Symmetry and symmetry breaking for the fractional CKN inequality

AO, Weiwei, Wuhan University

Joint work with A. Dela Torre and M. Gonzalez

2020.11.27-12.01, CAMIS, SCNU

The Caffarelli-Kohn-Nirenberg inequality

$$
\left(\int_{\mathbb{R}^{n}} \frac{|u|^{p}}{|x|^{\beta p}} d x\right)^{2 / p} \leq\left(\Lambda_{\alpha, \beta}^{n}\right)^{-1} \int_{\mathbb{R}^{n}} \frac{|\nabla u|^{2}}{|x|^{2 \alpha}} d x(C K N)
$$

where

$$
\begin{gathered}
-\infty<\alpha<\frac{n-2}{2}, \alpha \leq \beta \leq \alpha+1, \\
p=\frac{2 n}{n-2+2(\beta-\alpha)}, \\
u \in D_{\alpha, \beta}=\left\{|x|^{-\beta} u \in L^{p}\left(\mathbb{R}^{n}\right),|x|^{-\alpha}|\nabla u| \in L^{2}\left(\mathbb{R}^{n}\right)\right\}
\end{gathered}
$$

- Interpolation between the Sobolev inequality $(\alpha=0, \beta=0)$ and the Hardy inequality $(\alpha=0, \beta=1)$ or weighted Hardy inequality $(\beta=\alpha+1)$.

The extremal solution

$$
S(\alpha, \beta)=\inf _{u \in D_{\alpha, \beta}} E_{\alpha, \beta}(u)
$$

where

$$
E_{\alpha, \beta}(u)=\frac{\int_{\mathbb{R}^{n}}|x|^{-2 \alpha}|\nabla u|^{2} d x}{\left(\int_{\mathbb{R}^{n}}|x|^{-\beta p}|u|^{p} d x\right)^{\frac{2}{p}}}
$$

The extremal solution for $S(\alpha, \beta)$ are solutions of

$$
-\operatorname{div}\left(|x|^{-2 \alpha} \nabla u\right)=|x|^{-\beta p} u^{p-1} \text { in } \mathbb{R}^{n}
$$

Best constants; Existence (and non-existence) of extremal solutions; Symmetry property

- For $0 \leq \alpha<\frac{n-2}{2}, \alpha \leq \beta \leq \alpha+1$

Aubin and Talenti, Lieb, Chou and Chu, Lions, Wang and Willem

- For $\alpha<0, \alpha \leq \beta \leq \alpha+1$

Horiuchi 1997, Catrina and Wang 2001, Willem 2002, Dolbeault, Esteban and Loss 2016

Symmetry breaking and the Felli-Schneider curve

Symmetry breaking by perturbation. One expands the functional

$$
F(v(r))=\left(\Lambda_{\alpha, \beta}\right)^{-1} \int_{\mathbb{R}^{n}} \frac{|\nabla v|^{2}}{|x|^{2 \alpha}} d x-\left(\int_{\mathbb{R}^{n}} \frac{|v|^{p}}{|x|^{\beta p}} d x\right)^{\frac{2}{p}}
$$

near the critical point $v_{*}(r)$ to second order by computing

$$
Q(w)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{2}}\left(F\left(v_{*}+\varepsilon w\right)-F\left(v_{*}\right)\right)
$$

The spectrum of Q determines the local stability of v_{*}.

- For $\alpha<0$, there exists $\beta=\beta_{F S}(\alpha)$, such that the lowest eigenvalue of Q is zero.
- So for $\alpha<\beta<\beta_{F S}(\alpha)$, the extremal is non-radial.
- The FS-curve is found by Felli-Schneider 2003;
- Radial symmetry of extremal solutions for

$$
\beta_{F S}(\alpha)<\beta<\alpha+1
$$

by Dolbeault, Esteban and Loss 2016 using nonlinear flow method.

