Existence and nonexistence of nontrivial solutions for critical biharmonic equations

Qihan He（何其涵－广西大学）

Based on a joint work with Zongyan Lv

$$
\left\{\begin{array}{l}
\Delta^{2} u=\mu \Delta u+\lambda u+|u|^{2 *}-2 u, \quad x \in \Omega \tag{1}\\
\left.u\right|_{\partial \Omega}=\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=0
\end{array}\right.
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with smooth boundary $\partial \Omega$ ， $\Delta^{2}=\Delta \Delta$ denotes the iterated N －dimensional Laplacian， $2^{* *}=\frac{2 N}{N-4}(N>4)$ is the critical Sobolev exponent for the embedding $H_{0}^{2}(\Omega) \hookrightarrow L^{2^{* *}}(\Omega)$ and $H_{0}^{2}(\Omega)$ is the closure of $C_{0}^{\infty}(\Omega)$ under the norm $\|\Delta u\|_{L^{2}(\Omega)}$ ．
The functional corresponding to（1）is

$$
I(u)=\frac{1}{2} \int_{\Omega}\left(|\Delta u|^{2}+\mu|\nabla u|^{2}-\lambda u^{2}\right) d x-\frac{1}{2^{* *}} \int_{\Omega}|u|^{2 * *} d x, u \in H_{0}^{2}(\Omega) .
$$

Outline of Talk

－Some related results

－Main results

－Idea of proof of our main results

Outline of Talk

－Some related results
－Main results
－Idea of proof of our main results

Outline of Talk

－Some related results
－Main results
－Idea of proof of our main results

Outline of Talk

－Some related results
－Main results
－Idea of proof of our main results

Some related results

$$
\left\{\begin{array}{l}
-\Delta u=\lambda u+u^{2^{*}-1}, \quad x \in \Omega \tag{2}\\
\left.u\right|_{\partial \Omega}=0
\end{array}\right.
$$

－H．Brézis，L．Nirenberg，Comm．Pure Appl．Math．1983；
－Surprisingly，they discovered that the cases of $N=3$ and $N \geq 4$ are quite different．
－Namely（denoting here by $\lambda_{1}(\Omega)$ ，the first eigenvalue of $-\triangle$ with zero Dirichlet boundary condition on Ω ），when $N \geq 4$ nontrivial positive solutions exist if and only if $\lambda \in\left(0, \lambda_{1}(\Omega)\right)$ ， while，when $N=3$ and Ω is a ball，nontrivial positive solutions exist only for $\lambda \in\left(\frac{1}{4} \lambda_{1}(\Omega), \lambda_{1}(\Omega)\right)$ ，which implies that $N=3$ is a critical dimension of positive solution for（2）
－They also showed that if $\lambda \leq 0$ and Ω is a starshaped domain， then there is no solutions for（2）．

Some related results

$$
\left\{\begin{array}{l}
-\Delta u=\lambda u+u^{2^{*}-1}, \quad x \in \Omega \tag{2}\\
\left.u\right|_{\partial \Omega}=0
\end{array}\right.
$$

－H．Brézis，L．Nirenberg，Comm．Pure Appl．Math．1983；
－Surprisingly，they discovered that the cases of $N=3$ and $N \geq 4$ are quite different．
－Namely（denoting here by $\lambda_{1}(\Omega)$ ，the first eigenvalue of $-\Delta$ with zero Dirichlet boundary condition on Ω ），when $N \geq 4$ nontrivial positive solutions exist if and only if $\lambda \in\left(0, \lambda_{1}(\Omega)\right)$ ， while，when $N=3$ and Ω is a ball，nontrivial positive solutions exist only for $\lambda \in\left(\frac{1}{4} \lambda_{1}(\Omega), \lambda_{1}(\Omega)\right)$ ，which implies that $N=3$ is a critical dimension of positive solution for（2）
－They also showed that if $\lambda \leq 0$ and Ω is a starshaped domain， then there is no solutions for（2）．

Some related results

$$
\left\{\begin{array}{l}
-\Delta u=\lambda u+u^{2^{*}-1}, \quad x \in \Omega \tag{2}\\
\left.u\right|_{\partial \Omega}=0
\end{array}\right.
$$

－H．Brézis，L．Nirenberg，Comm．Pure Appl．Math．1983；
－Surprisingly，they discovered that the cases of $N=3$ and $N \geq 4$ are quite different．
－Namely（denoting here by $\lambda_{1}(\Omega)$ ，the first eigenvalue of $-\Delta$ with zero Dirichlet boundary condition on Ω ），when $N \geq 4$ nontrivial positive solutions exist if and only if $\lambda \in\left(0, \lambda_{1}(\Omega)\right)$ ， while，when $N=3$ and Ω is a ball，nontrivial positive solutions exist only for $\lambda \in\left(\frac{1}{4} \lambda_{1}(\Omega), \lambda_{1}(\Omega)\right)$ ，which implies that $N=3$ is a critical dimension of positive solution for（2）．
－They also showed that if $\lambda \leq 0$ and Ω is a starshaped domain， then there is no solutions for（2）．

Some related results

$$
\left\{\begin{array}{l}
-\Delta u=\lambda u+u^{2^{*}-1}, \quad x \in \Omega \tag{2}\\
\left.u\right|_{\partial \Omega}=0
\end{array}\right.
$$

