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The Caffarelli-Kohn-Nirenberg inequality

I (∫
Rn

|u|p

|x |βp
dx

)2/p

≤ (Λn
α,β)−1

∫
Rn

|∇u|2

|x |2α
dx (CKN)

where

−∞ < α <
n − 2

2
, α ≤ β ≤ α + 1,

p = 2n
n−2+2(β−α) ,

u ∈ Dα,β = {|x |−βu ∈ Lp(Rn), |x |−α|∇u| ∈ L2(Rn)}

I Interpolation between the Sobolev inequality (α = 0, β = 0)
and the Hardy inequality (α = 0, β = 1) or weighted Hardy
inequality (β = α + 1).



The extremal solution

S(α, β) = inf
u∈Dα,β

Eα,β(u)

where

Eα,β(u) =

∫
Rn |x |−2α|∇u|2dx

(
∫
Rn |x |−βp|u|pdx)

2
p

The extremal solution for S(α, β) are solutions of

−div(|x |−2α∇u) = |x |−βpup−1 in Rn.



Best constants; Existence (and non-existence ) of extremal
solutions; Symmetry property

I For 0 ≤ α < n−2
2 , α ≤ β ≤ α + 1

Aubin and Talenti, Lieb, Chou and Chu, Lions, Wang and
Willem

I For α < 0, α ≤ β ≤ α + 1

Horiuchi 1997, Catrina and Wang 2001 , Willem 2002,
Dolbeault, Esteban and Loss 2016



existence

symmetry

⍺

β

(n-2)/2



Symmetry breaking and the Felli-Schneider curve

Symmetry breaking by perturbation. One expands the functional

F (v(r)) = (Λα,β)−1

∫
Rn

|∇v |2

|x |2α
dx −

(∫
Rn

|v |p

|x |βp
dx

) 2
p

near the critical point v∗(r) to second order by computing

Q(w) = lim
ε→0

1

ε2

(
F (v∗ + εw)− F (v∗)

)
The spectrum of Q determines the local stability of v∗.



symmetry

⍺

β

(n-2)/2



I For α < 0, there exists β = βFS(α), such that the lowest
eigenvalue of Q is zero.

I So for α < β < βFS(α), the extremal is non-radial.

I The FS-curve is found by Felli-Schneider 2003;

I Radial symmetry of extremal solutions for

βFS(α) < β < α + 1

by Dolbeault, Esteban and Loss 2016 using nonlinear flow
method.



The fractional CKN inequality

Consider γ ∈ (0, 1), n > 2γ, and α, β ∈ R satisfy

α ≤ β ≤ α + γ, −2γ < α <
n − 2γ

2
,

and

p =
2n

n − 2γ + 2(β − α)
.

The fractional Caffarelli-Kohn-Nirenberg inequality is

Λ

(∫
Rn

|u(x)|p

|x |βp
dx

) 2
p

≤
∫
Rn

∫
Rn

(u(x)− u(y))2

|x − y |n+2γ |x |α|y |α
dy dx (FCKN)

Known results by Abdellaoui and Bentifour, Musina and Nazarou,
Nguyen and Squassina



Energy functional

Eα,β(u) =
‖u‖2

γ,α( ∫
Rn |x |−βp|u|p dx

)2/p
.

The best constant in this inequality is defined by

S(α, β) = inf
u∈Dγα,β(Rn)\{0}

Eα,β(u).

Note that extremal solutions satisfy the following equation:

Lγ,α(u) = c
|u(x)|p−2u(x)

|x |βp
, (1)

where

Lγ,α(u) :=

∫
Rn

u(x)− u(y)

|x − y |n+2γ |x |α|y |α
dy .



Best constants, existence and non-existence of extremal
solutions

Theorem (1)

i. S(α, β) is continuous in the full parameter domain .

ii. For β = α + γ, we have S(α, α + γ) = 2κnα,γ , and it is not
achieved.

iii. For α = β, 0 ≤ α < n−2γ
2 , S(α, α) is achieved and the

extremal solution is radially symmetric and decreasing in the
radial variable.

iv. For α = β, −2γ < α < 0, S(α, α) = S(0, 0) and it is not
achieved.

v. For α < β < α + γ, S(α, β) is always achieved.