The fractional CKN inequality

Consider $\gamma \in(0,1), n>2 \gamma$, and $\alpha, \beta \in \mathbb{R}$ satisfy

$$
\alpha \leq \beta \leq \alpha+\gamma,-2 \gamma<\alpha<\frac{n-2 \gamma}{2}
$$

and

$$
p=\frac{2 n}{n-2 \gamma+2(\beta-\alpha)} .
$$

The fractional Caffarelli-Kohn-Nirenberg inequality is
$\Lambda\left(\int_{\mathbb{R}^{n}} \frac{|u(x)|^{p}}{|x|^{\beta p}} d x\right)^{\frac{2}{p}} \leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{(u(x)-u(y))^{2}}{|x-y|^{n+2 \gamma}|x|^{\alpha}|y|^{\alpha}} d y d x(F C K N)$
Known results by Abdellaoui and Bentifour, Musina and Nazarou, Nguyen and Squassina

Energy functional

$$
E_{\alpha, \beta}(u)=\frac{\|u\|_{\gamma, \alpha}^{2}}{\left(\int_{\mathbb{R}^{n}}|x|^{-\beta p}|u|^{p} d x\right)^{2 / p}}
$$

The best constant in this inequality is defined by

$$
S(\alpha, \beta)=\inf _{u \in D_{\alpha, \beta}^{\gamma}\left(\mathbb{R}^{n}\right) \backslash\{0\}} E_{\alpha, \beta}(u) .
$$

Note that extremal solutions satisfy the following equation:

$$
\begin{equation*}
\mathcal{L}_{\gamma, \alpha}(u)=c \frac{|u(x)|^{p-2} u(x)}{|x|^{\beta p}}, \tag{1}
\end{equation*}
$$

where

$$
\mathcal{L}_{\gamma, \alpha}(u):=\int_{\mathbb{R}^{n}} \frac{u(x)-u(y)}{|x-y|^{n+2 \gamma}|x|^{\alpha}|y|^{\alpha}} d y .
$$

Best constants, existence and non-existence of extremal

 solutionsTheorem (1)
i. $S(\alpha, \beta)$ is continuous in the full parameter domain .
ii. For $\beta=\alpha+\gamma$, we have $S(\alpha, \alpha+\gamma)=2 \kappa_{\alpha, \gamma}^{n}$, and it is not achieved.
iii. For $\alpha=\beta, 0 \leq \alpha<\frac{n-2 \gamma}{2}, S(\alpha, \alpha)$ is achieved and the extremal solution is radially symmetric and decreasing in the radial variable.
iv. For $\alpha=\beta,-2 \gamma<\alpha<0, S(\alpha, \alpha)=S(0,0)$ and it is not achieved.
v. For $\alpha<\beta<\alpha+\gamma, S(\alpha, \beta)$ is always achieved.

Modified inversion symmetry

Theorem (2)

For $\alpha \leq \beta<\alpha+\gamma$, any bounded solution of (6) in $D_{\alpha, \beta}^{\gamma}\left(\mathbb{R}^{n}\right)$ satisfying $u(x)>0$ in $\mathbb{R}^{n} \backslash\{0\}$, satisfies the modified inversion symmetry

$$
u\left(\frac{x}{|x|^{2}}\right)=|x|^{n-2 \gamma-2 \alpha} u(x)
$$

after a dilation $u(x)=\lambda^{\frac{n-2 \gamma-2 \alpha}{2}} u(\lambda x), \lambda>0$ if necessary. Moreover, writing

$$
\begin{equation*}
t=-\ln |x| \quad \text { and } \quad \theta=\frac{x}{|x|}, \tag{2}
\end{equation*}
$$

we have that the function

$$
\begin{equation*}
v(t, \theta)=e^{-\frac{n-2 \gamma-2 \alpha}{2} t} u\left(e^{-t} \theta\right) \tag{3}
\end{equation*}
$$

is even in t and monotonically decreasing for $t>0$.

The problem in cylindrical variable

If $u(x)$ is the extremal and be a solution of

$$
\int_{\mathbb{R}^{n}} \frac{u(x)-u(y)}{|x-y|^{n+2 \gamma}|x|^{\alpha}|y|^{\alpha}} d y=c \frac{|u(x)|^{p-2} u(x)}{|x|^{\beta p}}
$$

then using the relation

$$
v(t, \theta)=e^{-\frac{n-2 \gamma-2 \alpha}{2} t} u\left(e^{-t} \theta\right)=|x|^{\frac{n-2 \gamma}{2}-\alpha} u(x)
$$

One can get the equation for $v(t, \theta)$

$$
P_{\gamma} v+C(\alpha) v=v^{p-1}, \quad t \in \mathbb{R}, \theta \in \mathbb{S}^{n-1}
$$

Here P_{γ} is the conformal fractional Laplacian on the cylinder, which is a conformally covariant non-local operator of order 2γ.