－H．Brézis，L．Nirenberg，Comm．Pure Appl．Math．1983；
－Surprisingly，they discovered that the cases of $N=3$ and $N \geq 4$ are quite different．
－Namely（denoting here by $\lambda_{1}(\Omega)$ ，the first eigenvalue of $-\Delta$ with zero Dirichlet boundary condition on Ω ），when $N \geq 4$ nontrivial positive solutions exist if and only if $\lambda \in\left(0, \lambda_{1}(\Omega)\right)$ ， while，when $N=3$ and Ω is a ball，nontrivial positive solutions exist only for $\lambda \in\left(\frac{1}{4} \lambda_{1}(\Omega), \lambda_{1}(\Omega)\right)$ ，which implies that $N=3$ is a critical dimension of positive solution for（2）．
－They also showed that if $\lambda \leq 0$ and Ω is a starshaped domain， then there is no solutions for（2）．

Some related results

－Gu，Deng and Wang（ Systems Sci．Math．Sci．，1994）

$$
\begin{cases}\Delta^{2} u=\lambda u+|u|^{2^{* *}-2} u, & x \in \Omega, \tag{3}\\ \left.u\right|_{\partial \Omega}=\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=0, & \lambda>0,\end{cases}
$$

where $\delta_{1}(\Omega)$ denotes the first eigenvalue of $-\Delta^{2}$ with homogeneous Dirichlet boundary condition on Ω ．
－（1）For $N \geq 8$ ，problem（3）possesses at least one nontrivial weak solutions if $\lambda \in\left(0, \delta_{1}(\Omega)\right)$
－（2）For $N=5,6,7$ and $\Omega=B_{R}(0) \subset \mathbb{R}^{N}$ ，there exist two positive constants $\lambda^{* *}(N)<\lambda^{*}(N)<\delta_{1}(\Omega)$ such that problem（3）has at least one nontrivial weak solutions if $\lambda \in\left(\lambda^{*}(N), \delta_{1}(\Omega)\right)$ ，and problem（3）has no nontrivial solutions if $\lambda<\lambda^{* *}(N)$ ；
－What has shown above implies that $N=5,6,7$ are the critical dimensions of nontrivial solutions for（3）．

Some related results

－Gu，Deng and Wang（ Systems Sci．Math．Sci．，1994）

$$
\begin{cases}\Delta^{2} u=\lambda u+|u|^{2^{* *}-2} u, & x \in \Omega, \tag{3}\\ \left.u\right|_{\partial \Omega}=\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=0, & \lambda>0,\end{cases}
$$

where $\delta_{1}(\Omega)$ denotes the first eigenvalue of $-\Delta^{2}$ with homogeneous Dirichlet boundary condition on Ω ．
－（1）For $N \geq 8$ ，problem（3）possesses at least one nontrivial weak solutions if $\lambda \in\left(0, \delta_{1}(\Omega)\right)$ ；
－（2）For $N=5,6,7$ and $\Omega=B_{R}(0) \subset \mathbb{R}^{N}$ ，there exist two positive constants $\lambda^{* *}(N)<\lambda^{*}(N)<\delta_{1}(\Omega)$ such that problem（3）has at least one nontrivial weak solutions if $\lambda \in\left(\lambda^{*}(N), \delta_{1}(\Omega)\right)$ ，and problem（3）has no nontrivial solutions if $\lambda<\lambda^{* *}(N)$ ；
－What has shown above implies that $N=5,6,7$ are the critical
dimensions of nontrivial solutions for（3）

Some related results

－Gu，Deng and Wang（ Systems Sci．Math．Sci．，1994）

$$
\begin{cases}\Delta^{2} u=\lambda u+|u|^{2^{* *}-2} u, & x \in \Omega, \tag{3}\\ \left.u\right|_{\partial \Omega}=\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=0, & \lambda>0,\end{cases}
$$

where $\delta_{1}(\Omega)$ denotes the first eigenvalue of $-\Delta^{2}$ with homogeneous Dirichlet boundary condition on Ω ．
－（1）For $N \geq 8$ ，problem（3）possesses at least one nontrivial weak solutions if $\lambda \in\left(0, \delta_{1}(\Omega)\right)$ ；
－（2）For $N=5,6,7$ and $\Omega=B_{R}(0) \subset \mathbb{R}^{N}$ ，there exist two positive constants $\lambda^{* *}(N)<\lambda^{*}(N)<\delta_{1}(\Omega)$ such that problem（3）has at least one nontrivial weak solutions if $\lambda \in\left(\lambda^{*}(N), \delta_{1}(\Omega)\right)$ ，and problem（3）has no nontrivial solutions if $\lambda<\lambda^{* *}(N)$ ；
－What has shown above implies that $N=5,6,7$ are the critical dimensions of nontrivial solutions for（3）

Some related results

－Gu，Deng and Wang（ Systems Sci．Math．Sci．，1994）

$$
\begin{cases}\Delta^{2} u=\lambda u+|u|^{2^{* *}-2} u, & x \in \Omega, \tag{3}\\ \left.u\right|_{\partial \Omega}=\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=0, & \lambda>0,\end{cases}
$$

where $\delta_{1}(\Omega)$ denotes the first eigenvalue of $-\Delta^{2}$ with homogeneous Dirichlet boundary condition on Ω ．
－（1）For $N \geq 8$ ，problem（3）possesses at least one nontrivial weak solutions if $\lambda \in\left(0, \delta_{1}(\Omega)\right)$ ；
－（2）For $N=5,6,7$ and $\Omega=B_{R}(0) \subset \mathbb{R}^{N}$ ，there exist two positive constants $\lambda^{* *}(N)<\lambda^{*}(N)<\delta_{1}(\Omega)$ such that problem（3）has at least one nontrivial weak solutions if $\lambda \in\left(\lambda^{*}(N), \delta_{1}(\Omega)\right)$ ，and problem（3）has no nontrivial solutions if $\lambda<\lambda^{* *}(N)$ ；
－What has shown above implies that $N=5,6,7$ are the critical dimensions of nontrivial solutions for（3）．