Modified inversion symmetry

Theorem (2)

For α ≤ β < α + γ, any bounded solution of (6) in Dγ
α,β(Rn)

satisfying u(x) > 0 in Rn \ {0}, satisfies the modified inversion
symmetry

u

(
x

|x |2

)
= |x |n−2γ−2αu(x)

after a dilation u(x) = λ
n−2γ−2α

2 u(λx), λ > 0 if necessary.
Moreover, writing

t = − ln |x | and θ =
x

|x |
, (2)

we have that the function

v(t, θ) = e−
n−2γ−2α

2
tu(e−tθ) (3)

is even in t and monotonically decreasing for t > 0.



The problem in cylindrical variable

If u(x) is the extremal and be a solution of∫
Rn

u(x)− u(y)

|x − y |n+2γ |x |α|y |α
dy = c

|u(x)|p−2u(x)

|x |βp
,

then using the relation

v(t, θ) = e−
n−2γ−2α

2
tu(e−tθ) = |x |

n−2γ
2
−αu(x)

One can get the equation for v(t, θ)

Pγv + C (α)v = vp−1, t ∈ R, θ ∈ Sn−1.

Here Pγ is the conformal fractional Laplacian on the cylinder,
which is a conformally covariant non-local operator of order 2γ.



Uniqueness and Non-degeneracy of radial solution

If v̄(t) is a radially symmetric minimizer, consider the linearized
operator given by

L̄w = Pγw + C (α)w − (p − 1)v̄p−2w , t ∈ R, θ ∈ Sn−1.

Theorem (Non-degeneracy)

Assume that we are in the symmetry range. Let ū be a radially
symmetric minimizer, and set v̄ in cylindrical coordinates as above.
Then in the radial symmetry class

ker(L̄) = 〈v̄t〉.

Theorem (Uniqueness)

Let n > 2. Then, in the symmetry range, minimizers for Eα,β are
unique.



Symmetry breaking

Theorem (Symmetry breaking)

For −2γ < α < 0, there exists an open subset H inside this region
containing the set {(α, α) ∈ R2, α ∈ (−2γ, 0)} such that for any
(α, β) ∈ H with α < β, the extremal solution to S(α, β) is non
radial.

Remark: Note that the most general theorem on existence of a
Felli-Schneider type curve separating the symmetry and symmetry
breaking regions should be possible, but it is a complicated
question since the proof in the local case relies on the explicit
knowledge of the spectrum of the linearized operator.



The inequality in cylindrical variables

Proposition

Let

ν :=
n − 2γ

2
− α.

Then the function u(x) = |x |−ν is a solution of Euler-Lagrange
equation ∫

Rn

u(x)− u(y)

|x − y |n+2γ |x |α|y |α
dy = c

|u(x)|p−2u(x)

|x |βp
,

with the constant normalized as c = κnα,γ with 0 < κnα,γ <∞
defined as



κnα,γ = P.V.

∫
Rn

(1− |ζ|−ν)

|e1 − ζ|n+2γ |ζ|α
dζ =

∫
Sn−1

J(θ) dθ,

where we have defined

J(θ) = P.V.

∫ ∞
0

(1− %−ν)%n−1−α

(1 + %2 − 2%〈σ, θ〉)
n+2γ

2

d%.

Remark: Here we need the condition that α > −2γ. Note that the
best possible result should be for the whole range α < n−2γ

2 . As it
happens with the standard fractional Laplacian operator, one can
admit more singular distributions by giving a more general
definition for (−∆)γ , for instance, by means of Fourier transform.



Proof.
Using polar coordinates with % = |y |

|x | and θ, σ ∈ Sn−1 for x , y∫
Rn

|x |−ν − |y |−ν

|x − y |n+2γ |y |α
dy = |x |−ν−2γ−α

∫
Sn

∫ ∞
0

(1− %−ν)%n−1−α

(1 + %2 − 2%〈σ, θ〉)
n+2γ

2

d% dθ

= |x |−ν−2γ−ακnα,γ ,



Equivalent problem on R× Sn−1

Recall the conformal fractional Laplacian on cylinder:

Pγv = r
n+2γ

2 (−∆)γ(r−
n−2γ

2 v)

= ςn,γP.V .

