Symmetry and symmetry breaking for the
fractional CKN inequality

AO, Weiwei, Wuhan University
Joint work with A. Dela Torre and M. Gonzalez

2020.11.27-12.01, CAMIS, SCNU



The Caffarelli-Kohn-Nirenberg inequality

|ulP )2“’ . / Vul?
dx < (A" dx (CKN
</R x| < Mag) ™ [ e B (CKN)

where

_ 2
pP= n—2+2rz,3—a)’

u€ Dyp={|x|7Pu € LP(R"),|x|"*|Vu| € L2(R")}

» Interpolation between the Sobolev inequality (« = 0,8 = 0)
and the Hardy inequality (« = 0,5 = 1) or weighted Hardy
inequality (8 = a + 1).



The extremal solution

S(a, B) = inf Eag()

ueD,,

where
fR" x| ~2¥|Vu|?dx

Eop(u) =
(fan [ X722 |ulpdx) 5

The extremal solution for S(«, /3) are solutions of

—div(|x|72*Vu) = |x|PPuP~t in R".



Best constants; Existence (and non-existence ) of extremal
solutions; Symmetry property

> For0§a<"§2,a§ﬁ§a+1

Aubin and Talenti, Lieb, Chou and Chu, Lions, Wang and
Willem

» Fora<0,a<f<a+1

Horiuchi 1997, Catrina and Wang 2001 , Willem 2002,
Dolbeault, Esteban and Loss 2016
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Symmetry breaking and the Felli-Schneider curve

Symmetry breaking by perturbation. One expands the functional

o = 0t [ T ([ o)

near the critical point v, (r) to second order by computing

Q(w) = lim %(F(v* ew)— F(w)

e—0¢€

The spectrum of @ determines the local stability of v,.
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For a < 0, there exists 5 = Brs(a), such that the lowest
eigenvalue of Q is zero.

So for aw < 8 < Brs(), the extremal is non-radial.
The FS-curve is found by Felli-Schneider 2003;

Radial symmetry of extremal solutions for

Brs(a) < B <a+1

by Dolbeault, Esteban and Loss 2016 using nonlinear flow
method.



The fractional CKN inequality

Consider v € (0,1), n > 2v, and «, 5 € R satisfy

-2
a§63a+7w47<a<n27,

and
2n

n—2y+2(8—a)
The fractional Caffarelli-Kohn-Nirenberg inequality is

(56000 < L i oo o

Known results by Abdellaoui and Bentifour, Musina and Nazarou,
Nguyen and Squassina

p:




Energy functional
lull3
2/p’
(i X177l o)
The best constant in this inequality is defined by

S(a, B) = inf E, p(u).
(e.5) ueD] ,(R")\{0} o)

Eap(u) =

Note that extremal solutions satisfy the following equation:

£yt = 240

where

Ly o(u):= /R u(x) — u(y) dy.

n [x = y|mT27|x|2|y|@



Best constants, existence and non-existence of extremal
solutions

Theorem (1)

i. S(a, B) is continuous in the full parameter domain .

ii. For 3= a+, we have S(a, o+ ) = 2k, ., and it is not
achieved.

ii. Fora=p,0<a< ”;227 S(a, @) is achieved and the
extremal solution is radially symmetric and decreasing in the
radial variable.

iv. Fora=p, =2y <a <0, S(o,a) = 5(0,0) and it is not
achieved.

v. Fora < <a++, S(a, ) is always achieved.



Modified inversion symmetry

Theorem (2)

For a < 3 < v+, any bounded solution of (6) in D ,(R")
satisfying u(x) > 0 in R"\ {0}, satisfies the modified inversion

symmetry

n—2v—2«

after a dilation u(x) = A 2 u(Ax), A > 0 if necessary.
Moreover, writing

X
t=—In|x| and 0= —, (2)
x|
we have that the function
V(t,0) = e 5 ty(eth) (3)

is even in t and monotonically decreasing for t > 0.



