Existence and nonexistence of nontrivial solutions for critical biharmonic equations

Qihan He(何其涵-广西大学)

Based on a joint work with Zongyan Lv

Problem

$$\begin{cases}
\Delta^{2} u = \mu \Delta u + \lambda u + |u|^{2^{**}-2} u, & x \in \Omega, \\
u|_{\partial\Omega} = \frac{\partial u}{\partial n}|_{\partial\Omega} = 0,
\end{cases}$$
(1)

where $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary $\partial\Omega$, $\Delta^2 = \Delta\Delta$ denotes the iterated N-dimensional Laplacian, $2^{**} = \frac{2N}{N-4} \ (N>4)$ is the critical Sobolev exponent for the embedding $H_0^2(\Omega) \hookrightarrow L^{2^{**}}(\Omega)$ and $H_0^2(\Omega)$ is the closure of $C_0^\infty(\Omega)$ under the norm $||\Delta u||_{L^2(\Omega)}$.

The functional corresponding to (1) is

$$I(u) = \frac{1}{2} \int_{\Omega} (|\Delta u|^2 + \mu |\nabla u|^2 - \lambda u^2) dx - \frac{1}{2^{**}} \int_{\Omega} |u|^{2^{**}} dx, \ u \in H_0^2(\Omega).$$

- Some related results
- Main results
- Idea of proof of our main results

- Some related results
- Main results
- Idea of proof of our main results

- Some related results
- Main results
- Idea of proof of our main results

- Some related results
- Main results
- Idea of proof of our main results

$$\begin{cases}
-\Delta u = \lambda u + u^{2^*-1}, & x \in \Omega, \\
u|_{\partial\Omega} = 0,
\end{cases} (2)$$

- H. Brézis, L. Nirenberg, Comm. Pure Appl. Math. 1983;
- Surprisingly, they discovered that the cases of N = 3 and N ≥ 4 are quite different.
- Namely (denoting here by $\lambda_1(\Omega)$, the first eigenvalue of $-\Delta$ with zero Dirichlet boundary condition on Ω), when $N \geq 4$ nontrivial positive solutions exist if and only if $\lambda \in (0, \lambda_1(\Omega))$, while, when N = 3 and Ω is a ball, nontrivial positive solutions exist only for $\lambda \in (\frac{1}{4}\lambda_1(\Omega), \lambda_1(\Omega))$, which implies that N = 3 is a critical dimension of positive solution for (2).
- They also showed that if $\lambda \leq 0$ and Ω is a starshaped domain, then there is no solutions for (2).

$$\begin{cases}
-\Delta u = \lambda u + u^{2^*-1}, & x \in \Omega, \\
u|_{\partial\Omega} = 0,
\end{cases} (2)$$

- H. Brézis, L. Nirenberg, Comm. Pure Appl. Math. 1983;
- Surprisingly, they discovered that the cases of N = 3 and N ≥ 4 are quite different.
- Namely (denoting here by $\lambda_1(\Omega)$, the first eigenvalue of $-\Delta$ with zero Dirichlet boundary condition on Ω), when $N \geq 4$ nontrivial positive solutions exist if and only if $\lambda \in (0, \lambda_1(\Omega))$, while, when N = 3 and Ω is a ball, nontrivial positive solutions exist only for $\lambda \in (\frac{1}{4}\lambda_1(\Omega), \lambda_1(\Omega))$, which implies that N = 3 is a critical dimension of positive solution for (2).
- They also showed that if $\lambda \leq 0$ and Ω is a starshaped domain, then there is no solutions for (2).

$$\begin{cases}
-\Delta u = \lambda u + u^{2^*-1}, & x \in \Omega, \\
u|_{\partial\Omega} = 0,
\end{cases} (2)$$

- H. Brézis, L. Nirenberg, Comm. Pure Appl. Math. 1983;
- Surprisingly, they discovered that the cases of N = 3 and N ≥ 4 are quite different.
- Namely (denoting here by $\lambda_1(\Omega)$, the first eigenvalue of $-\Delta$ with zero Dirichlet boundary condition on Ω), when $N \geq 4$ nontrivial positive solutions exist if and only if $\lambda \in (0, \lambda_1(\Omega))$, while, when N = 3 and Ω is a ball, nontrivial positive solutions exist only for $\lambda \in (\frac{1}{4}\lambda_1(\Omega), \lambda_1(\Omega))$, which implies that N = 3 is a critical dimension of positive solution for (2).
- They also showed that if $\lambda \leq 0$ and Ω is a starshaped domain, then there is no solutions for (2).

$$\begin{cases}
-\Delta u = \lambda u + u^{2^*-1}, & x \in \Omega, \\
u|_{\partial\Omega} = 0,
\end{cases} (2)$$

- H. Brézis, L. Nirenberg, Comm. Pure Appl. Math. 1983;
- Surprisingly, they discovered that the cases of N = 3 and N ≥ 4 are quite different.
- Namely (denoting here by $\lambda_1(\Omega)$, the first eigenvalue of $-\Delta$ with zero Dirichlet boundary condition on Ω), when $N \geq 4$ nontrivial positive solutions exist if and only if $\lambda \in (0, \lambda_1(\Omega))$, while, when N=3 and Ω is a ball, nontrivial positive solutions exist only for $\lambda \in (\frac{1}{4}\lambda_1(\Omega), \lambda_1(\Omega))$, which implies that N=3 is a critical dimension of positive solution for (2).
- They also showed that if $\lambda \leq 0$ and Ω is a starshaped domain, then there is no solutions for (2).