∫
C

K (t, t̃, θ, θ̃)(v(t, θ)− v(t̃, θ̃)) d µ̃+ cn,γv(t),

where

K (t, t̃, θ, θ̃) =
e−

n+2γ
2
|t−t̃|

(1 + e−2|t−t̃| − 2e−|t−t̃|〈θ, θ̃〉)
n+2γ

2

, t, t̃ ∈ R, θ, θ̃ ∈ Sn−1.



‖u‖2
γ,α =

∫
Rn

∫
Rn

(u(x)− u(y))2

|x − y |n+2γ |x |α|y |α
dy dx

= 2κnα,γ

∫
C

v 2(t, θ) dµ+

∫
C

∫
C

K (t, t̃, θ, θ̃)(v(t, θ)− v(t̃, θ̃))2 dµ d µ̃,

∫
Rn

|u|p

|x |βp
dx =

∫
C
|v(t, θ)|p dµ.

Thus we define an energy functional on the cylinder C:

Fα,β(v) =

∫
C

∫
C

K (t, t̃, θ, θ̃)(v(t, θ)− v(t̃, θ̃))2 dµd µ̃+ 2κnα,γ

∫
C

v 2 dµ(∫
C
|v |p dµ

)2/p
.

The extremal will satisfy

Pγ(v) + C (α)v = cvp−1 in C.



Proof of modified inversion symmetry

Let v be a positive solution of

Pγv(t, θ) + C (α)v(t, θ) = cv(t, θ)p−1 in C. (4)

We use the moving plane method to show that for α ≤ β < α+ γ,
v must be symmetric with respect to some t = const.

Denote by zλ = (2λ− t, θ) ∈ C the reflection of z relative to the
plane t = λ. We let

wλ(z) := v(zλ)− v(z), (5)

which is defined on

Σλ:={(t, θ) ∈ C, t < λ}

Two key points: the Maximum principle and the Hopf Lemma.



Lemma (Maximum Principle)

Let v a solution to
Pγv = f (v) in Σλ,

satisfying v ≥ 0 in Σλ, f (v) ≥ 0 for v ≥ 0 and v is anti-symmetric
with respect to ∂Σλ, i.e. v(zλ) = −v(z). Then v ≡ 0 or v > 0 in
Σλ.

Proof.
Let us assume that there exists (t0, θ0) ∈ Σλ with v(t0, θ0) = 0.
Then, as above,

Pγv(t0, θ0) = ςn,γ

∫
C

K (t0, t̃, θ0, θ)(v(t0, θ0)− v(t̃, θ̃)) d µ̃+ cn,γv(t0, θ0)

= −ςn,γ
∫

Σλ

[K (t0, t̃, θ0, θ̃)− K (t0,−t̃, θ0, θ̃)]v(t̃, θ̃) d µ̃

≤ 0.

(6)

Thus Pγv = f (v) is satisfied if and only if v ≡ 0.



Lemma (Hopf Lemma for anti-symmetric functions)

Assume that w ∈ C 3
loc(Σ),

lim sup
z→∂Σ

c(z) = o
( 1

[dist(z , ∂Σ)]2

)
,

and 
Pγw + c(z)w = 0 in Σ,
w(z) > 0 in Σ,
w(zλ) = −w(z) in Σ.

Then
∂w

∂ν
< 0, for every z ∈ ∂Σ.



Symmetry breaking

Let v̄(t) be energy minimizer of Fα,β in radial symmetry class,

Pγ v̄ + C (α)v̄ = v̄p−1.

and consider the eigenvalue problem of the linearized operator:

Pγw + C (α)w − (p − 1)v̄p−2w = λw .