The problem in cylindrical variable

If u(x) is the extremal and be a solution of

A BT MU Tl
R

D=y ey T X

then using the relation

_ n=2y—2«

v(t,0) =e 2z ‘fu(e '0) = |x|

n722w —a U(X)

One can get the equation for v(t, )
P,v+ Cla)v=vP7l teR, S

Here P, is the conformal fractional Laplacian on the cylinder,
which is a conformally covariant non-local operator of order 2+.



Uniqueness and Non-degeneracy of radial solution

If v(t) is a radially symmetric minimizer, consider the linearized
operator given by

Lw = Pyw + Cla)w — (p — 1)Vp_2W, teR,0eS" L.

Theorem (Non-degeneracy)

Assume that we are in the symmetry range. Let U be a radially
symmetric minimizer, and set v in cylindrical coordinates as above.
Then in the radial symmetry class

ker(L) = (7).

Theorem (Uniqueness)

Let n > 2. Then, in the symmetry range, minimizers for E, 3 are
unique.



Symmetry breaking

Theorem (Symmetry breaking)

For —2v < a < 0, there exists an open subset H inside this region
containing the set {(a,a) € R?, o € (—27,0)} such that for any
(o, B) € H with o < 3, the extremal solution to S(«, B) is non
radial.

Remark: Note that the most general theorem on existence of a
Felli-Schneider type curve separating the symmetry and symmetry
breaking regions should be possible, but it is a complicated
question since the proof in the local case relies on the explicit
knowledge of the spectrum of the linearized operator.



The inequality in cylindrical variables

Proposition
Let
 n—2y
V= s
Then the function u(x) = |x|™" is a solution of Euler-Lagrange
equation

A B MU T
R

o |x =y |x|eyle T x|op

with the constant normalized as ¢ = K, ., with 0 < kj ., < 00
defined as



(1 [¢[)
KD = P.V./ dc= [ J0)de,
" oo T — e 96 = J, 7O

where we have defined
(1 _ Q—V)Qn—l—a

J(6) =P.V. / ——do.
0 (14 02— 20(0,0))"%"

Remark: Here we need the condition that @ > —2v. Note that the
best possible result should be for the whole range o < ”}ﬁ As it
happens with the standard fractional Laplacian operator, one can
admit more singular distributions by giving a more general
definition for (—A)?, for instance, by means of Fourier transform.



Proof.
Using polar coordinates with g9 = % and 0,0 € S"1 for x,y

|X‘ v |y| v 1 o Q—V)Qn—l—a
/ = ’n+2’y‘ B dy = |x|7"~ 2y—a ——do
re [x =y [y Jo (14 0 —20(0,0))"

|X‘1/2'yozn

77’

O



Equivalent problem on R x ™!

Recall the conformal fractional Laplacian on cylinder:

n+2~y _n—2y

Piv=r=2 (=A)(r 2 v)

G PV /C K(t,5.0,0)(v(t.0) — v(E.0)) dji + cnrv(t),

- ~ e7%|t7;| - ~
K(t,t,6,0) = - tieR0,0eSh

(1 + e—2t=t — 2e—It=E(h,0)) 2




2 Y))2
u dy dx
el o / /R x— |"+2wx| e

:g,igm/cv (tje)d,u—k/c/cK(t,f,G,é)(v(t,H)—v(f,é))2 diic

_ )|P
/|X’dex /y (t,0)P dp.

Thus we define an energy functional on the cylinder C:

// (t.%,0,0)(v t@)—v(,5))2dudﬂ+2ﬁgﬁ/v2du
C

/ VPP dir)’

P,(v) + C(a)v = cvP 1 in C.

The extremal will satisfy



Proof of modified inversion symmetry

Let v be a positive solution of
P,v(t,0) + C(a)v(t,0) = cv(t,0)P " in C. (4)

We use the moving plane method to show that for a < 8 < a + 7,
v must be symmetric with respect to some t = const.

Denote by z* = (2\ — t,6) € C the reflection of z relative to the
plane t = X. We let

wa(2) = v(2*) = v(2), (5)
which is defined on

Ta={(t,0) € C,t <A}

Two key points: the Maximum principle and the Hopf Lemma.