• Gu, Deng and Wang (Systems Sci. Math. Sci., 1994)

$$\begin{cases}
\Delta^{2} u = \lambda u + |u|^{2^{**}-2} u, & x \in \Omega, \\
u|_{\partial\Omega} = \frac{\partial u}{\partial n}|_{\partial\Omega} = 0, & \lambda > 0,
\end{cases}$$
(3)

- (1) For $N \geq 8$, problem (3) possesses at least one nontrivial weak solutions if $\lambda \in (0, \delta_1(\Omega))$;
- (2) For N=5,6,7 and $\Omega=B_R(0)\subset\mathbb{R}^N$, there exist two positive constants $\lambda^{**}(N)<\lambda^*(N)<\delta_1(\Omega)$ such that problem (3) has at least one nontrivial weak solutions if $\lambda\in(\lambda^*(N),\delta_1(\Omega))$, and problem (3) has no nontrivial solutions if $\lambda<\lambda^{**}(N)$;
- What has shown above implies that N = 5, 6, 7 are the critical dimensions of nontrivial solutions for (3).

• Gu, Deng and Wang (Systems Sci. Math. Sci., 1994)

$$\begin{cases}
\Delta^{2} u = \lambda u + |u|^{2^{**}-2} u, & x \in \Omega, \\
u|_{\partial\Omega} = \frac{\partial u}{\partial n}|_{\partial\Omega} = 0, & \lambda > 0,
\end{cases}$$
(3)

- (1) For $N \geq 8$, problem (3) possesses at least one nontrivial weak solutions if $\lambda \in (0, \delta_1(\Omega))$;
- (2) For N=5,6,7 and $\Omega=B_R(0)\subset\mathbb{R}^N$, there exist two positive constants $\lambda^{**}(N)<\lambda^*(N)<\delta_1(\Omega)$ such that problem (3) has at least one nontrivial weak solutions if $\lambda\in(\lambda^*(N),\delta_1(\Omega))$, and problem (3) has no nontrivial solutions if $\lambda<\lambda^{**}(N)$;
- What has shown above implies that N = 5, 6, 7 are the critical dimensions of nontrivial solutions for (3).

• Gu, Deng and Wang (Systems Sci. Math. Sci., 1994)

$$\begin{cases}
\Delta^{2} u = \lambda u + |u|^{2^{**}-2} u, & x \in \Omega, \\
u|_{\partial\Omega} = \frac{\partial u}{\partial n}|_{\partial\Omega} = 0, & \lambda > 0,
\end{cases}$$
(3)

- (1) For $N \geq 8$, problem (3) possesses at least one nontrivial weak solutions if $\lambda \in (0, \delta_1(\Omega))$;
- (2) For N=5,6,7 and $\Omega=B_R(0)\subset\mathbb{R}^N$, there exist two positive constants $\lambda^{**}(N)<\lambda^*(N)<\delta_1(\Omega)$ such that problem (3) has at least one nontrivial weak solutions if $\lambda\in(\lambda^*(N),\delta_1(\Omega))$, and problem (3) has no nontrivial solutions if $\lambda<\lambda^{**}(N)$;
- What has shown above implies that N = 5, 6, 7 are the critical dimensions of nontrivial solutions for (3).

• Gu, Deng and Wang (Systems Sci. Math. Sci., 1994)

$$\begin{cases}
\Delta^2 u = \lambda u + |u|^{2^{**}-2} u, & x \in \Omega, \\
u|_{\partial\Omega} = \frac{\partial u}{\partial n}|_{\partial\Omega} = 0, & \lambda > 0,
\end{cases}$$
(3)

- (1) For $N \geq 8$, problem (3) possesses at least one nontrivial weak solutions if $\lambda \in (0, \delta_1(\Omega))$;
- (2) For N=5,6,7 and $\Omega=B_R(0)\subset\mathbb{R}^N$, there exist two positive constants $\lambda^{**}(N)<\lambda^*(N)<\delta_1(\Omega)$ such that problem (3) has at least one nontrivial weak solutions if $\lambda\in(\lambda^*(N),\delta_1(\Omega))$, and problem (3) has no nontrivial solutions if $\lambda<\lambda^{**}(N)$;
- What has shown above implies that N = 5, 6, 7 are the critical dimensions of nontrivial solutions for (3).