Projecting over spherical harmonics, eigenvalues are given by pairs
(λm, φm(t)), that solve

P(m)
γ φm + C (α)φm − (p − 1)v̄p−2φm = λmφm, m = 0, 1, . . . ,



The first eigenvalue λ0 is simple and assume the eigenfunctions
corresponds to λ0, λ1 are w0, w1, choose

v̄ + δw0 + sw1

as a test function,

Fα,β(v̄ + δw0 + sw1) = Fα,β(v̄) + 2λ1s2

∫
C

w 2
1 d µ+ o(s2)



Uniqueness and Non-degeneracy

Uniqueness and non-degeneracy for a non-local ODE with
fractional Laplacian

(−∆)γv + v = vp0−1 in R,

where first developed in Frank-Lenzmann 2013. The idea can be
applied to deal with

P(0)
γ v̄ + C (α)v̄ = v̄p−1, v̄ = v̄(t).

We will do a continuation argument in γ in order to use the known
uniqueness results in the local case γ = 1.



Non-degeneracy of radial solutions

We use the ODE method for fractional operators we have
developed to deal with this problem. Let v̄ be radial solution of

Pγ v̄ + C (α)v̄ = cv̄p−1 in C,

The linearized problem

Pγw̄ + C (α)w̄ = c(p − 1)v̄p−2w in C,

First one knows that w∗ = ∂tv(t) belongs to the kernel.



P(0)
γ w0 + C (α)w0 = h0

Take Fourier transform

(Θ(0)
γ (ξ) + C (α))ŵ0 = ĥ0,

The behavior of the equation depends on the zeroes of the symbol

Θ
(0)
γ (ξ) + C (α). Formally we write

w0(t) =

∫
R

1

Θ
(0)
γ (ξ) + C (α)

ĥ0(ξ)e iξt dξ =

∫
R
G0(t − t ′)h0(t ′) dt ′,

where the Green’s function for the problem is given by

Gm(t) =

∫
R

e iξt
1

Θ
(0)
γ (ξ) + C (α)

dξ.



Lemma
The zeroes are of the form {τj ± iσj}, {−τj ± iσj}, for some
τj , σj > 0, j = 0, 1, . . ., satisfying in addition that σj > 0 is an
increasing sequence with no accumulation points. Moreover,
τj = 0 for large j and the first zero lies on the imaginary axis away
from the origin (τ0 = 0, σ0 > 0).

In particular, Θ
(0)
γ (ξ) + C (α) is bounded from below for ξ ∈ R.
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Greens function for homogeneous equation

All solutions of the homogeneous problem P0
γw + C (α)w = 0 are

of the form

wh(t) = C−0 e−σ0t + C +
0 eσ0t +

∞∑
j=1

e−σj t [C−j cos(τj t) + C ′−j sin(τj t)]

+
∞∑
j=1

e+σj t [C +
j cos(τj t) + C ′+j sin(τj t)]

for some real constants C−j ,C
+
j ,C

′−
j ,C ′+j , j = 0, 1, . . ..



Variation of constants formula

Assume that the right hand side h satisfies

h(t) =

{
O(e−δt) as t → +∞,
O(eδ0t) as t → −∞,

(7)

for some real constants δ, δ0 > −σ0. A particular solution can be
written as

wp(t) =

∫
R
G0(t − t ′)h(t ′) dt ′, (8)

where

G0(t) = c0e−σ0|t| +
∞∑
j=1

e−σj |t|[cj cos(τj |t|) + c ′j sin(τj |t|)],

for some precise real constants cj , c
′
j depending on κ, n, γ.



Reformulation into infinite system of second order ODEs

Define the complex-valued functions wj : R→ C by

wj = e−(σj+iτj )|·| ∗ h.

They satisfy the second order ODE

− 1

σj + iτj
w ′′j + (σj + iτj)wj = 2h,

and the original (real-valued) function w can be still recovered by

w(t) = Re

∞∑
j=0

cjwj(t).



Pγw + C (α)w = (p − 1)v̄p−2w =: h.

Let w = w(t) be a kernel satisfying that w = O(e−α0|t|) as
|t| → ∞ for some α0 > −σ0. Then there exists a non-negative
integer j such that either

w(t) = (aj + o(1))e−σj t as t → +∞,

for some real number aj 6= 0, or

w(t) =
(
a1
j cos(τj t) + a2

j sin(τj t) + o(1)
)

e−σj t ,

for some real numbers a1
j , a

2
j not vanishing simultaneously.