Uniqueness and Non-degeneracy of radial solution

If $\bar{v}(t)$ is a radially symmetric minimizer, consider the linearized operator given by

$$
\bar{L} w=P_{\gamma} w+C(\alpha) w-(p-1) \bar{v}^{p-2} w, \quad t \in \mathbb{R}, \theta \in \mathbb{S}^{n-1}
$$

Theorem (Non-degeneracy)

Assume that we are in the symmetry range. Let \bar{u} be a radially symmetric minimizer, and set \bar{v} in cylindrical coordinates as above. Then in the radial symmetry class

$$
\operatorname{ker}(\bar{L})=\left\langle\bar{v}_{t}\right\rangle
$$

Theorem (Uniqueness)
Let $n>2$. Then, in the symmetry range, minimizers for $E_{\alpha, \beta}$ are unique.

Symmetry breaking

Theorem (Symmetry breaking)

For $-2 \gamma<\alpha<0$, there exists an open subset H inside this region containing the set $\left\{(\alpha, \alpha) \in \mathbb{R}^{2}, \alpha \in(-2 \gamma, 0)\right\}$ such that for any $(\alpha, \beta) \in H$ with $\alpha<\beta$, the extremal solution to $S(\alpha, \beta)$ is non radial.
Remark: Note that the most general theorem on existence of a Felli-Schneider type curve separating the symmetry and symmetry breaking regions should be possible, but it is a complicated question since the proof in the local case relies on the explicit knowledge of the spectrum of the linearized operator.

The inequality in cylindrical variables

Proposition

Let

$$
\nu:=\frac{n-2 \gamma}{2}-\alpha .
$$

Then the function $u(x)=|x|^{-\nu}$ is a solution of Euler-Lagrange equation

$$
\int_{\mathbb{R}^{n}} \frac{u(x)-u(y)}{|x-y|^{n+2 \gamma}|x|^{\alpha}|y|^{\alpha}} d y=c \frac{|u(x)|^{p^{p-2} u(x)}}{|x|^{\beta p}}
$$

with the constant normalized as $c=\kappa_{\alpha, \gamma}^{n}$ with $0<\kappa_{\alpha, \gamma}^{n}<\infty$ defined as

$$
\kappa_{\alpha, \gamma}^{n}=\text { P.V. } \int_{\mathbb{R}^{n}} \frac{\left(1-|\zeta|^{-\nu}\right)}{\left|e_{1}-\zeta\right|^{n+2 \gamma}|\zeta|^{\alpha}} d \zeta=\int_{\mathbb{S}^{n-1}} J(\theta) d \theta
$$

where we have defined

$$
J(\theta)=\text { P.V. } \int_{0}^{\infty} \frac{\left(1-\varrho^{-\nu}\right) \varrho^{n-1-\alpha}}{\left(1+\varrho^{2}-2 \varrho\langle\sigma, \theta\rangle\right)^{\frac{n+2 \gamma}{2}}} d \varrho
$$

Remark: Here we need the condition that $\alpha>-2 \gamma$. Note that the best possible result should be for the whole range $\alpha<\frac{n-2 \gamma}{2}$. As it happens with the standard fractional Laplacian operator, one can admit more singular distributions by giving a more general definition for $(-\Delta)^{\gamma}$, for instance, by means of Fourier transform.

Proof.

Using polar coordinates with $\varrho=\frac{|y|}{|x|}$ and $\theta, \sigma \in \mathbb{S}^{n-1}$ for x, y

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \frac{|x|^{-\nu}-|y|^{-\nu}}{|x-y|^{n+2 \gamma}|y|^{\alpha}} d y & =|x|^{-\nu-2 \gamma-\alpha} \int_{\mathbb{S}^{n}} \int_{0}^{\infty} \frac{\left(1-\varrho^{-\nu}\right) \varrho^{n-1-\alpha}}{\left(1+\varrho^{2}-2 \varrho\langle\sigma, \theta\rangle\right)^{\frac{n+2 \gamma}{2}}} d \varrho \\
& =|x|^{-\nu-2 \gamma-\alpha} \kappa_{\alpha, \gamma}^{n},
\end{aligned}
$$