- Problem (1) possesses at least one nontrivial weak solution, provided one of the following assumptions holds:
- (1) $N \geq 5$, $\mu = 0$ and $\lambda \in (\lambda^*(N), \delta_1(\Omega))$;
- (2) $N \geq 6$, $\mu \in (-\beta(\Omega), 0)$ and $\lambda < \frac{(\mu + \beta(\Omega))\delta_1(\Omega)}{\beta(\Omega)}$ (See Figure 1.(a));
- (3) N = 5, $(\lambda, \mu) \in A \cap B$, where $A := \{(\lambda, \mu) | \lambda \in (-\infty, \delta_1(\Omega)), \max\{-\beta(\Omega), \frac{\beta(\Omega)}{\delta_1(\Omega)}\lambda \beta(\Omega)\} < \mu\}$, $B := \{(\lambda, \mu) | \mu < 0.0317\lambda 11.8681\}$ (See Figure 1.(b) or 1.(c)).

其中,
$$\beta(\Omega):=\inf_{u\in H_0^2(\Omega)\setminus\{0\}}rac{\int_\Omega |\Delta u|^2dx}{\int_\Omega |\nabla u|^2dx}.$$

- Problem (1) possesses at least one nontrivial weak solution, provided one of the following assumptions holds:
- (1) $N \geq 5$, $\mu = 0$ and $\lambda \in (\lambda^*(N), \delta_1(\Omega))$;
- (2) $N \geq 6$, $\mu \in (-\beta(\Omega), 0)$ and $\lambda < \frac{(\mu + \beta(\Omega))\delta_1(\Omega)}{\beta(\Omega)}$ (See Figure 1.(a));
- (3) N = 5, $(\lambda, \mu) \in A \cap B$, where $A := \{(\lambda, \mu) | \lambda \in (-\infty, \delta_1(\Omega)), \max\{-\beta(\Omega), \frac{\beta(\Omega)}{\delta_1(\Omega)}\lambda \beta(\Omega)\} < \mu\}$, $B := \{(\lambda, \mu) | \mu < 0.0317\lambda 11.8681\}$ (See Figure 1.(b) or 1.(c)).

其中,
$$\beta(\Omega) := \inf_{u \in \mathcal{H}_0^2(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\Delta u|^2 dx}{\int_{\Omega} |\nabla u|^2 dx}.$$

- Problem (1) possesses at least one nontrivial weak solution, provided one of the following assumptions holds:
- (1) $N \geq 5$, $\mu = 0$ and $\lambda \in (\lambda^*(N), \delta_1(\Omega))$;
- (2) $N \ge 6$, $\mu \in (-\beta(\Omega), 0)$ and $\lambda < \frac{(\mu + \beta(\Omega))\delta_1(\Omega)}{\beta(\Omega)}$ (See Figure 1.(a));
- (3) N = 5, $(\lambda, \mu) \in A \cap B$, where $A := \{(\lambda, \mu) | \lambda \in (-\infty, \delta_1(\Omega)), \max\{-\beta(\Omega), \frac{\beta(\Omega)}{\delta_1(\Omega)}\lambda \beta(\Omega)\} < \mu\}$, $B := \{(\lambda, \mu) | \mu < 0.0317\lambda 11.8681\}$ (See Figure 1.(b) or 1.(c)).

其中,
$$\beta(\Omega):=\inf_{u\in H_0^2(\Omega)\setminus\{0\}}rac{\int_\Omega |\Delta u|^2dx}{\int_\Omega |\nabla u|^2dx}$$
.

- Problem (1) possesses at least one nontrivial weak solution, provided one of the following assumptions holds:
- (1) $N \geq 5$, $\mu = 0$ and $\lambda \in (\lambda^*(N), \delta_1(\Omega))$;
- (2) $N \geq 6$, $\mu \in (-\beta(\Omega), 0)$ and $\lambda < \frac{(\mu + \beta(\Omega))\delta_1(\Omega)}{\beta(\Omega)}$ (See Figure 1.(a));
- (3) N = 5, $(\lambda, \mu) \in A \cap B$, where $A := \{(\lambda, \mu) | \lambda \in (-\infty, \delta_1(\Omega)), \max\{-\beta(\Omega), \frac{\beta(\Omega)}{\delta_1(\Omega)}\lambda \beta(\Omega)\} < \mu\}$, $B := \{(\lambda, \mu) | \mu < 0.0317\lambda 11.8681\}$ (See Figure 1.(b) or 1.(c)).