Main results

Theorem 1

－Problem（1）possesses at least one nontrivial weak solution， provided one of the following assumptions holds：
－（1）$N \geq 5, \mu=0$ and $\lambda \in\left(\lambda^{*}(N), \delta_{1}(\Omega)\right)$ ；
－（2）$N \geq 6, \mu \in(-\beta(\Omega), 0)$ and $\lambda<\frac{(\mu+\beta(\Omega)) \delta_{1}(\Omega)}{\beta(\Omega)}$ （See Figure 1．（a））；
－（3）$N=5,(\lambda, \mu) \in A \cap B$ ，where $A:=$ $\left\{(\lambda, \mu) \mid \lambda \in\left(-\infty, \delta_{1}(\Omega)\right), \max \left\{-\beta(\Omega), \frac{\beta(\Omega)}{\delta_{1}(\Omega)} \lambda-\beta(\Omega)\right\}<\mu\right\}$ $B:=\{(\lambda, \mu) \mid \mu<0.0317 \lambda-11.8681\}$ （See Figure 1．（b）or 1．（c））
其中，$\beta(\Omega):=\inf _{u \in H_{0}^{2}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\Delta u|^{2} d x}{\int_{\Omega}|\nabla u|^{2} d x}$ ．

Main results

Theorem 1

－Problem（1）possesses at least one nontrivial weak solution， provided one of the following assumptions holds：
－（1）$N \geq 5, \mu=0$ and $\lambda \in\left(\lambda^{*}(N), \delta_{1}(\Omega)\right)$ ；
－（2）$N \geq 6, \mu \in(-\beta(\Omega), 0)$ and $\lambda<\frac{(\mu+\beta(\Omega)) \delta_{1}(\Omega)}{\beta(\Omega)}$ （See Figure 1．（a））；
－（3） $\boldsymbol{N}=5,(\lambda, \ldots) \in A \cap B$ ，where $A:=$ $\left\{(\lambda, \mu) \mid \lambda \in\left(-\infty, \delta_{1}(\Omega)\right), \max \left\{-\beta(\Omega), \frac{\beta(\Omega)}{\delta_{1}(\Omega)} \lambda-\beta(\Omega)\right\}<\mu\right\}$ $B:=\{(\lambda, \mu) \mid \mu<0.0317 \lambda-11.8681\}$ （See Figure 1．（b）or 1．（c））
其中，$\beta(\Omega):=\inf _{u \in H_{0}^{2}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\Delta u|^{2} d x}{\int_{\Omega}|\nabla u|^{2} d x}$ ．

Main results

Theorem 1

－Problem（1）possesses at least one nontrivial weak solution， provided one of the following assumptions holds：
－（1）$N \geq 5, \mu=0$ and $\lambda \in\left(\lambda^{*}(N), \delta_{1}(\Omega)\right)$ ；
－（2）$N \geq 6, \mu \in(-\beta(\Omega), 0)$ and $\lambda<\frac{(\mu+\beta(\Omega)) \delta_{1}(\Omega)}{\beta(\Omega)}$ （See Figure 1．（a））；
－（3）$N=5,(\lambda, \mu) \in A \cap B$ ，where $A:=$ $\left\{(\lambda, \mu) \mid \lambda \in\left(-\infty, \delta_{1}(\Omega)\right), \max \left\{-\beta(\Omega), \frac{\beta(\Omega)}{\delta_{1}(\Omega)} \lambda-\beta(\Omega)\right\}<\mu\right\}$ $B:=\{(\lambda, \mu) \mid \mu<0.0317 \lambda-11.8681\}$ （See Figure 1．（b）or 1．（c））

其中，$\beta(\Omega):=\inf _{u \in H_{0}^{2}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\Delta u|^{2} d x}{\int_{\Omega}|\nabla u|^{2} d x}$ ．

Main results

Theorem 1

－Problem（1）possesses at least one nontrivial weak solution， provided one of the following assumptions holds：
－（1）$N \geq 5, \mu=0$ and $\lambda \in\left(\lambda^{*}(N), \delta_{1}(\Omega)\right)$ ；
－（2）$N \geq 6, \mu \in(-\beta(\Omega), 0)$ and $\lambda<\frac{(\mu+\beta(\Omega)) \delta_{1}(\Omega)}{\beta(\Omega)}$ （See Figure 1．（a））；
－（3）$N=5,(\lambda, \mu) \in A \cap B$ ，where $A:=$ $\left\{(\lambda, \mu) \mid \lambda \in\left(-\infty, \delta_{1}(\Omega)\right), \max \left\{-\beta(\Omega), \frac{\beta(\Omega)}{\delta_{1}(\Omega)} \lambda-\beta(\Omega)\right\}<\mu\right\}$ ， $B:=\{(\lambda, \mu) \mid \mu<0.0317 \lambda-11.8681\}$
（See Figure 1．（b）or 1．（c））．
其中，$\beta(\Omega):=\inf _{u \in H_{0}^{2}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\Delta u|^{2} d x}{\int_{\Omega}|\nabla u|^{2} d x}$ ．

Main results

There is at least one nontrivial solution of（1）for λ, μ in dash area． $\tau_{1}: \mu=-\beta(\Omega), \tau_{2}: \mu=\frac{\beta(\Omega)}{\delta_{1}(\Omega)} \lambda-\beta(\Omega), \tau_{3}: \mu=0.0317 \lambda-11.8681$ ．