Equivalent problem on $\mathbb{R} \times S^{n-1}$

Recall the conformal fractional Laplacian on cylinder:

$$
\begin{aligned}
P_{\gamma} v & =r^{\frac{n+2 \gamma}{2}}(-\Delta)^{\gamma}\left(r^{-\frac{n-2 \gamma}{2}} v\right) \\
& =\varsigma_{n, \gamma} P \cdot V \cdot \int_{\mathcal{C}} K(t, \tilde{t}, \theta, \tilde{\theta})(v(t, \theta)-v(\tilde{t}, \tilde{\theta})) d \tilde{\mu}+c_{n, \gamma} v(t),
\end{aligned}
$$

where

$$
K(t, \tilde{t}, \theta, \tilde{\theta})=\frac{e^{-\frac{n+2 \gamma}{2}|t-\tilde{t}|}}{\left(1+e^{-2|t-\tilde{t}|}-2 e^{-|t-\tilde{t}|}|\theta, \tilde{\theta}\rangle\right)^{\frac{n+2 \gamma}{2}}}, \quad t, \tilde{t} \in \mathbb{R}, \theta, \tilde{\theta} \in \mathbb{S}^{n-1}
$$

$$
\begin{aligned}
\|u\|_{\gamma, \alpha}^{2}= & \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{(u(x)-u(y))^{2}}{|x-y|^{n+2 \gamma}|x|^{\alpha}|y|^{\alpha}} d y d x \\
= & 2 \kappa_{\alpha, \gamma}^{n} \int_{\mathcal{C}} v^{2}(t, \theta) d \mu+\int_{\mathcal{C}} \int_{\mathcal{C}} K(t, \tilde{t}, \theta, \tilde{\theta})(v(t, \theta)-v(\tilde{t}, \tilde{\theta}))^{2} d \mu d \\
& \quad \int_{\mathbb{R}^{n}} \frac{|u|^{p}}{|x|^{\beta p}} d x=\int_{\mathcal{C}}|v(t, \theta)|^{p} d \mu .
\end{aligned}
$$

Thus we define an energy functional on the cylinder \mathcal{C} :

$$
F_{\alpha, \beta}(v)=\frac{\int_{\mathcal{C}} \int_{\mathcal{C}} K(t, \tilde{t}, \theta, \tilde{\theta})(v(t, \theta)-v(\tilde{t}, \tilde{\theta}))^{2} d \mu d \tilde{\mu}+2 \kappa_{\alpha, \gamma}^{n} \int_{\mathcal{C}} v^{2} d \mu}{\left(\int_{\mathcal{C}}|v|^{p} d \mu\right)^{2 / p}}
$$

The extremal will satisfy

$$
P_{\gamma}(v)+C(\alpha) v=c v^{p-1} \text { in } \mathcal{C}
$$

Proof of modified inversion symmetry

Let v be a positive solution of

$$
\begin{equation*}
P_{\gamma} v(t, \theta)+C(\alpha) v(t, \theta)=c v(t, \theta)^{p-1} \text { in } \mathcal{C} . \tag{4}
\end{equation*}
$$

We use the moving plane method to show that for $\alpha \leq \beta<\alpha+\gamma$, v must be symmetric with respect to some $t=$ const.
Denote by $z^{\lambda}=(2 \lambda-t, \theta) \in \mathcal{C}$ the reflection of z relative to the plane $t=\lambda$. We let

$$
\begin{equation*}
w_{\lambda}(z):=v\left(z^{\lambda}\right)-v(z) \tag{5}
\end{equation*}
$$

which is defined on

$$
\Sigma_{\lambda}:=\{(t, \theta) \in \mathcal{C}, t<\lambda\}
$$

Two key points: the Maximum principle and the Hopf Lemma.

Lemma (Maximum Principle)

Let v a solution to

$$
P_{\gamma} v=f(v) \text { in } \Sigma_{\lambda}
$$

satisfying $v \geq 0$ in $\Sigma_{\lambda}, f(v) \geq 0$ for $v \geq 0$ and v is anti-symmetric with respect to $\partial \Sigma_{\lambda}$, i.e. $v\left(z^{\lambda}\right)=-v(z)$. Then $v \equiv 0$ or $v>0$ in Σ_{λ}.

