# Asymptotic stability of shocks and rarefaction waves under space-periodic perturbations

### Qian YUAN

Chinese Academy of Sciences

#### 28 November 2020

The 7th Young Researchers PDE Forum, South China Normal University

Joint work with Feimin Huang, Zhouping Xin, Lingda Xu & Yuan Yuan

# Outline

# 1 Introduction

- 2 1-d scalar convex conservation law
  - Inviscid case
  - Viscous Case

### Viscous shock for 1-d Navier-Stokes equations

- A single shock with zero mass condition
- The combination of two shocks

### 4 Planar rarefaction wave

# Outline

# Introduction

- 2 1-d scalar convex conservation law
  - Inviscid case
  - Viscous Case

### Viscous shock for 1-d Navier-Stokes equations

- A single shock with zero mass condition
- The combination of two shocks

#### 4 Planar rarefaction wave

Cauchy problem for a 1-d viscous conservation law

$$\partial_t u + \partial_x f(u) = \varepsilon \partial_x (B(u)\partial_x u), \quad x \in \mathbb{R}, t > 0,$$
(1)  
$$u(x, 0) = u_0(x), \qquad x \in \mathbb{R}.$$
(2)

- $u \in \mathbb{R}^n$ ,
- $f = (f_1, \dots, f_n) : \mathbb{R} \to \mathbb{R}^n$  smooth, Df(u) has n distinct eigenvalues,
- $B(u) \ge 0$ : smooth matrix,
- $\varepsilon \ge 0$  : viscosity.

#### Our concern:

 $u_0(x) =$  Riemann solution + Periodic perturbation.

i.e.  $u_0(x)$  oscillates around different constants at initiative  $x = \pm \infty$ .

# **Riemann** solution

Self-similar solution  $u = U(\frac{x}{t})$  to hyperbolic system ( $\varepsilon = 0$ ) :

$$\partial_t u + \partial_x f(u) = 0. \tag{3}$$

Riemann initial data:

$$u_0(x) = \begin{cases} \overline{u}_l, & x < 0, \\ \overline{u}_r, & x > 0. \end{cases}$$
(4)

#### Riemann 1860, P. D. Lax 1957

- Basic waves: Shock, Rarefaction Wave & Contact Discontinuity.
- Riemann solution is the superposition of these basic waves.

#### Breakthrough: J. Glimm 1965

• General  $N \times N$  system,  $BV(\mathbb{R})$  solution.

For inviscid conservation laws, Riemann solutions govern both large time behavior if initial data tends to constant states at infinity,

$$u_0(x) \to \begin{cases} \overline{u}_l & \text{as } x \to -\infty, \\ \overline{u}_r & \text{as } x \to +\infty; \end{cases}$$

and local structure (Building block, Riemann solver).

- E.Hopf 1950, Ilin-Oleinik 1960, T.P. Liu 1977/1978, · · ·
- J. Glimm 1965, A. Bressan 1992, Bressan-LeFloch 1999, · · ·

For viscous conservation laws, the viscous version of Riemann solutions characterize the large time behavior.

e.g. A viscous shock  $\phi^{\varepsilon}(x - st)$  is a traveling wave solution to viscous conservation law,

$$\begin{cases} & \left(-s\phi^{\varepsilon}+f(\phi^{\varepsilon})\right)'(x)=\varepsilon\left(B(\phi^{\varepsilon})(\phi^{\varepsilon})'\right)'(x)\\ & \lim_{x\to-\infty}\phi^{\varepsilon}(x)=\overline{u}_{l}, \ \lim_{x\to+\infty}\phi^{\varepsilon}(x)=\overline{u}_{r}, \end{cases}$$

where  $\overline{u}_l > \overline{u}_r$  and *s* is the shock speed.