（a）$N \geq 6$

（b）$N=5, \beta(\Omega)<11.8681$

$$
\text { (c) } N=5, \beta(\Omega)>11.8681
$$

Main results

－Different from the case $\mu=0, N=6,7$ are not the critical dimensions of nontrivial solutions when $\mu \in(-\beta(\Omega), 0)$ ．

Theorem 2

－There are no nontrivial solutions of (1) in $H_{0}^{2}(\Omega) \cap C^{4}(\Omega)$ for $\mu>\max \left\{0, \frac{2}{\lambda_{1}(\Omega)} \lambda\right\}$ if Ω is a starshaped domain．

Main results

－Different from the case $\mu=0, N=6,7$ are not the critical dimensions of nontrivial solutions when $\mu \in(-\beta(\Omega), 0)$ ．

Theorem 2

－There are no nontrivial solutions of (1) in $H_{0}^{2}(\Omega) \bigcap C^{4}(\Omega)$ for $\mu>\max \left\{0, \frac{2}{\lambda_{1}(\Omega)} \lambda\right\}$ if Ω is a starshaped domain．

Idea of proof of Theorem 1

－We define

$$
\begin{gathered}
\|u\|_{1}^{2}=\int_{\Omega}\left(|\Delta u|^{2}+\mu|\nabla u|^{2}-\lambda|u|^{2}\right) d x \\
\|u\|_{2}^{2}=\int_{\Omega}|\Delta u|^{2} d x \\
\beta(\Omega):=\inf _{u \in H_{0}^{2}(\Omega) \backslash\{0\}} \frac{\|u\|_{2}^{2}}{\int_{\Omega}|\nabla u|^{2} d x} .
\end{gathered}
$$

－Step 1：Prove that the norm $\|u\|_{1}$ is equivalent to $\|u\|_{2}$ in $H_{0}^{2}(\Omega)$ ，provided λ and μ satisfy one of the following two conditions：
（1）$\lambda \leq 0, \mu>-\beta(\Omega)$ ；
（2）$\delta_{1}(\Omega)>\lambda>0, \mu>\frac{\beta(\Omega)}{\delta_{1}(\Omega)} \lambda-\beta(\Omega)$ ．

Idea of proof of Theorem 1

－We define

$$
\begin{gathered}
\|u\|_{1}^{2}=\int_{\Omega}\left(|\Delta u|^{2}+\mu|\nabla u|^{2}-\lambda|u|^{2}\right) d x \\
\|u\|_{2}^{2}=\int_{\Omega}|\Delta u|^{2} d x \\
\beta(\Omega):=\inf _{u \in H_{0}^{2}(\Omega) \backslash\{0\}} \frac{\|u\|_{2}^{2}}{\int_{\Omega}|\nabla u|^{2} d x}
\end{gathered}
$$

－Step 1：Prove that the norm $\|u\|_{1}$ is equivalent to $\|u\|_{2}$ in $H_{0}^{2}(\Omega)$ ，provided λ and μ satisfy one of the following two conditions：
（1）$\lambda \leq 0, \mu>-\beta(\Omega)$ ；
（2）$\delta_{1}(\Omega)>\lambda>0, \mu>\frac{\beta(\Omega)}{\delta_{1}(\Omega)} \lambda-\beta(\Omega)$ ．

Idea of proof of Theorem 1

－Step 2：Prove that the functional $I(u)$ satisfies Mountain－Pass geometry structure and the $(P S)_{c}$ sequence $\left\{u_{n}\right\}$ is bounded in $H_{0}^{2}(\Omega)$ ．
－Step 3：Prove that if $c<\frac{2}{N} S^{\frac{N}{4}}$ ，then $I(u)$ satisfies the $(P S)_{c}$ condition，where $S: \triangleq \inf \left\{|\Delta u|_{2}^{2}: u \in H^{2}\left(R^{N}\right),|u|_{2^{* *}}=1\right\}$ is the best Sobolev embedding constant of the embedding $H^{2}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{2^{* *}}\left(\mathbb{R}^{N}\right)$
－Step 4：Prove that there exists a function $u_{0} \in H_{0}^{2}(\Omega) \backslash\{0\}$ such that

Idea of proof of Theorem 1

－Step 2：Prove that the functional $I(u)$ satisfies Mountain－Pass geometry structure and the $(P S)_{c}$ sequence $\left\{u_{n}\right\}$ is bounded in $H_{0}^{2}(\Omega)$ ．
－Step 3：Prove that if $c<\frac{2}{N} S^{\frac{N}{4}}$ ，then $I(u)$ satisfies the $(P S)_{c}$ condition，where $S: \triangleq \inf \left\{|\Delta u|_{2}^{2}: u \in H^{2}\left(R^{N}\right),|u|_{2^{* *}}=1\right\}$ is the best Sobolev embedding constant of the embedding $H^{2}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{2^{* *}}\left(\mathbb{R}^{N}\right)$ ．
－Step 4：Prove that there exists a function $u_{0} \in H_{0}^{2}(\Omega) \backslash\{0\}$ such that

$$
\begin{equation*}
\sup _{t \geq 0} I\left(t u_{0}\right)<\frac{2}{N} S^{\frac{N}{4}}, \tag{4}
\end{equation*}
$$

Idea of proof of Theorem 1

We introduce a well－known fact that the minimization problem

$$
\begin{equation*}
S=\inf \left\{\frac{|\Delta u|_{2}^{2}}{|u|_{2 * *}^{2}}: u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}\right\} \tag{5}
\end{equation*}
$$

is attained only by the functions $l u_{\varepsilon, x_{0}}$ ，where $I \in \mathbb{R} \backslash\{0\}$ and $u_{\varepsilon, x_{0}}$ is defined by

$$
\begin{equation*}
u_{\varepsilon, x_{0}}(x)=\frac{\left[N(N-4)\left(N^{2}-4\right) \varepsilon^{2}\right]^{\frac{(N-4)}{8}}}{\left(\varepsilon+\left|x-x_{0}\right|^{2}\right)^{\frac{(N-4)}{2}}}, \quad \forall x_{0} \in \mathbb{R}^{N}, \forall \varepsilon>0 . \tag{6}
\end{equation*}
$$