Lemma (Maximum Principle)

Let v a solution to
Pyv = f(v) in Xy,

satisfying v > 0 in X, f(v) > 0 for v > 0 and v is anti-symmetric
with respect to 0%, i.e. v(z*) = —v(z). Then v=0orv >0 in
Y.

Proof.
Let us assume that there exists (to, 6p) € X with v(tp, 6p) = 0.
Then, as above,

PWV(thGO) = §n,'y/ K(to,%, 9070)(V(t0>90) - V(aé)) d/] + Cn,'yV(thHO)
C

= _gn,'y/z [K(th %a 90, é) - K(toa _Ea 00? é)]v(%,é) dﬂ
A

<0.
(6)
Thus P,v = f(v) is satisfied if and only if v = 0. O



Lemma (Hopf Lemma for anti-symmetric functions)

Assume that w € C} (),

imspee) = e oy )

and
Pyw+c(z)w=0 inX,
w(z) >0 inX,
w(z)) = —w(z) inX.
Then
ow

— <0, foreveryze 0¥L.
ov



Symmetry breaking

Let v(t) be energy minimizer of F, 5 in radial symmetry class,
P,V + C(a)v = vP L.
and consider the eigenvalue problem of the linearized operator:
Pow + C(a)w — (p — 1)VP 2w = Aw.

Projecting over spherical harmonics, eigenvalues are given by pairs
(Am, &m(t)), that solve

'D'(ym)¢m + C(a)pm — (p — 1)Vp72¢m = Am®m, m=0,1,...,



The first eigenvalue \g is simple and assume the eigenfunctions
corresponds to A\g, A1 are wy, wy, choose

V—I—(;WO—l-SWl

as a test function,

Fos(V 4 0w + swi) = Fo (V) + 2)\152/ wid pu+ o(s?)
c



Uniqueness and Non-degeneracy

Uniqueness and non-degeneracy for a non-local ODE with
fractional Laplacian

(~A)Y'v+v=vP1 inR,

where first developed in Frank-Lenzmann 2013. The idea can be
applied to deal with

0) - - -p—1 -
PA(Y)v—i—C(oz)v—vp , v=u(t).

We will do a continuation argument in -y in order to use the known
uniqueness results in the local case v = 1.



Non-degeneracy of radial solutions

We use the ODE method for fractional operators we have
developed to deal with this problem. Let v be radial solution of

P.,v 4 C(a)v = cvP inC,

The linearized problem

P,w + C(a)w = c(p— 1)vP 2w in C,

First one knows that w, = 0;v(t) belongs to the kernel.



PS/O)WO + C(Oé)W() = ho
Take Fourier transform
(©4(€) + C(e)ito = ho,

The behavior of the equation depends on the zeroes of the symbol
@go)(f) + C(a). Formally we write

Wi — 1 P elSt _ o / /
o()= [ ST e O [ Gl — e ot

where the Green’s function for the problem is given by

_ ei{t 1
ont0= |, o)+ cta)



Lemma

The zeroes are of the form {7; £ io;}, {—7j + io}}, for some

7i,0; >0, j =0,1,..., satisfying in addition that o; > 0 is an
increasing sequence with no accumulation points. Moreover,

7; = 0 for large j and the first zero lies on the imaginary axis away
from the origin (19 = 0, o9 > 0).

In particular, @go)(é’) + C(«) is bounded from below for { € R.
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Greens function for homogeneous equation

All solutions of the homogeneous problem PSW + C(a)w =0 are
of the form

wh() = Co e~ G ™ 30 e G cos(rt) + G sin(rt)]
j=1

+ Z eIt [CF cos(7jt) + G sin(7;t)]
j=1

for some real constants Cj*, CJ.JF, CJ{*, Cj”r, j=0,1,....