其中,
$$\beta(\Omega) := \inf_{u \in \mathcal{H}_0^2(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\Delta u|^2 dx}{\int_{\Omega} |\nabla u|^2 dx}.$$

There is at least one nontrivial solution of (1) for $\lambda,\ \mu$ in dash area.

$$\tau_1: \mu = -\beta(\Omega), \ \tau_2: \mu = \frac{\beta(\Omega)}{\delta_1(\Omega)}\lambda - \beta(\Omega), \ \tau_3: \mu = 0.0317\lambda - 11.8681.$$

(a)
$$N \ge 6$$

(b)
$$N = 5$$
, $\beta(\Omega) < 11.8681$

(c)
$$N = 5$$
, $\beta(\Omega) > 11.8681$

• Different from the case $\mu = 0$, N = 6,7 are not the critical dimensions of nontrivial solutions when $\mu \in (-\beta(\Omega), 0)$.

Theorem 2

• There are no nontrivial solutions of (1) in $H_0^2(\Omega) \cap C^4(\Omega)$ for $\mu > \max\{0, \frac{2}{\lambda_1(\Omega)}\lambda\}$ if Ω is a starshaped domain.

• Different from the case $\mu = 0$, N = 6,7 are not the critical dimensions of nontrivial solutions when $\mu \in (-\beta(\Omega), 0)$.

Theorem 2

• There are no nontrivial solutions of (1) in $H_0^2(\Omega) \cap C^4(\Omega)$ for $\mu > \max\{0, \frac{2}{\lambda_1(\Omega)}\lambda\}$ if Ω is a starshaped domain.

We define

$$\|u\|_{1}^{2} = \int_{\Omega} (|\Delta u|^{2} + \mu |\nabla u|^{2} - \lambda |u|^{2}) dx,$$
$$\|u\|_{2}^{2} = \int_{\Omega} |\Delta u|^{2} dx,$$
$$\beta(\Omega) := \inf_{u \in H_{0}^{2}(\Omega) \setminus \{0\}} \frac{\|u\|_{2}^{2}}{\int_{\Omega} |\nabla u|^{2} dx}.$$

- Step 1: Prove that the norm $||u||_1$ is equivalent to $||u||_2$ in $H_0^2(\Omega)$, provided λ and μ satisfy one of the following two conditions:
 - (1) $\lambda \leq 0$, $\mu > -\beta(\Omega)$;
 - (2) $\delta_1(\Omega) > \lambda > 0$, $\mu > \frac{\beta(\Omega)}{\delta_1(\Omega)}\lambda \beta(\Omega)$.

We define

$$\begin{aligned} \|u\|_{1}^{2} &= \int_{\Omega} (|\Delta u|^{2} + \mu |\nabla u|^{2} - \lambda |u|^{2}) dx, \\ \|u\|_{2}^{2} &= \int_{\Omega} |\Delta u|^{2} dx, \\ \beta(\Omega) &:= \inf_{u \in H_{0}^{2}(\Omega) \setminus \{0\}} \frac{\|u\|_{2}^{2}}{\int_{\Omega} |\nabla u|^{2} dx}. \end{aligned}$$

- Step 1: Prove that the norm $||u||_1$ is equivalent to $||u||_2$ in $H_0^2(\Omega)$, provided λ and μ satisfy one of the following two conditions:
 - (1) $\lambda \leq 0$, $\mu > -\beta(\Omega)$;
 - (2) $\delta_1(\Omega) > \lambda > 0$, $\mu > \frac{\beta(\Omega)}{\delta_1(\Omega)}\lambda \beta(\Omega)$.

- Step 2: Prove that the functional I(u) satisfies Mountain-Pass geometry structure and the $(PS)_c$ sequence $\{u_n\}$ is bounded in $H_0^2(\Omega)$.
- Step 3: Prove that if $c < \frac{2}{N}S^{\frac{N}{4}}$, then I(u) satisfies the $(PS)_c$ condition, where $S : \triangleq \inf\{|\Delta u|_2^2 : u \in H^2(\mathbb{R}^N), |u|_{2^{**}} = 1\}$ is the best Sobolev embedding constant of the embedding $H^2(\mathbb{R}^N) \hookrightarrow L^{2^{**}}(\mathbb{R}^N)$.
- Step 4:Prove that there exists a function $u_0 \in H_0^2(\Omega) \setminus \{0\}$ such that

$$\sup_{t>0} I(tu_0) < \frac{2}{N} S^{\frac{N}{4}}, \tag{4}$$

- Step 2: Prove that the functional I(u) satisfies Mountain-Pass geometry structure and the $(PS)_c$ sequence $\{u_n\}$ is bounded in $H_0^2(\Omega)$.
- Step 3: Prove that if $c < \frac{2}{N}S^{\frac{N}{4}}$, then I(u) satisfies the $(PS)_c$ condition, where $S : \triangleq \inf\{|\Delta u|_2^2 : u \in H^2(\mathbb{R}^N), |u|_{2^{**}} = 1\}$ is the best Sobolev embedding constant of the embedding $H^2(\mathbb{R}^N) \hookrightarrow L^{2^{**}}(\mathbb{R}^N)$.
- Step 4:Prove that there exists a function $u_0 \in H_0^2(\Omega) \setminus \{0\}$ such that