Idea of proof of Theorem 1

－Step 4：verification of（4）
－Case 1：$\quad N \geq 8$
we let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N},[0,1]\right)$ be a radial cut－off function，such that

$$
\left\{\begin{array}{l}
\varphi(|x|)=1, \quad|x| \leq \rho \\
\varphi(|x|) \in(0,1), \quad \rho<|x|<2 \rho \\
\varphi(|x|)=0, \quad|x| \geq 2 \rho
\end{array}\right.
$$

$$
\psi_{\varepsilon}(x)=\varphi(x) u_{\varepsilon, 0}(x)
$$

－Lemma 2：Assume that $N \geq 8, \mu<0$ and $\lambda \in \mathbb{R}$ or $\mu=0$ and $\lambda>0$ ．Then，as $\varepsilon \rightarrow 0^{+}, \psi_{\varepsilon}$ defined in（7）satisfies the following estimates：

Idea of proof of Theorem 1

－Step 4：verification of（4）
－Case 1：$N \geq 8$
we let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N},[0,1]\right)$ be a radial cut－off function，such that

$$
\left\{\begin{array}{l}
\varphi(|x|)=1, \quad|x| \leq \rho, \\
\varphi(|x|) \in(0,1), \quad \rho<|x|<2 \rho, \\
\varphi(|x|)=0, \quad|x| \geq 2 \rho .
\end{array}\right.
$$

Set

$$
\begin{equation*}
\psi_{\varepsilon}(x)=\varphi(x) u_{\varepsilon, 0}(x) . \tag{7}
\end{equation*}
$$

－Lemma 2：Assume that $N \geq 8, \mu<0$ and $\lambda \in \mathbb{R}$ or $\mu=0$ and $\lambda>0$ ．Then，as $\varepsilon \rightarrow 0^{+}, \psi_{\varepsilon}$ defined in（7）satisfies the following estimates：

Idea of proof of Theorem 1

－Step 4：verification of（4）
－Case 1：$N \geq 8$
we let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N},[0,1]\right)$ be a radial cut－off function，such that

$$
\left\{\begin{array}{l}
\varphi(|x|)=1, \quad|x| \leq \rho, \\
\varphi(|x|) \in(0,1), \quad \rho<|x|<2 \rho \\
\varphi(|x|)=0, \quad|x| \geq 2 \rho
\end{array}\right.
$$

Set

$$
\begin{equation*}
\psi_{\varepsilon}(x)=\varphi(x) u_{\varepsilon, 0}(x) \tag{7}
\end{equation*}
$$

－Lemma 2：Assume that $N \geq 8, \mu<0$ and $\lambda \in \mathbb{R}$ or $\mu=0$ and $\lambda>0$ ．Then，as $\varepsilon \rightarrow 0^{+}, \psi_{\varepsilon}$ defined in（7）satisfies the following estimates：

Idea of proof of Theorem 1

$$
\begin{gathered}
\left|\Delta \psi_{\varepsilon}\right|_{2}^{2}=S^{\frac{N}{4}}+\mathrm{O}\left(\varepsilon^{\frac{N-4}{2}}\right) \\
\left|\nabla \psi_{\varepsilon}\right|_{2}^{2}=C_{N} K_{1} \varepsilon+\mathrm{O}\left(\varepsilon^{\frac{N-4}{2}}\right) \\
\left|\psi_{\varepsilon}\right|_{2^{* *}}^{2^{* *}}=S^{\frac{N}{4}}+\mathrm{O}\left(\varepsilon^{\frac{N}{2}}\right)
\end{gathered}
$$

and

$$
\left|\psi_{\varepsilon}\right|_{2}^{2}=\left\{\begin{array}{cl}
c_{N} K_{2} \varepsilon^{2}+O\left(\varepsilon^{\frac{N-4}{2}}\right), & \text { for } N>8 \\
-\frac{1}{2} c_{8} \omega_{8} \varepsilon^{2} \ln \varepsilon+O\left(\varepsilon^{2}\right), & \text { for } N=8
\end{array}\right.
$$

where $c_{N}=\left(N(N-4)\left(N^{2}-4\right)\right)^{\frac{N-4}{4}}, C_{N}=c_{N}(N-4)^{2}$ ，
$K_{1}=\int_{\mathbb{R}^{N}} \frac{|z|^{2}}{\left(1+|z|^{2}\right)^{N-2}} d z, K_{2}=\int_{\mathbb{R}^{N}} \frac{1}{\left(1+|z|^{2}\right)^{N-4}} d z$ and ω_{8} denotes the volume of unit ball in \mathbb{R}^{8} ．Moreover，there exists a function $u_{0} \in H_{0}^{2}(\Omega) \backslash\{0\}$ such that

$$
\sup _{t \geq 0} I\left(t u_{0}\right)<\frac{2}{N} S^{\frac{N}{4}}
$$

Idea of proof of Theorem 1

－We set $\psi_{\varepsilon}(x)=\varphi(x) u_{\varepsilon, 0}(x)$ ，where $\varphi(x)$ is some given function with $\varphi(x)=\varphi(|x|) \in C^{2}(\bar{\Omega}, \mathbb{R}), \varphi(0)=1, \varphi(1)=\varphi^{\prime}(1)=0$.
－Case 2：$N=5$
$\varphi(r)$ satisfies $\left|\varphi^{2}(r)-1\right| \leq C r^{1+\delta}$ and $\left|\varphi^{10}(r)-1\right| \leq C r^{1+\delta}$ ，
where $\delta \in(0,1]$ is any given constant．