Proof for non-degeneracy

Let w , w̃ be solutions of

Pγw + C (α)w − (p − 1)v̄p−2w =: Pγw − v∞w = 0

Consider the infinite system of ODEs:

w ′′j − σ2
j wj = −2σjv∞(t)w

Wj [w , w̃ ](t) = w ′j w̃j − wj w̃
′
j = const since

d

dt
Wj [w , w̃ ] = 0

Define

W [w , w̃ ] =
∞∑
j=0

cj
σj

Wj [w , w̃ ]



W [w ,w∗](t) ≡ lim
t→+∞

W [w ,w∗](t) = 0.

w(t) = aj0(1 + o(1))e−σj0 t , w∗(t) = aj∗0 (1 + o(1))e
−σj∗

0
t
,

W [w ,w∗](t) = aj0aj∗0 (σj0 − σj∗0 + o(1))e
−(σj0 +σj∗

0
)t

as t → +∞,

we obtain that σj0 = σj∗0 . We now look at the next order. We
suppose

w(t) = e−σj0 t+aα(1+o(1))e−αt , w∗(t) = e
−σj∗

0
t
+aα∗(1+o(1))e−α

∗t ,

A direct computation of the Wrońskian yields α = α∗, aα = aα∗ .
w ,w∗ has the same asymptotic expansion, by unique continuation,
w = w∗.



Uniqueness

Step 1. Local invertibility

Consider the linearized operator

Lγw := P(0)
γ w + c0w − (p0 − 1)vp0−2w , w ∈ L2(R).

By non-degeneracy, L̄
(0)
γ is invertible (with bounded inverse) in

L2
even(R).

Proposition

Assume that we have a solution v̄γ with non-degenerate kernel for
γ = γ0. Then, for some δ > 0, there exists a map in v ∈ C 1(I ,F)
defined on the interval I = [γ0, γ0 + δ]) and denoted by
vγ := v(γ), such that the following holds:

a. vγ solves the equation for all γ ∈ I , with vγ |γ=γ0 = v̄γ0 .

b. There exists ε > 0 such that vγ is the unique solution for
γ ∈ I in the neighborhood {v ∈ F : ‖v − v̄γ0‖ < ε}.



Pohozaev Identity
By extension this is equivalent to ∂ρ(e1ρ

1−2γ∂ρV̄ ) + e2ρ
1−2γ∂ttV̄ = 0, ρ ∈ (0, ρ0), t ∈ R,

− lim
ρ→0

ρ1−2γ∂ρV̄ (ρ, t) + C (α)v̄ − v̄p−1 = 0 on {ρ = 0}. (9)

Proposition

If V = V (t, ρ) is a solution of above, then we have the following
Pohožaev identities:∫∫

ρ1−2γ
{

e1(ρ)(∂ρV )2 + e2(ρ)(∂tV )2
}

dρdt+τ

∫
v 2 dt =

∫
vp0 dt

and

τ

2

∫
v 2 dt − 1

p0

∫
vp0 dt

=
1

2

∫∫
ρ1−2γ

{
−e1(ρ)(∂ρV )2 + e2(ρ)(∂tV )2

}
dρdt.



Step 2. Apriori estimates

It is then natural to consider, for the branch vγ , γ ≥ γ0, the energy

Iγ :=

∫∫
ρ1−2γ

{
e1(ρ)(∂ρVγ)2 + e2(ρ)(∂tVγ)2

}
dρ dt.

Lemma

Iγ ∼
∫

v 2
γ dt ∼

∫
vp0
γ dt ∼ 1 (10)

independently of γ, for γ ∈ [γ0, γ∗).



Step 3. Global continuation

Lemma
Let (vγ) be the maximal branch starting at v̄γ with γ ∈ [γ0, γ∗).
Then γ∗ = 1.

At γ∗ = 1,

P
(0)
1 v + c0v = vp0−1 in R. (11)

Here P
(0)
1 = −∂tt + cn on R for cn = (n−2)2

4 . The corresponding
solution is unique.



Thank You!