Proof.

Let us assume that there exists $\left(t_{0}, \theta_{0}\right) \in \Sigma_{\lambda}$ with $v\left(t_{0}, \theta_{0}\right)=0$. Then, as above,

$$
\begin{align*}
P_{\gamma} v\left(t_{0}, \theta_{0}\right) & =\varsigma_{n, \gamma} \int_{\mathcal{C}} K\left(t_{0}, \tilde{t}, \theta_{0}, \theta\right)\left(v\left(t_{0}, \theta_{0}\right)-v(\tilde{t}, \tilde{\theta})\right) d \tilde{\mu}+c_{n, \gamma} v\left(t_{0}, \theta_{0}\right) \\
& =-\varsigma_{n, \gamma} \int_{\Sigma_{\lambda}}\left[K\left(t_{0}, \tilde{t}, \theta_{0}, \tilde{\theta}\right)-K\left(t_{0},-\tilde{t}, \theta_{0}, \tilde{\theta}\right)\right] v(\tilde{t}, \tilde{\theta}) d \tilde{\mu} \\
& \leq 0 \tag{6}
\end{align*}
$$

Thus $P_{\gamma} v=f(v)$ is satisfied if and only if $v \equiv 0$.

Lemma (Hopf Lemma for anti-symmetric functions)
Assume that $w \in C_{\text {loc }}^{3}(\Sigma)$,

$$
\limsup _{z \rightarrow \partial \Sigma} c(z)=o\left(\frac{1}{[\operatorname{dist}(z, \partial \Sigma)]^{2}}\right)
$$

and

$$
\left\{\begin{array}{l}
P_{\gamma} w+c(z) w=0 \quad \text { in } \Sigma \\
w(z)>0 \text { in } \Sigma, \\
w\left(z^{\lambda}\right)=-w(z) \text { in } \Sigma
\end{array}\right.
$$

Then

$$
\frac{\partial w}{\partial \nu}<0, \quad \text { for every } z \in \partial \Sigma
$$

Symmetry breaking

Let $\bar{v}(t)$ be energy minimizer of $F_{\alpha, \beta}$ in radial symmetry class,

$$
P_{\gamma} \bar{v}+C(\alpha) \bar{v}=\bar{v}^{p-1}
$$

and consider the eigenvalue problem of the linearized operator:

$$
P_{\gamma} w+C(\alpha) w-(p-1) \bar{v}^{p-2} w=\lambda w .
$$

Projecting over spherical harmonics, eigenvalues are given by pairs $\left(\lambda_{m}, \phi_{m}(t)\right)$, that solve

$$
P_{\gamma}^{(m)} \phi_{m}+C(\alpha) \phi_{m}-(p-1) \bar{v}^{p-2} \phi_{m}=\lambda_{m} \phi_{m}, \quad m=0,1, \ldots,
$$

The first eigenvalue λ_{0} is simple and assume the eigenfunctions corresponds to λ_{0}, λ_{1} are w_{0}, w_{1}, choose

$$
\bar{v}+\delta w_{0}+s w_{1}
$$

as a test function,

$$
F_{\alpha, \beta}\left(\bar{v}+\delta w_{0}+s w_{1}\right)=F_{\alpha, \beta}(\bar{v})+2 \lambda_{1} s^{2} \int_{\mathcal{C}} w_{1}^{2} d \mu+o\left(s^{2}\right)
$$

Uniqueness and Non-degeneracy

Uniqueness and non-degeneracy for a non-local ODE with fractional Laplacian

$$
(-\Delta)^{\gamma} v+v=v^{p_{0}-1} \quad \text { in } \mathbb{R}
$$

where first developed in Frank-Lenzmann 2013. The idea can be applied to deal with

$$
P_{\gamma}^{(0)} \bar{v}+C(\alpha) \bar{v}=\bar{v}^{p-1}, \quad \bar{v}=\bar{v}(t)
$$

We will do a continuation argument in γ in order to use the known uniqueness results in the local case $\gamma=1$.