Idea of proof of Theorem 1

－We set $\psi_{\varepsilon}(x)=\varphi(x) u_{\varepsilon, 0}(x)$ ，where $\varphi(x)$ is some given function with $\varphi(x)=\varphi(|x|) \in C^{2}(\bar{\Omega}, \mathbb{R}), \varphi(0)=1, \varphi(1)=\varphi^{\prime}(1)=0$.
－$\varphi(x)=1-|x|^{a} \sin \left(\frac{\pi}{2}|x|\right)-\frac{2 a}{\pi}|x|^{b} \cos \left(\frac{\pi}{2}|x|\right)$
－Case 2：$\quad N=5$
$\varphi(r)$ satisfies $\left|\varphi^{2}(r)-1\right| \leq C r^{1+\delta}$ and $\left|\varphi^{10}(r)-1\right| \leq C r^{1+\delta}$ ，
where $\delta \in(0,1]$ is any given constant．

Idea of proof of Theorem 1

－We set $\psi_{\varepsilon}(x)=\varphi(x) u_{\varepsilon, 0}(x)$ ，where $\varphi(x)$ is some given function with $\varphi(x)=\varphi(|x|) \in C^{2}(\bar{\Omega}, \mathbb{R}), \varphi(0)=1, \varphi(1)=\varphi^{\prime}(1)=0$.
－$\varphi(x)=1-|x|^{a} \sin \left(\frac{\pi}{2}|x|\right)-\frac{2 a}{\pi}|x|^{b} \cos \left(\frac{\pi}{2}|x|\right)$
－Case 2：$N=5$
$\varphi(r)$ satisfies $\left|\varphi^{2}(r)-1\right| \leq C r^{1+\delta}$ and $\left|\varphi^{10}(r)-1\right| \leq C r^{1+\delta}$ ， where $\delta \in(0,1]$ is any given constant．

Idea of proof of Theorem 1

－Lemma 3：For the case $N=5$ ，if

$$
\begin{gathered}
\varphi(x)=1-|x|^{1.81} \sin \left(\frac{\pi}{2}|x|\right)-\frac{3.62}{\pi}|x|^{2.11} \cos \left(\frac{\pi}{2}|x|\right), \text { then, as } \\
\varepsilon \rightarrow 0^{+}, \\
\int_{\Omega}\left|\Delta \psi_{\varepsilon}\right|^{2} d x=(105)^{\frac{1}{4}} \omega_{5} \varepsilon^{\frac{1}{2}}(15.8854)+S^{\frac{N}{4}}+\mathrm{O}\left(\varepsilon^{\frac{1+\delta}{2}}\right), \\
\int_{\Omega}\left|\nabla \psi_{\varepsilon}\right|^{2} d x=(105)^{\frac{1}{4}} \omega_{5} \varepsilon^{\frac{1}{2}}(1.3385)+\mathrm{O}(\varepsilon), \\
\left|\psi_{\varepsilon}\right|_{2}^{2}=(105)^{\frac{1}{4}} \omega_{5} \varepsilon^{\frac{1}{2}}(0.0424)+\mathrm{O}(\varepsilon)
\end{gathered}
$$

and

$$
\left|\psi_{\varepsilon}\right|_{2^{* *}}^{2^{* *}}=S^{\frac{N}{4}}+\mathrm{O}\left(\varepsilon^{\frac{1+\delta}{2}}\right)
$$

where $\delta=0.81$ ．

Idea of proof of Theorem 1

－What＇s more，there exists a function $u_{0} \in H_{0}^{2}(\Omega) \backslash\{0\}$ such that $\sup I\left(t u_{0}\right)<\frac{2}{N} S^{\frac{N}{4}}$ ，if one of the following assumptions $t \geq 0$
holds：
（i）$\mu=0, \lambda>\lambda^{*}(5)$ ，
（ii）$\mu<0.0317 \lambda-11.8681$ ．

Idea of proof of Theorem 1

－What＇s more，there exists a function $u_{0} \in H_{0}^{2}(\Omega) \backslash\{0\}$ such that $\sup I\left(t u_{0}\right)<\frac{2}{N} S^{\frac{N}{4}}$ ，if one of the following assumptions $t \geq 0$
holds：
（i）$\mu=0, \lambda>\lambda^{*}(5)$ ，
（ii）$\mu<0.0317 \lambda-11.8681$ ．
－Case 3：$N=6$
Let φ satisfies $\left|\varphi^{2}(r)-1\right| \leq C r^{2+\delta},\left|\varphi^{6}(r)-1\right| \leq C r^{2+\delta}$ ， $\frac{\left(\varphi^{\prime}\right)^{2}}{r} \leq C$ ，where $0<\delta<1$ is any fixed constant．

