁTl 1+pT;d1_pﬁ1T1d2—gd2—pg——_ld:;))xl
Y P P Pe. - L, \P p
= [ U1ﬁl+ 2(’yd3 — (’)/ — 1)U1d2 - ,y—:’IGdl -+ ’YTuldl)

—hhtdb

ulT]Xl - (2:“ + )‘)Eljlxlxl

= O(1)| 00 lI(c, o, ) 2 + (dh, o, ) (s I )|
el | (ch, )] |-



Vanishing viscosity limit to planar rarefaction wave for 3D non-isentropic CNS

Perturbation:

¢(t, X) = pe(tv X) - ﬁ(t7 Xl)u
\U(t,X) = (¢17¢27¢32T(t7x) = (Ui, US, US)T(ta X) - (ﬁhO,O)T(t,Xl),
C(t, x) == 0°(t,x) — 0(t, x1),

with (p°, u®, 6°) being the solution to the full CNS (1) with the following
initial data:

(p°, u®,0°)(0, x) := (po, o, o) (x1) + (¢0, Vo, (o) (x),
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Perturbation system (¢, V, ():

¢t +u-Vo+ pdivW + Py, b1 + 1,6 = 0,
pVe + pu - VU + ROV + RpVC + (piing t1,0,0) T + (Rp, (0 — %é), 0,0)7
= peAV + (4 NeVdivw + ((2u + A)e(=29+%), , .0,0)"
_((2/1/ + A)EUUT}Xl(ba 07 O)T - (Q1%7 07 O)T7
R R .
ﬁ(ﬂ(t + pu - V() + Rpodiv¥ + ﬁpexﬂﬁl + Rpii, ¢

= keAC + EE|VV + (VW) T2 + Ae(divW)? + 201, (2uetny + AedivV)
+F+F— £Q2,

@ The analysis of the 3D case is carried out in the original non-scaled
variables, and consequently the dissipation terms are more singular
compared with the 2D scaled case.
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where

F = K‘g(oxlxl - §X1X1) (2:u + >‘) (u1><1 E%xl)
1 ~ _
KE { [( 0y — —— 19)5/1 — 1y + d3]}xx

_’7_1/{5[( U1d1+d2
2R 0

—idi + do

)2]X1X1 + 2(2M + )\)ajlxl( )x1

—ihdy +d

QA Nl(FREER), P

= 0(6)[|(d1X1X17 d2X1X17 d3><1X1)‘ + |(d1><1a d2X1)‘2 + |U1X1(d1><1a d2X17 d3><1)|
+ |G (dy, o2, d3) ],

9X1X1 U%x
Fo=—ke—""¢— (2u+ Ne——=9,
p p
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@ More accurate a priori assumptions with respect to the dissipation
coeffcients.

sup (¢, W, ()(t)[e < 1,
te[0,t1(e)]

sup [|(Vp, VW, V()| < ei|Ine| ™2,
te[0,t(e)] .
sup  [[(V20, V2, V2O)(1)]| < e¥|Ine .
te[0,t1(e)]

@ Some new observations on the cancellations of the physical
structures for the flux terms.

@ Here the decay rate is determined by the nonlinear terms, while for
the 2D case the decay rate is fully determined by the error terms in
the scaled variables.
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Thank youl!

Lin-an Li




	Background
	Vanishing viscosity limit to planar rarefaction wave for 2D isentropic CNS
	Vanishing viscosity limit to planar rarefaction wave for 3D non-isentropic CNS