### • Stability of viscous shock

- ▶ Ilin-Oleinik 1960, Freistuhler Serre 1998 (scalar,  $L^{\infty}$  and  $L^{1}$ )
- Matsumura-Nishihara 1985; J. Goodman 1986 (zero mass),
- ► T.P. Liu, M.AMS 1986, CPAM 1988, CPAM 1997
- Xin-Sezepessy, ARMA 1993
- Liu-Zeng, CMP 2010, M. AMS 2013
- S.H.Yu, J.AMS 2011 (Boltzmann)
- Zumbrun et al, · · ·
- Stability of rarefaction wave
  - Matsumura-Nishihara 1986; Liu-Xin 1988 (NS)
  - Matsumura-Nishihara 1992; Nishihara-Yang-Zhao 2004 (large perturbation)
- Stability of viscous contact discontinuity
  - Xin 1994,
  - ▶ Liu-Xin 1997,
  - ► Huang-Matsumura-Shi 2004, free boundary problem (NS)
  - Huang-Matsumura-Xin 2005 (NS, zero mass)
  - Huang-Xin-Yang 2008

Periodic solution to hyperbolic equations

Global existence with decay rate  $t^{-1}$ :

- P. Lax 1957 (scalar): Lax-formula.
- Glimm Lax 1970 (2  $\times$  2): Glimm scheme, generalized characteristics (characteristics or shocks).
- C. Dafermos 1995 (2 × 2): generalized characteristics (Filippov's sense; divides).

Global existence is still open:

- Non-isentropic Euler  $(3 \times 3)$ 
  - Majda-Rosales 1984: resonance phenomenon (sound waves reflect resonantly off entropy wave)
  - ► Temple-Young 1996; Qu-Xin 2015: almost global existence
  - • •

## Uniform decay for scalar equation

$$\partial_t u^{\varepsilon} + \partial_x f(u^{\varepsilon}) = \varepsilon \partial_x^2 u^{\varepsilon}, \quad x \in \mathbb{R}, t > 0, u^{\varepsilon}(x, 0) = u_0(x),$$
(5)

where  $u_0 \in L^{\infty}(\mathbb{R})$  is periodic with period p > 0 and average  $\overline{u}$ .

Theorem 1.1 (Z. Xin - Lecture notes)  $\exists C > 0 \text{ independent of either } p \text{ or } \varepsilon \ge 0, \text{ s.t. for } \varepsilon \ge 0,$ 

$$\|u^{\varepsilon}(\cdot,t)-\overline{u}\|_{L^{\infty}(\mathbb{R})} \leq TV_{[0,p]}(u^{\varepsilon}(\cdot,t)) \leq \frac{Cp}{t}, \quad t>0.$$

Remark 1.2

If  $\varepsilon > 0$ ,

$$\|u^{\varepsilon}(\cdot,t)-\overline{u}\|_{L^{\infty}(\mathbb{R})} \lesssim_{\varepsilon} e^{-\alpha_{\varepsilon}t}, \quad t \geq 0.$$

### Our concern

? Asymptotic behavior of solution when initial data tends to different periodic functions at infinity:

$$u_0(x) \to \begin{cases} \overline{u}_l + \text{periodic function} & \text{as } x \to -\infty, \\ \overline{u}_r + \text{periodic function} & \text{as } x \to +\infty. \end{cases}$$

i.e. Do the periodic oscillations at infinity influence stability of shock and rarefaction wave?

### **Difficulties**:

- Perturbation is not integrable on  $\mathbb{R}$ .
- Problem cannot be studied on a bounded period, and the perturbation is not periodic any more for *t* > 0.