Non-degeneracy of radial solutions

We use the ODE method for fractional operators we have developed to deal with this problem. Let \bar{v} be radial solution of

$$
P_{\gamma} \bar{v}+C(\alpha) \bar{v}=c \bar{v}^{p-1} \quad \text { in } \mathcal{C}
$$

The linearized problem

$$
P_{\gamma} \bar{w}+C(\alpha) \bar{w}=c(p-1) \bar{v}^{p-2} w \quad \text { in } \mathcal{C}
$$

First one knows that $w_{*}=\partial_{t} v(t)$ belongs to the kernel.

$$
P_{\gamma}^{(0)} w_{0}+C(\alpha) w_{0}=h_{0}
$$

Take Fourier transform

$$
\left(\Theta_{\gamma}^{(0)}(\xi)+C(\alpha)\right) \hat{w}_{0}=\hat{h}_{0},
$$

The behavior of the equation depends on the zeroes of the symbol $\Theta_{\gamma}^{(0)}(\xi)+C(\alpha)$. Formally we write

$$
w_{0}(t)=\int_{\mathbb{R}} \frac{1}{\Theta_{\gamma}^{(0)}(\xi)+C(\alpha)} \hat{h}_{0}(\xi) e^{i \xi t} d \xi=\int_{\mathbb{R}} \mathcal{G}_{0}\left(t-t^{\prime}\right) h_{0}\left(t^{\prime}\right) d t^{\prime}
$$

where the Green's function for the problem is given by

$$
\mathcal{G}_{m}(t)=\int_{\mathbb{R}} e^{i \xi t} \frac{1}{\Theta_{\gamma}^{(0)}(\xi)+C(\alpha)} d \xi
$$

Lemma

The zeroes are of the form $\left\{\tau_{j} \pm i \sigma_{j}\right\},\left\{-\tau_{j} \pm i \sigma_{j}\right\}$, for some $\tau_{j}, \sigma_{j}>0, j=0,1, \ldots$, satisfying in addition that $\sigma_{j}>0$ is an increasing sequence with no accumulation points. Moreover, $\tau_{j}=0$ for large j and the first zero lies on the imaginary axis away from the origin ($\tau_{0}=0, \sigma_{0}>0$). In particular, $\Theta_{\gamma}^{(0)}(\xi)+C(\alpha)$ is bounded from below for $\xi \in \mathbb{R}$.

$\gamma=1$, two indicial roots

Greens function for homogeneous equation

All solutions of the homogeneous problem $P_{\gamma}^{0} w+C(\alpha) w=0$ are of the form

$$
\begin{aligned}
w_{h}(t) & =C_{0}^{-} e^{-\sigma_{0} t}+C_{0}^{+} e^{\sigma_{0} t}+\sum_{j=1}^{\infty} e^{-\sigma_{j} t}\left[C_{j}^{-} \cos \left(\tau_{j} t\right)+C_{j}^{\prime-} \sin \left(\tau_{j} t\right)\right] \\
& +\sum_{j=1}^{\infty} e^{+\sigma_{j} t}\left[C_{j}^{+} \cos \left(\tau_{j} t\right)+C_{j}^{\prime+} \sin \left(\tau_{j} t\right)\right]
\end{aligned}
$$

for some real constants $C_{j}^{-}, C_{j}^{+}, C_{j}^{\prime-}, C_{j}^{\prime+}, j=0,1, \ldots$.

Variation of constants formula

Assume that the right hand side h satisfies

$$
h(t)= \begin{cases}O\left(e^{-\delta t}\right) & \text { as } t \rightarrow+\infty \tag{7}\\ O\left(e^{\delta_{0} t}\right) & \text { as } t \rightarrow-\infty\end{cases}
$$

for some real constants $\delta, \delta_{0}>-\sigma_{0}$. A particular solution can be written as

$$
\begin{equation*}
w_{p}(t)=\int_{\mathbb{R}} \mathcal{G}_{0}\left(t-t^{\prime}\right) h\left(t^{\prime}\right) d t^{\prime} \tag{8}
\end{equation*}
$$

where

$$
\mathcal{G}_{0}(t)=c_{0} e^{-\sigma_{0}|t|}+\sum_{j=1}^{\infty} e^{-\sigma_{j}|t|}\left[c_{j} \cos \left(\tau_{j}|t|\right)+c_{j}^{\prime} \sin \left(\tau_{j}|t|\right)\right]
$$

for some precise real constants c_{j}, c_{j}^{\prime} depending on κ, n, γ.