Idea of proof of Theorem 1

－Lemma 4：For the case $N=6$ ，if

$$
\begin{aligned}
& \varphi(x)=1-|x|^{2.02} \sin \left(\frac{\pi}{2}|x|\right)-\frac{4.04}{\pi}|x|^{3.07} \cos \left(\frac{\pi}{2}|x|\right), \text { then, as } \\
& \varepsilon \rightarrow 0^{+}, \\
& \int_{\Omega}\left|\Delta \psi_{\varepsilon}\right|^{2} d x=(384)^{\frac{1}{2}} \omega_{6} \varepsilon(37.9823)+S^{\frac{N}{4}}+\mathrm{O}\left(\varepsilon^{1+\frac{\delta}{2}}\right), \\
& \int_{\Omega}\left|\nabla \psi_{\varepsilon}\right|^{2} d x=(384)^{\frac{1}{2}} \omega_{6} \varepsilon\left[-0.1242-\frac{2}{3}(1+\varepsilon)^{-3}-(1+\varepsilon)^{-2}\right. \\
& \left.-2(1+\varepsilon)^{-1}+2 \ln (1+\varepsilon)-2 \ln \varepsilon\right]+\mathrm{O}\left(\varepsilon^{\frac{3}{2}}\right), \\
& \left|\psi_{\varepsilon}\right|_{2}^{2}=(384)^{\frac{1}{2}} \omega_{6} \varepsilon(0.1417)+\mathrm{O}\left(\varepsilon^{\frac{3}{2}}\right),
\end{aligned}
$$

and

$$
\left|\psi_{\varepsilon}\right|_{2^{* *}}^{2^{* *}}=S^{\frac{N}{4}}+\mathrm{O}\left(\varepsilon^{\frac{2+\delta}{2}}\right)
$$

where $\delta=0.6$ ．

Idea of proof of Theorem 1

－Moreover，there exists a function $u_{0} \in H_{0}^{2}(\Omega) \backslash\{0\}$ such that $\sup I\left(t u_{0}\right)<\frac{2}{N} S^{\frac{N}{4}}$ ，provided one of the following assumptions $t \geq 0$ holds：
（i）$\mu=0, \lambda>\lambda^{*}(6)$ ，
（ii）$\mu<0, \lambda \in \mathbb{R}$ ．

Idea of proof of Theorem 1

－Moreover，there exists a function $u_{0} \in H_{0}^{2}(\Omega) \backslash\{0\}$ such that $\sup I\left(t u_{0}\right)<\frac{2}{N} S^{\frac{N}{4}}$ ，provided one of the following assumptions $t \geq 0$ holds：
（i）$\mu=0, \lambda>\lambda^{*}(6)$ ，
（ii）$\mu<0, \lambda \in \mathbb{R}$ ．
－Case 4：$\quad N=7$
Let $\varphi(x)$ satisfies $\frac{\left(\varphi^{\prime}\right)^{2}}{r^{2}} \leq C,\left|\varphi^{2}(r)-1\right| \leq C r^{3+\delta}$ and $\left||\varphi(r)|^{\frac{14}{3}}-1\right| \leq C r^{3+\delta}$ ，where $0<\delta<1$ is any fixed constant．

Idea of proof of Theorem 1

－Lemma 5：For the case $N=7$ ，if

$$
\begin{aligned}
& \varphi(x)=1-|x|^{2.53} \sin \left(\frac{\pi}{2}|x|\right)-\frac{5.06}{\pi}|x|^{3.78} \cos \left(\frac{\pi}{2}|x|\right), \text { then, as } \\
& \varepsilon \rightarrow 0^{+} \\
& \int_{\Omega}\left|\Delta \psi_{\varepsilon}\right|^{2} d x=(945)^{\frac{3}{4}} \omega_{7} \varepsilon^{\frac{3}{2}}(77.8060)+S^{\frac{N}{4}}+\mathrm{O}\left(\varepsilon^{\frac{3+\delta}{2}}\right),
\end{aligned}
$$

$$
\begin{gathered}
\int_{\Omega}\left|\nabla \psi_{\varepsilon}\right|^{2} d x=(945)^{\frac{3}{4}} \varepsilon^{\frac{3}{2}} \omega_{7}\left(-1.7550+9 \int_{0}^{1} \frac{r^{8}}{\left(\varepsilon+r^{2}\right)^{5}} d r\right)+\mathrm{O}\left(\varepsilon^{2}\right) \\
\left|\psi_{\varepsilon}\right|_{2}^{2}=(945)^{\frac{3}{4}} \omega_{7} \varepsilon^{\frac{3}{2}}(0.5530)+\mathrm{O}\left(\varepsilon^{2}\right)
\end{gathered}
$$

and

$$
\left|\psi_{\varepsilon}\right|_{2^{* *}}^{2^{* *}}=S^{\frac{N}{4}}+\mathrm{O}\left(\varepsilon^{\frac{3+\delta}{2}}\right)
$$

where $\delta=0.53$ ．

Idea of proof of Theorem 1

－Moreover，there exists a function $u_{0} \in H_{0}^{2}(\Omega) \backslash\{0\}$ such that sup $I\left(t u_{0}\right)<\frac{2}{N} S^{\frac{N}{4}}$ ，if one of the following assumptions holds： $t \geq 0$
（i）$\mu=0, \lambda>\lambda^{*}(7)$,
（ii）$\mu<0, \lambda \in \mathbb{R}$ ．
Hence，we conclude that

$$
\lambda^{*}(N):= \begin{cases}374.3880, & N=5 \\ 268.0473, & N=6 \\ 140.6980, & N=7 \\ 0, & N \geq 8\end{cases}
$$

Idea of proof of Theorem 2

－Assume that u is a nontrivial solution of (1) in $H_{0}^{2}(\Omega) \bigcap C^{4}(\Omega)$ ．then we obtain

$$
\begin{aligned}
\frac{1}{2} \int_{\partial \Omega}(x . \nu)|\Delta u|^{2} d S & =\frac{4-n}{2} \int_{\Omega} u\left(\mu \Delta u+\lambda u+|u|^{2^{* *}-2} u\right) d x \\
& +\int_{\partial \Omega}(x \cdot \nu)\left(\frac{\partial \Delta u}{\partial \nu}\right)\left(\frac{\partial u}{\partial \nu}\right) d S \\
& -\int_{\Omega}(x \cdot \nabla u) \Delta^{2} u d x
\end{aligned}
$$