$$\sup_{t\geq 0} I(tu_0) < \frac{2}{N} S^{\frac{N}{4}},\tag{4}$$

We introduce a well-known fact that the minimization problem

$$S = \inf\{\frac{|\Delta u|_2^2}{|u|_{2^{**}}^2} : u \in H^2(\mathbb{R}^N) \setminus \{0\}\}$$
 (5)

is attained only by the functions lu_{ε,x_0} , where $l \in \mathbb{R} \setminus \{0\}$ and u_{ε,x_0} is defined by

$$u_{\varepsilon,x_0}(x) = \frac{\left[N(N-4)(N^2-4)\varepsilon^2\right]^{\frac{(N-4)}{8}}}{\left(\varepsilon + |x-x_0|^2\right)^{\frac{(N-4)}{2}}}, \quad \forall x_0 \in \mathbb{R}^N, \forall \varepsilon > 0. \quad (6)$$

- Step 4: verification of (4)
- Case 1: $N \geq 8$ we let $\varphi \in C_0^\infty(\mathbb{R}^N,[0,1])$ be a radial cut-off function, such that

$$\begin{cases} \varphi(|x|) = 1, & |x| \le \rho, , \\ \varphi(|x|) \in (0, 1), & \rho < |x| < 2\rho, \\ \varphi(|x|) = 0, & |x| \ge 2\rho. \end{cases}$$

Set

$$\psi_{\varepsilon}(x) = \varphi(x) u_{\varepsilon,0}(x). \tag{7}$$

• Lemma 2: Assume that $N \geq 8$, $\mu < 0$ and $\lambda \in \mathbb{R}$ or $\mu = 0$ and $\lambda > 0$. Then, as $\varepsilon \to 0^+$, ψ_{ε} defined in (7) satisfies the following estimates:

- Step 4: verification of (4)
- Case 1: $N \ge 8$ we let $\varphi \in C_0^\infty(\mathbb{R}^N,[0,1])$ be a radial cut-off function, such that

$$\begin{cases} \varphi(|x|) = 1, & |x| \le \rho, , \\ \varphi(|x|) \in (0,1), & \rho < |x| < 2\rho, \\ \varphi(|x|) = 0, & |x| \ge 2\rho. \end{cases}$$

Set

$$\psi_{\varepsilon}(x) = \varphi(x)u_{\varepsilon,0}(x). \tag{7}$$

• Lemma 2: Assume that $N \geq 8$, $\mu < 0$ and $\lambda \in \mathbb{R}$ or $\mu = 0$ and $\lambda > 0$. Then, as $\varepsilon \to 0^+$, ψ_{ε} defined in (7) satisfies the following estimates:

- Step 4: verification of (4)
- Case 1: $N \ge 8$ we let $\varphi \in C_0^\infty(\mathbb{R}^N,[0,1])$ be a radial cut-off function, such that

$$\begin{cases} \varphi(|x|) = 1, & |x| \le \rho, , \\ \varphi(|x|) \in (0,1), & \rho < |x| < 2\rho, \\ \varphi(|x|) = 0, & |x| \ge 2\rho. \end{cases}$$

Set

$$\psi_{\varepsilon}(x) = \varphi(x)u_{\varepsilon,0}(x). \tag{7}$$

• Lemma 2: Assume that $N \geq 8$, $\mu < 0$ and $\lambda \in \mathbb{R}$ or $\mu = 0$ and $\lambda > 0$. Then, as $\varepsilon \to 0^+$, ψ_ε defined in (7) satisfies the following estimates:

$$egin{aligned} |\Delta\psi_arepsilon|_2^2 &= S^{rac{N}{4}} + \mathrm{O}ig(arepsilon^{rac{N-4}{2}}ig), \ |
abla\psi_arepsilon|_2^2 &= C_N K_1 arepsilon + \mathrm{O}ig(arepsilon^{rac{N-4}{2}}ig), \ |\psi_arepsilon|_{2^{**}}^{2^{**}} &= S^{rac{N}{4}} + \mathrm{O}ig(arepsilon^{rac{N-4}{2}}ig) \end{aligned}$$

and

$$|\psi_{\varepsilon}|_{2}^{2} = \begin{cases} c_{N} K_{2} \varepsilon^{2} + O(\varepsilon^{\frac{N-4}{2}}), & \text{for } N > 8, \\ -\frac{1}{2} c_{8} \omega_{8} \varepsilon^{2} \ln \varepsilon + O(\varepsilon^{2}), & \text{for } N = 8, \end{cases}$$

where $c_N=(N(N-4)(N^2-4))^{\frac{N-4}{4}}, C_N=c_N(N-4)^2,$ $K_1=\int_{\mathbb{R}^N}\frac{|z|^2}{(1+|z|^2)^{N-2}}dz$, $K_2=\int_{\mathbb{R}^N}\frac{1}{(1+|z|^2)^{N-4}}dz$ and ω_8 denotes the volume of unit ball in \mathbb{R}^8 . Moreover, there exists a function $u_0\in H_0^2(\Omega)\backslash\{0\}$ such that

$$\sup_{t>0} I(tu_0) < \frac{2}{N} S^{\frac{N}{4}}.$$

• We set $\psi_{\varepsilon}(x) = \varphi(x)u_{\varepsilon,0}(x)$, where $\varphi(x)$ is some given function with $\varphi(x) = \varphi(|x|) \in C^2(\bar{\Omega}, \mathbb{R}), \ \varphi(0) = 1, \varphi(1) = \varphi'(1) = 0.$