Reformulation into infinite system of second order ODEs

Define the complex-valued functions $w_{j}: \mathbb{R} \rightarrow \mathbb{C}$ by

$$
w_{j}=e^{-\left(\sigma_{j}+i \tau_{j}\right)|\cdot|} * h
$$

They satisfy the second order ODE

$$
-\frac{1}{\sigma_{j}+i \tau_{j}} w_{j}^{\prime \prime}+\left(\sigma_{j}+i \tau_{j}\right) w_{j}=2 h
$$

and the original (real-valued) function w can be still recovered by

$$
w(t)=\operatorname{Re} \sum_{j=0}^{\infty} c_{j} w_{j}(t)
$$

$$
P_{\gamma} w+C(\alpha) w=(p-1) \bar{v}^{p-2} w=: h .
$$

Let $w=w(t)$ be a kernel satisfying that $w=O\left(e^{-\alpha_{0}|t|}\right)$ as $|t| \rightarrow \infty$ for some $\alpha_{0}>-\sigma_{0}$. Then there exists a non-negative integer j such that either

$$
w(t)=\left(a_{j}+o(1)\right) e^{-\sigma_{j} t} \quad \text { as } t \rightarrow+\infty
$$

for some real number $a_{j} \neq 0$, or

$$
w(t)=\left(a_{j}^{1} \cos \left(\tau_{j} t\right)+a_{j}^{2} \sin \left(\tau_{j} t\right)+o(1)\right) e^{-\sigma_{j} t}
$$

for some real numbers a_{j}^{1}, a_{j}^{2} not vanishing simultaneously.

Proof for non-degeneracy

Let w, \tilde{w} be solutions of

$$
P_{\gamma} w+C(\alpha) w-(p-1) \bar{v}^{p-2} w=: P_{\gamma} w-v_{\infty} w=0
$$

Consider the infinite system of ODEs:

$$
w_{j}^{\prime \prime}-\sigma_{j}^{2} w_{j}=-2 \sigma_{j} v_{\infty}(t) w
$$

$$
W_{j}[w, \tilde{w}](t)=w_{j}^{\prime} \tilde{w}_{j}-w_{j} \tilde{w}_{j}^{\prime}=\text { const since } \frac{d}{d t} W_{j}[w, \tilde{w}]=0
$$

Define

$$
W[w, \tilde{w}]=\sum_{j=0}^{\infty} \frac{c_{j}}{\sigma_{j}} W_{j}[w, \tilde{w}]
$$

$$
W\left[w, w_{*}\right](t) \equiv \lim _{t \rightarrow+\infty} W\left[w, w_{*}\right](t)=0
$$

$$
w(t)=a_{j_{0}}(1+o(1)) e^{-\sigma_{j_{0}} t}, \quad w_{*}(t)=a_{j_{0}^{*}}(1+o(1)) e^{-\sigma_{j_{0}^{*}} t}
$$

$$
W\left[w, w_{*}\right](t)=a_{j_{0}} a_{j_{0}^{*}}\left(\sigma_{j_{0}}-\sigma_{j_{0}^{*}}+o(1)\right) e^{-\left(\sigma_{j_{0}}+\sigma_{j_{0}^{*}}\right) t} \quad \text { as } t \rightarrow+\infty,
$$

we obtain that $\sigma_{j_{0}}=\sigma_{j_{0}^{*}}$. We now look at the next order. We suppose

$$
w(t)=e^{-\sigma_{j 0} t}+a_{\alpha}(1+o(1)) e^{-\alpha t}, \quad w_{*}(t)=e^{-\sigma_{j_{0}^{*}} t}+a_{\alpha^{*}}(1+o(1)) e^{-\alpha^{*} t}
$$

A direct computation of the Wrońskian yields $\alpha=\alpha^{*}, a_{\alpha}=a_{\alpha^{*}}$. w, w^{*} has the same asymptotic expansion, by unique continuation, $w=w_{*}$.