# Outline

### Introduction

- 2 1-d scalar convex conservation law
  - Inviscid case
  - Viscous Case

### Viscous shock for 1-d Navier-Stokes equations

- A single shock with zero mass condition
- The combination of two shocks

#### 4 Planar rarefaction wave

### §2.1. Inviscid scalar equation

$$\partial_t u + \partial_x f(u) = 0, \quad x \in \mathbb{R}, t > 0$$
$$u(x, 0) = u_0(x) = \begin{cases} \overline{u}_l + w_{0l}(x), & x < -N, \\ \overline{u}_r + w_{0r}(x), & x > N, \end{cases}$$

where  $\overline{u}_l, \overline{u}_r$  and N > 0 are constants, and  $w_{0i}(x) \in L^{\infty}$ , i = l, r are periodic with period  $p_i > 0$ , satisfying

$$\frac{1}{p_i} \int_0^{p_i} w_{0i}(x) dx = 0 \quad \text{(w.l.o.g.)}.$$

#### Remark 2.1 (T.P. Liu 1978)

If  $w_{0l} = w_{0r} = 0$ , then  $u \to u^{S}(x - x_{0}, t)$  (resp.  $u^{R}(x, t)$  or  $\overline{u}_{l}$ ) in  $L^{\infty}(\mathbb{R})$  if  $\overline{u}_{l} > \overline{u}_{r}$  (resp.  $\overline{u}_{l} < \overline{u}_{r}$  or  $\overline{u}_{l} = \overline{u}_{r}$ ) as  $t \to +\infty$ . Here  $x_{0}$  is given by

$$x_0 = \frac{\int_{\mathbb{R}} (u_0 - u^S(x, 0)) dx}{\overline{u}_l - \overline{u}_r}$$

Theorem 2.2 (Xin-Y.-Yuan SIAM; Y.-Yuan JDE)

• If  $\overline{u}_l > \overline{u}_r$ , then  $\exists X(t) \in Lip[0, +\infty)$ , which is unique after a finite time, *s.t.* 

$$|X(t) - st - X_{\infty}| \gtrsim t^{-1},$$
  
$$\sup_{x < X(t)} |u(x,t) - \overline{u}_l| + \sup_{x > X(t)} |u(x,t) - \overline{u}_r| \lesssim t^{-1},$$

with  $X_{\infty} = \frac{1}{\overline{u}_l - \overline{u}_r} (X_{\infty,1} + X_{\infty,2})$  given by

$$\begin{aligned} X_{\infty,1} &= \int_{-\infty}^{0} (u_0 - \overline{u}_l - w_{0l}) dx + \int_{0}^{+\infty} (u_0 - \overline{u}_r - w_{0r}) dx, \\ X_{\infty,2} &= -\min_{x \in \mathbb{R}} \int_{0}^{x} w_{0l}(y) dy + \min_{x \in \mathbb{R}} \int_{0}^{x} w_{0r}(y) dy. \end{aligned}$$

Remark 2.3 (Comparison with integrable perturbations) New shift  $X_{\infty,2}$  is generated due to the periodic oscillations at infinity, which vanishes as periods tend to zero. Theorem 2.4 (Xin-Y.-Yuan SIAM; Y.-Yuan JDE) • If  $\overline{u}_l < \overline{u}_r$ , then  $\|u(\cdot, t) - u^R(\cdot, t)\|_{L^{\infty}(\mathbb{R})} \lesssim t^{-\frac{1}{2}}$ .

In particular, without localized perturbations, i.e.

$$u_0(x) = u^R(x,0) + w_0(x)$$

with  $w_0 \in L^{\infty}$  being periodic with zero average, it holds that

$$\left\| u(\cdot,t) - u^{R}(\cdot,t) \right\|_{L^{\infty}(\mathbb{R})} \lesssim t^{-1}.$$

• If  $\overline{u}_l = \overline{u}_r$ , then

$$\|u(\cdot,t)-\overline{u}_l\|_{L^{\infty}(\mathbb{R})} \lesssim t^{-\frac{1}{2}}$$

# Sketch of proof (Generalized characteristics)

### Definition 2.5 (C. Dafermos 1989)

A generalized characteristic of an entropy solution u(x, t) on the time interval  $[\sigma, \tau] \subset [0, +\infty)$  is a Lipschitz function  $\xi : [\sigma, \tau] \to \mathbb{R}$ , satisfying the differential inclusion

 $\xi'(t) \in [f'(u(\xi(t)+,t)), \quad f'(u(\xi(t)-,t))] \quad \text{ a.e. } [\sigma,\tau].$ 

### Remark 2.6

A generalized characteristic composes of either classical characteristics or shocks (same with Glimm-Lax 1970).