• Case 2: N=5 $\varphi(r)$ satisfies $|\varphi^2(r)-1| \leq Cr^{1+\delta}$ and $|\varphi^{10}(r)-1| \leq Cr^{1+\delta}$, where $\delta \in (0,1]$ is any given constant.

- We set $\psi_{\varepsilon}(x) = \varphi(x)u_{\varepsilon,0}(x)$, where $\varphi(x)$ is some given function with $\varphi(x) = \varphi(|x|) \in C^2(\bar{\Omega}, \mathbb{R}), \ \varphi(0) = 1, \varphi(1) = \varphi'(1) = 0.$
- $\varphi(x) = 1 |x|^a \sin(\frac{\pi}{2}|x|) \frac{2a}{\pi}|x|^b \cos(\frac{\pi}{2}|x|)$
- Case 2: N=5 $\varphi(r)$ satisfies $|\varphi^2(r)-1| \leq Cr^{1+\delta}$ and $|\varphi^{10}(r)-1| \leq Cr^{1+\delta}$, where $\delta \in (0,1]$ is any given constant.

- We set $\psi_{\varepsilon}(x) = \varphi(x)u_{\varepsilon,0}(x)$, where $\varphi(x)$ is some given function with $\varphi(x) = \varphi(|x|) \in C^2(\bar{\Omega}, \mathbb{R}), \ \varphi(0) = 1, \varphi(1) = \varphi'(1) = 0.$
- $\varphi(x) = 1 |x|^a \sin(\frac{\pi}{2}|x|) \frac{2a}{\pi}|x|^b \cos(\frac{\pi}{2}|x|)$
- Case 2: N=5 $\varphi(r)$ satisfies $|\varphi^2(r)-1| \leq Cr^{1+\delta}$ and $|\varphi^{10}(r)-1| \leq Cr^{1+\delta}$, where $\delta \in (0,1]$ is any given constant.

• Lemma 3: For the case N=5, if $\varphi(x)=1-|x|^{1.81}\sin(\frac{\pi}{2}|x|)-\frac{3.62}{\pi}|x|^{2.11}\cos(\frac{\pi}{2}|x|)$, then, as $\varepsilon\to 0^+$,

$$\int_{\Omega} |\Delta \psi_{\varepsilon}|^2 dx = (105)^{\frac{1}{4}} \omega_5 \varepsilon^{\frac{1}{2}} (15.8854) + S^{\frac{N}{4}} + O(\varepsilon^{\frac{1+\delta}{2}}),$$

$$\int_{\Omega} |\nabla \psi_{\varepsilon}|^2 dx = (105)^{\frac{1}{4}} \omega_5 \varepsilon^{\frac{1}{2}} (1.3385) + \mathrm{O}(\varepsilon),$$

$$|\psi_{\varepsilon}|_{2}^{2} = (105)^{\frac{1}{4}} \omega_{5} \varepsilon^{\frac{1}{2}} (0.0424) + O(\varepsilon)$$

and

$$|\psi_{\varepsilon}|_{2^{**}}^{2^{**}} = S^{\frac{N}{4}} + \mathcal{O}(\varepsilon^{\frac{1+\delta}{2}}),$$

where $\delta = 0.81$.

- What's more, there exists a function $u_0 \in H_0^2(\Omega) \setminus \{0\}$ such that $\sup_{t \geq 0} I(tu_0) < \frac{2}{N} S^{\frac{N}{4}}$, if one of the following assumptions holds:
 - (i) $\mu = 0$, $\lambda > \lambda^*(5)$, (ii) $\mu < 0.0317\lambda - 11.8681$.
- Case 3: N=6Let φ satisfies $|\varphi^2(r)-1| \leq Cr^{2+\delta}$, $|\varphi^6(r)-1| \leq Cr^{2+\delta}$, $\frac{(\varphi')^2}{r} \leq C$, where $0 < \delta < 1$ is any fixed constant.

- What's more, there exists a function $u_0 \in H_0^2(\Omega) \setminus \{0\}$ such that $\sup_{t \geq 0} I(tu_0) < \frac{2}{N} S^{\frac{N}{4}}$, if one of the following assumptions holds:
 - (i) $\mu = 0$, $\lambda > \lambda^*(5)$, (ii) $\mu < 0.0317\lambda - 11.8681$.
- Case 3: N=6Let φ satisfies $|\varphi^2(r)-1| \leq Cr^{2+\delta}$, $|\varphi^6(r)-1| \leq Cr^{2+\delta}$, $\frac{(\varphi')^2}{r} \leq C$, where $0<\delta<1$ is any fixed constant.