Uniqueness

Step 1. Local invertibility
Consider the linearized operator

$$
L_{\gamma} w:=P_{\gamma}^{(0)} w+c_{0} w-\left(p_{0}-1\right) v^{p_{0}-2} w, \quad w \in L^{2}(\mathbb{R}) .
$$

By non-degeneracy, $\bar{L}_{\gamma}^{(0)}$ is invertible (with bounded inverse) in $L_{\text {even }}^{2}(\mathbb{R})$.
Proposition
Assume that we have a solution \bar{v}_{γ} with non-degenerate kernel for $\gamma=\gamma_{0}$. Then, for some $\delta>0$, there exists a map in $v \in C^{1}(I, \mathcal{F})$ defined on the interval $I=\left[\gamma_{0}, \gamma_{0}+\delta\right]$) and denoted by $v_{\gamma}:=v(\gamma)$, such that the following holds:
a. v_{γ} solves the equation for all $\gamma \in I$, with $\left.v_{\gamma}\right|_{\gamma=\gamma_{0}}=\bar{v}_{\gamma_{0}}$.
b. There exists $\epsilon>0$ such that v_{γ} is the unique solution for $\gamma \in I$ in the neighborhood $\left\{v \in \mathcal{F}:\left\|v-\bar{v}_{\gamma_{0}}\right\|<\epsilon\right\}$.

Pohozaev Identity

By extension this is equivalent to

$$
\left\{\begin{array}{l}
\partial_{\rho}\left(e_{1} \rho^{1-2 \gamma} \partial_{\rho} \bar{V}\right)+e_{2} \rho^{1-2 \gamma} \partial_{t t} \bar{V}=0, \rho \in\left(0, \rho_{0}\right), t \in \mathbb{R} \tag{9}\\
-\lim _{\rho \rightarrow 0} \rho^{1-2 \gamma} \partial_{\rho} \bar{V}(\rho, t)+C(\alpha) \bar{v}-\bar{v}^{p-1}=0 \text { on }\{\rho=0\}
\end{array}\right.
$$

Proposition

If $V=V(t, \rho)$ is a solution of above, then we have the following Pohožaev identities:
$\iint \rho^{1-2 \gamma}\left\{e_{1}(\rho)\left(\partial_{\rho} V\right)^{2}+e_{2}(\rho)\left(\partial_{t} V\right)^{2}\right\} d \rho d t+\tau \int v^{2} d t=\int v^{p_{0}} d t$
and

$$
\begin{aligned}
& \frac{\tau}{2} \int v^{2} d t-\frac{1}{p_{0}} \int v^{p_{0}} d t \\
& =\frac{1}{2} \iint \rho^{1-2 \gamma}\left\{-e_{1}(\rho)\left(\partial_{\rho} V\right)^{2}+e_{2}(\rho)\left(\partial_{t} V\right)^{2}\right\} d \rho d t
\end{aligned}
$$

Step 2. Apriori estimates
It is then natural to consider, for the branch $v_{\gamma}, \gamma \geq \gamma_{0}$, the energy

$$
I_{\gamma}:=\iint \rho^{1-2 \gamma}\left\{e_{1}(\rho)\left(\partial_{\rho} V_{\gamma}\right)^{2}+e_{2}(\rho)\left(\partial_{t} V_{\gamma}\right)^{2}\right\} d \rho d t
$$

Lemma

$$
\begin{equation*}
I_{\gamma} \sim \int v_{\gamma}^{2} d t \sim \int v_{\gamma}^{p_{0}} d t \sim 1 \tag{10}
\end{equation*}
$$

independently of γ, for $\gamma \in\left[\gamma_{0}, \gamma_{*}\right)$.

Step 3. Global continuation

Lemma
Let $\left(v_{\gamma}\right)$ be the maximal branch starting at \bar{v}_{γ} with $\gamma \in\left[\gamma_{0}, \gamma_{*}\right)$. Then $\gamma_{*}=1$.

At $\gamma_{*}=1$,

$$
\begin{equation*}
P_{1}^{(0)} v+c_{0} v=v^{p_{0}-1} \quad \text { in } \mathbb{R} . \tag{11}
\end{equation*}
$$

Here $P_{1}^{(0)}=-\partial_{t t}+c_{n}$ on \mathbb{R} for $c_{n}=\frac{(n-2)^{2}}{4}$. The corresponding solution is unique.

Thank You!