Lemma 2.7 (Divides, C. Dafermos 1995)

Let u(x, t) be the periodic entropy solution satisfying a periodic initial data  $u_0(x)$  with period p and average  $\overline{u}$ . Then  $\exists z \in [0, p)$  s.t.

$$u(\mathbf{z} + f'(\overline{u})t, t) \equiv \overline{u} \quad \forall t > 0,$$
(6)

*if and only if* 

$$\int_0^z [u_0(y) - \overline{u}] dy = \min_{x \in \mathbb{R}} \int_0^x [u_0(y) - \overline{u}] dy$$
$$\left( \Leftrightarrow \int_z^x [u_0(y) - \overline{u}] dy \ge 0 \quad \forall x \in \mathbb{R}. \right)$$

Lemma 2.8 (Comparison principle, Dafermos' book) Let u and ũ be two entropy solutions. Assume that

 $u(x,0) \leq \tilde{u}(x,0)$  for a.e.  $x \in (y,\tilde{y})$ .

Let  $\psi(t)$  and  $\dot{\psi}(t)$  be the generalized characteristic curves of u and  $\tilde{u}$  issuing from (y, 0) and  $(\tilde{y}, 0)$ , respectively. Then for any t > 0, if  $\psi(t) < \tilde{\psi}(t)$ , then

 $u(x,t) \leq \tilde{u}(x,t)$  for a.e.  $x \in (\psi(t), \psi(t))$ .



### **Proposition 2.9**

*There exist two Lipschitz continuous curves*  $X_1^*$  *and*  $X_2^*$ *, s.t.* 

$$u(x,t) = \begin{cases} u_l(x,t), & x < X_1^*(t), \\ u_r(x,t), & x > X_2^*(t). \end{cases}$$
(7)

*Moreover, if*  $\overline{u}_l > \overline{u}_r$ , then  $X_1^*$  and  $X_2^*$  coincide after a finite time.

Here  $u_{l,r}(x, t)$  is the periodic solution with  $u_{l,r}(x, 0) = \overline{u}_{l,r} + w_{0l,0r}(x)$ .

### Proof of Shock



•  $\Gamma_l^K$  and  $\Gamma_r^K$ : divides of  $u_l$  and  $u_r$ , respectively.

• Integrating  $\partial_t u + \partial_x f(u) = 0$  over trapezium

$$\Rightarrow |X(t) - st - X_{\infty}| \lesssim t^{-1}, \quad t \ge T.$$

# Proof of Rarefaction wave and Constant

Set

$$P(t) := \lim_{k \to +\infty} \min_{x \in \mathbb{R}} \int_{\Gamma_l^k(t)}^x \left( u(y, t) - \overline{u}_l \right) dy \le 0,$$
  

$$Q(t) := \lim_{k \to +\infty} \max_{x \in \mathbb{R}} \int_x^{\Gamma_r^k(t)} \left( u(y, t) - \overline{u}_r \right) dy \ge 0.$$
(8)

With the aid of divides, we can prove that

Proposition 2.10 (Two time-invariants) If  $\overline{u}_l \leq \overline{u}_r$ , then  $\exists x_P, x_Q \in [\Gamma_l^K(0), \Gamma_r^K(0)]$  s.t.  $P(t) \equiv P(0)$  and  $Q(t) \equiv Q(0)$ .

$$\Rightarrow \quad X_1^*(t) \ge f'(\overline{u}_l)t - Ct^{\frac{1}{2}} \quad \text{and} \quad X_2^*(t) \le f'(\overline{u}_r)t + Ct^{\frac{1}{2}}, \quad t \ge 0.$$

Then similar to [T. P. Liu, 1978], one can finish the proof.