Idea of proof of Theorem 2

－A straightforward computation gives us

$$
\begin{equation*}
-\mu \int_{\Omega}|\nabla u|^{2} d x+2 \int_{\Omega} \lambda u^{2} d x=\frac{1}{2} \int_{\partial \Omega}(x \cdot \nu)|\Delta u|^{2} d S \tag{8}
\end{equation*}
$$

－Since Ω is a star－shaped domain，we have $x \cdot \nu>0$ ．When $\lambda \leq 0$ and $\mu>0$ ，we have $u=0$ ．
When $\lambda>0$ and $\mu>\frac{2}{\lambda_{1}(\Omega)} \lambda>0$ ，we obtain

So $u=0$
－From the discussions above，we can see that there are no nontrivial solutions of (1) in $H_{0}^{2}(\Omega) \cap C^{4}(\Omega)$ for $\mu>\max \left\{0,2 \frac{\lambda}{\lambda_{1}(\Omega)}\right\}$ if Ω is a star－shaped domain．

Idea of proof of Theorem 2

－A straightforward computation gives us

$$
\begin{equation*}
-\mu \int_{\Omega}|\nabla u|^{2} d x+2 \int_{\Omega} \lambda u^{2} d x=\frac{1}{2} \int_{\partial \Omega}(x \cdot \nu)|\Delta u|^{2} d S \tag{8}
\end{equation*}
$$

－Since Ω is a star－shaped domain，we have $x \cdot \nu>0$ ．When $\lambda \leq 0$ and $\mu>0$ ，we have $u=0$ ．
When $\lambda>0$ and $\mu>\frac{2}{\lambda_{1}(\Omega)} \lambda>0$ ，we obtain

$$
\begin{aligned}
\frac{1}{2} \int_{\partial \Omega}(x \cdot \nu)|\Delta u|^{2} d S & =-\mu \int_{\Omega}|\nabla u|^{2} d x+2 \int_{\Omega} \lambda u^{2} d x \\
& \leq\left(-\mu \lambda_{1}(\Omega)+2 \lambda\right) \int_{\Omega} u^{2} d x
\end{aligned}
$$

So $u=0$ ．
－From the discussions above，we can see that there are no nontrivial solutions of (1) in $H_{0}^{2}(\Omega) \cap C^{4}(\Omega)$ for $\mu>\max \left\{0,2 \frac{\lambda}{\lambda_{1}(\Omega)}\right\}$ if Ω is a star－shaped domain．

Idea of proof of Theorem 2

－A straightforward computation gives us

$$
\begin{equation*}
-\mu \int_{\Omega}|\nabla u|^{2} d x+2 \int_{\Omega} \lambda u^{2} d x=\frac{1}{2} \int_{\partial \Omega}(x \cdot \nu)|\Delta u|^{2} d S \tag{8}
\end{equation*}
$$

－Since Ω is a star－shaped domain，we have $x \cdot \nu>0$ ．When $\lambda \leq 0$ and $\mu>0$ ，we have $u=0$ ．
When $\lambda>0$ and $\mu>\frac{2}{\lambda_{1}(\Omega)} \lambda>0$ ，we obtain

$$
\begin{aligned}
\frac{1}{2} \int_{\partial \Omega}(x \cdot \nu)|\Delta u|^{2} d S & =-\mu \int_{\Omega}|\nabla u|^{2} d x+2 \int_{\Omega} \lambda u^{2} d x \\
& \leq\left(-\mu \lambda_{1}(\Omega)+2 \lambda\right) \int_{\Omega} u^{2} d x
\end{aligned}
$$

So $u=0$ ．
－From the discussions above，we can see that there are no nontrivial solutions of (1) in $H_{0}^{2}(\Omega) \bigcap C^{4}(\Omega)$ for $\mu>\max \left\{0,2 \frac{\lambda}{\lambda_{1}(\Omega)}\right\}$ if Ω is a star－shaped domain．

Idea of proof of Theorem 2

－A straightforward computation gives us

$$
\begin{equation*}
-\mu \int_{\Omega}|\nabla u|^{2} d x+2 \int_{\Omega} \lambda u^{2} d x=\frac{1}{2} \int_{\partial \Omega}(x \cdot \nu)|\Delta u|^{2} d S \tag{8}
\end{equation*}
$$

－Since Ω is a star－shaped domain，we have $x \cdot \nu>0$ ．When $\lambda \leq 0$ and $\mu>0$ ，we have $u=0$ ．
When $\lambda>0$ and $\mu>\frac{2}{\lambda_{1}(\Omega)} \lambda>0$ ，we obtain

$$
\begin{aligned}
\frac{1}{2} \int_{\partial \Omega}(x \cdot \nu)|\Delta u|^{2} d S & =-\mu \int_{\Omega}|\nabla u|^{2} d x+2 \int_{\Omega} \lambda u^{2} d x \\
& \leq\left(-\mu \lambda_{1}(\Omega)+2 \lambda\right) \int_{\Omega} u^{2} d x
\end{aligned}
$$

So $u=0$ ．
－From the discussions above，we can see that there are no nontrivial solutions of (1) in $H_{0}^{2}(\Omega) \bigcap C^{4}(\Omega)$ for $\mu>\max \left\{0,2 \frac{\lambda}{\lambda_{1}(\Omega)}\right\}$ if Ω is a star－shaped domain．

Thanks for your attention！