• Lemma 4: For the case N=6, if $\varphi(x)=1-|x|^{2.02}\sin(\frac{\pi}{2}|x|)-\frac{4.04}{\pi}|x|^{3.07}\cos(\frac{\pi}{2}|x|)$, then, as $\varepsilon\to 0^+$,

$$\int_{\Omega} |\Delta \psi_{\varepsilon}|^2 dx = (384)^{\frac{1}{2}} \omega_6 \varepsilon (37.9823) + S^{\frac{N}{4}} + \mathcal{O}(\varepsilon^{1+\frac{\delta}{2}}),$$

$$\int_{\Omega} |\nabla \psi_{\varepsilon}|^{2} dx = (384)^{\frac{1}{2}} \omega_{6} \varepsilon \left[-0.1242 - \frac{2}{3} (1+\varepsilon)^{-3} - (1+\varepsilon)^{-2} - 2(1+\varepsilon)^{-1} + 2\ln(1+\varepsilon) - 2\ln\varepsilon \right] + O(\varepsilon^{\frac{3}{2}}),$$

$$|\psi_{\varepsilon}|_{2}^{2} = (384)^{\frac{1}{2}}\omega_{6}\varepsilon(0.1417) + O(\varepsilon^{\frac{3}{2}}),$$

and

$$|\psi_{\varepsilon}|_{2^{**}}^{2^{**}} = S^{\frac{N}{4}} + \mathcal{O}(\varepsilon^{\frac{2+\delta}{2}}),$$

where $\delta = 0.6$.

- Moreover, there exists a function $u_0 \in H_0^2(\Omega) \setminus \{0\}$ such that $\sup_{t \ge 0} I(tu_0) < \frac{2}{N} S^{\frac{N}{4}}$, provided one of the following assumptions holds:
 - (i) $\mu = 0, \lambda > \lambda^*(6),$
 - (ii) $\mu < 0, \lambda \in \mathbb{R}$.
- Case 4: N=7Let $\varphi(x)$ satisfies $\frac{(\varphi')^2}{r^2} \leq C$, $|\varphi^2(r)-1| \leq Cr^{3+\delta}$ and $||\varphi(r)|^{\frac{14}{3}}-1| \leq Cr^{3+\delta}$, where $0<\delta<1$ is any fixed constant.

- Moreover, there exists a function $u_0 \in H_0^2(\Omega) \setminus \{0\}$ such that $\sup_{t \ge 0} I(tu_0) < \frac{2}{N} S^{\frac{N}{4}}$, provided one of the following assumptions holds:
 - (i) $\mu = 0, \lambda > \lambda^*(6),$
 - (ii) $\mu < 0, \lambda \in \mathbb{R}$.
- Case 4: N=7Let $\varphi(x)$ satisfies $\frac{(\varphi')^2}{r^2} \leq C$, $|\varphi^2(r)-1| \leq Cr^{3+\delta}$ and $||\varphi(r)|^{\frac{14}{3}}-1| \leq Cr^{3+\delta}$, where $0<\delta<1$ is any fixed constant.

• Lemma 5: For the case N=7, if $\varphi(x)=1-|x|^{2.53}\sin(\frac{\pi}{2}|x|)-\frac{5.06}{\pi}|x|^{3.78}\cos(\frac{\pi}{2}|x|)$, then, as $\varepsilon\to 0^+$,

$$\int_{\Omega} |\Delta \psi_{\varepsilon}|^{2} dx = (945)^{\frac{3}{4}} \omega_{7} \varepsilon^{\frac{3}{2}} (77.8060) + S^{\frac{N}{4}} + O(\varepsilon^{\frac{3+\delta}{2}}),$$

$$\int_{\Omega} |\nabla \psi_{\varepsilon}|^2 dx = (945)^{\frac{3}{4}} \varepsilon^{\frac{3}{2}} \omega_7 (-1.7550 + 9 \int_0^1 \frac{r^8}{(\varepsilon + r^2)^5} dr) + \mathcal{O}(\varepsilon^2),$$

$$|\psi_{\varepsilon}|_{2}^{2} = (945)^{\frac{3}{4}}\omega_{7}\varepsilon^{\frac{3}{2}}(0.5530) + O(\varepsilon^{2})$$

and

$$|\psi_{\varepsilon}|_{2^{**}}^{2^{**}} = S^{\frac{N}{4}} + \mathcal{O}(\varepsilon^{\frac{3+\delta}{2}}),$$

where $\delta = 0.53$.

• Moreover, there exists a function $u_0 \in H_0^2(\Omega) \setminus \{0\}$ such that $\sup I(tu_0) < \frac{2}{N}S^{\frac{N}{4}}$, if one of the following assumptions holds: $t \ge 0$ (i) $\mu = 0$, $\lambda > \lambda^*(7)$, (ii) $\mu < 0$, $\lambda \in \mathbb{R}$.