Variation of constants formula

Assume that the right hand side h satisfies
O(e™%) as t — +oo,
h(t) = ot (7)
O(e”™') ast — —oo,

for some real constants d,dp > —og. A particular solution can be
written as

wo(t) = [ Gole — ¥)h(E) (8)

where

oo
Go(t) = coe™ I+~ e=ltl[¢; cos(r;|t]) + ¢ sin(7;[t])],
j=1

for some precise real constants ¢;, cjf depending on «, n, .



Reformulation into infinite system of second order ODEs

Define the complex-valued functions w; : R — C by

They satisfy the second order ODE
1

oj+ITj

wj' + (o) + iTj)w; = 2h,

and the original (real-valued) function w can be still recovered by

w(t) =Re Y gw;(t).

j=0



P,w + C(a)w = (p — 1)vP 2w =: h.

Let w = w(t) be a kernel satisfying that w = O(e~I*l) as
|t| = oo for some ag > —op. Then there exists a non-negative
integer j such that either

w(t) = (aj +o(1))e"" ast— +oo,
for some real number a; # 0, or
w(t) = (a} cos(7jt) + aj2 sin(7jt) + o(l)) et
1

for some real numbers aj,ajg not vanishing simultaneously.



Proof for non-degeneracy

Let w, W be solutions of
Pyw + Cla)w — (p — l)Vp_2W = Pyw —veow =0

Consider the infinite system of ODEs:

wi' — ofwj = —20Voo(t)w

Wlw, W](t) = wjW; — w;W, = const since %Wj[w, w| =0

Wiw, ] = > L Wjw, #]
=0



Wiw, w,](t) = lim W][w,w](t) =0.

t——+00

w(t) = ajp(1+ o(1))e %",  wa(t) = a;z(1+o(1))e ",

Wilw, w,](t) = apaj; (o), — ojs + o(l))e_(gj°+af5)t as t — 400,

we obtain that oj, = ojx. We now look at the next order. We
suppose

w(t) = e %' taq(140(1))e ™, wa(t) =e " taq-(140(1))e ",

A direct computation of the Wronskian yields @ = a*, a, = ag~.

w, w* has the same asymptotic expansion, by unique continuation,
W = Wy.



Uniqueness

Step 1. Local invertibility

Consider the linearized operator
Lyw = PSO)W + cow — (po — D)vP 2w, w € L3(R).

By non-degeneracy, ZEYO) is invertible (with bounded inverse) in

L2ven(R).
Proposition
Assume that we have a solution v., with non-degenerate kernel for
v = o. Then, for some § > 0, there exists a map in v € C1(I,F)
defined on the interval | = [yo,70 + 6]) and denoted by
vy := v(7), such that the following holds:

a. vy solves the equation for all v € I, with v,|y—, = Vy,.

b. There exists € > 0 such that v, is the unique solution for
v € | in the neighborhood {v € F : |[v — V| < €}.



Pohozaev Identity
By extension this is equivalent to

9,(e1p* 270, V) + e2p* 20,V = 0,p € (0, po), t € R,
~ lim 9210, V(p.t) + C(a)7 — 71 = 0on {p=0}.

Proposition

If V.= V/(t,p) is a solution of above, then we have the following
PohoZaev identities:

/ / P2 Le1(p)(9,V)? + ea(p)(9:V)?} dpdt+T / vidt = / vPo dt

T/zﬁ—l/ﬂm
2 Po

B ;// p' 2 {—e1(p)(9,V)? + ea(p)(8: V)?} dpdt.

and



Step 2. Apriori estimates

It is then natural to consider, for the branch v, v > 7, the energy
bim [[ 72 (@l @) + @)@, dodt
Lemma

/Ww/vﬁdtw/vgodml (10)

independently of 7y, for v € [0, 7«).



Step 3. Global continuation

Lemma

Let (vy) be the maximal branch starting at v, with vy € [Yo,7+).
Then v, = 1.

At v, =1,
Pfo)v +cv=vP! inR (11)

(0) _ _ (n—=2)? ;
Here Py’ = —04 + ¢, on R for ¢, = *—;=~. The corresponding
solution is unique.



Thank Youl