Hence, we conclude that

$$\lambda^*(N) := \begin{cases} & 374.3880, & N = 5, \\ & 268.0473, & N = 6, \\ & 140.6980, & N = 7, \\ & 0, & N \ge 8. \end{cases}$$

• Assume that u is a nontrivial solution of (1) in $H_0^2(\Omega) \cap C^4(\Omega)$, then we obtain

$$\frac{1}{2} \int_{\partial\Omega} (x \cdot \nu) |\Delta u|^2 dS = \frac{4-n}{2} \int_{\Omega} u(\mu \Delta u + \lambda u + |u|^{2^{**}-2} u) dx
+ \int_{\partial\Omega} (x \cdot \nu) (\frac{\partial \Delta u}{\partial \nu}) (\frac{\partial u}{\partial \nu}) dS
- \int_{\Omega} (x \cdot \nabla u) \Delta^2 u dx$$

• A straightforward computation gives us

$$-\mu \int_{\Omega} |\nabla u|^2 dx + 2 \int_{\Omega} \lambda u^2 dx = \frac{1}{2} \int_{\partial \Omega} (x \cdot \nu) |\Delta u|^2 dS. \quad (8)$$

• Since Ω is a star-shaped domain, we have $x \cdot \nu > 0$. When $\lambda \leq 0$ and $\mu > 0$, we have u = 0. When $\lambda > 0$ and $\mu > \frac{2}{\lambda_1(\Omega)}\lambda > 0$, we obtain

$$\frac{1}{2} \int_{\partial \Omega} (x \cdot \nu) |\Delta u|^2 dS = -\mu \int_{\Omega} |\nabla u|^2 dx + 2 \int_{\Omega} \lambda u^2 dx
\leq (-\mu \lambda_1(\Omega) + 2\lambda) \int_{\Omega} u^2 dx.$$

So u=0.

A straightforward computation gives us

$$-\mu \int_{\Omega} |\nabla u|^2 dx + 2 \int_{\Omega} \lambda u^2 dx = \frac{1}{2} \int_{\partial \Omega} (x \cdot \nu) |\Delta u|^2 dS. \quad (8)$$

• Since Ω is a star-shaped domain, we have $x \cdot \nu > 0$. When $\lambda \leq 0$ and $\mu > 0$, we have u = 0. When $\lambda > 0$ and $\mu > \frac{2}{\lambda_1(\Omega)}\lambda > 0$, we obtain

$$\frac{1}{2} \int_{\partial \Omega} (x \cdot \nu) |\Delta u|^2 dS = -\mu \int_{\Omega} |\nabla u|^2 dx + 2 \int_{\Omega} \lambda u^2 dx$$
$$\leq (-\mu \lambda_1(\Omega) + 2\lambda) \int_{\Omega} u^2 dx.$$

So u = 0.

A straightforward computation gives us

$$-\mu \int_{\Omega} |\nabla u|^2 dx + 2 \int_{\Omega} \lambda u^2 dx = \frac{1}{2} \int_{\partial \Omega} (x \cdot \nu) |\Delta u|^2 dS. \quad (8)$$

• Since Ω is a star-shaped domain, we have $x \cdot \nu > 0$. When $\lambda \leq 0$ and $\mu > 0$, we have u = 0. When $\lambda > 0$ and $\mu > \frac{2}{\lambda_1(\Omega)}\lambda > 0$, we obtain

$$\frac{1}{2} \int_{\partial \Omega} (x \cdot \nu) |\Delta u|^2 dS = -\mu \int_{\Omega} |\nabla u|^2 dx + 2 \int_{\Omega} \lambda u^2 dx$$
$$\leq (-\mu \lambda_1(\Omega) + 2\lambda) \int_{\Omega} u^2 dx.$$

So u = 0.

A straightforward computation gives us

$$-\mu \int_{\Omega} |\nabla u|^2 dx + 2 \int_{\Omega} \lambda u^2 dx = \frac{1}{2} \int_{\partial \Omega} (x \cdot \nu) |\Delta u|^2 dS. \quad (8)$$

• Since Ω is a star-shaped domain, we have $x \cdot \nu > 0$. When $\lambda \leq 0$ and $\mu > 0$, we have u = 0. When $\lambda > 0$ and $\mu > \frac{2}{\lambda_1(\Omega)}\lambda > 0$, we obtain

$$\frac{1}{2} \int_{\partial \Omega} (x \cdot \nu) |\Delta u|^2 dS = -\mu \int_{\Omega} |\nabla u|^2 dx + 2 \int_{\Omega} \lambda u^2 dx$$
$$\leq (-\mu \lambda_1(\Omega) + 2\lambda) \int_{\Omega} u^2 dx.$$

So u = 0.

Thanks for your attention!