### §2.2. Viscous scalar equation

$$\partial_t u^{\varepsilon} + \partial_x f(u^{\varepsilon}) = \varepsilon \partial_x^2 u^{\varepsilon}, \quad x \in \mathbb{R}, t > 0$$
$$u^{\varepsilon}(x, 0) = u_0(x) \in L^{\infty}(\mathbb{R}),$$

where 
$$u_0(x) \to \begin{cases} \overline{u}_l + w_{0l}(x) & \text{as } x \to -\infty, \\ \overline{u}_r + w_{0r}(x) & \text{as } x \to +\infty, \end{cases}$$
 exponentially fast,

where  $\overline{u}_l, \overline{u}_r$  are constants, and for  $i = l, r, w_{0i} \in L^{\infty}$  is periodic with period  $p_i > 0$  and zero average.

### Remark 2.11 (Ilin-Oleinik 1960)

If  $w_{0l} = w_{0r} = 0$ , then  $u^{\varepsilon} \to \phi^{\varepsilon}(x - st - x_0)$  (or  $u^R(x, t)$ ) if  $\overline{u}_l > \overline{u}_r$  (or  $\overline{u}_l < \overline{u}_r$ ) in  $L^{\infty}(\mathbb{R})$  as  $t \to +\infty$ . Here  $x_0$  is determined by the initial excessive mass

$$x_0 = \frac{\int_{\mathbb{R}} (u_0 - \phi^{\varepsilon})(x) dx}{\overline{u}_l - \overline{u}_r}.$$
(9)

Theorem 2.12 (Xin-Y. -Yuan, preprint in Indiana. Univ. Math. J.)

• If 
$$\overline{u}_l < \overline{u}_r$$
, then  $\lim_{t \to +\infty} \left\| u^{\varepsilon}(\cdot, t) - u^{R}(\cdot, t) \right\|_{L^{\infty}(\mathbb{R})} = 0.$ 

• If 
$$\overline{u}_l > \overline{u}_r$$
, then  $\exists \alpha_{\varepsilon} > 0$ , s.t.

$$\|u^{\varepsilon}(\cdot,t) - \phi^{\varepsilon}(\cdot - st - X_{\infty}^{\varepsilon},t)\|_{L^{\infty}(\mathbb{R})} \lesssim_{\varepsilon} e^{-\alpha_{\varepsilon}t}, \quad t > 0,$$
(10)

where the shift  $X_{\infty}^{\varepsilon} = \frac{1}{\overline{u}_l - \overline{u}_r} \left( X_{\infty,1}^{\varepsilon} + X_{\infty,2}^{\varepsilon} \right)$  is given by

$$X_{\infty,1}^{\varepsilon} = \int_{-\infty}^{0} \left( u_0 - \phi^{\varepsilon} - w_{0l} \right) dx + \int_{0}^{+\infty} \left( u_0 - \phi^{\varepsilon} - w_{0r} \right) dx,$$

 $\cdots$  (to continue)

### Theorem (Continuing)

··· (continuing)

$$\begin{split} X_{\infty,2}^{\varepsilon} &= \int_{0}^{+\infty} \frac{1}{p_{l}} \int_{0}^{p_{l}} \left[ f(u_{l}^{\varepsilon}(x,t)) - f(\overline{u}_{l}) \right] dx dt \\ &- \int_{0}^{+\infty} \frac{1}{p_{r}} \int_{0}^{p_{r}} \left[ f(u_{r}^{\varepsilon}(x,t)) - f(\overline{u}_{r}) \right] dx dt \\ &- \frac{1}{p_{l}} \int_{0}^{p_{l}} \int_{0}^{x} w_{0l}(y) dy dx + \frac{1}{p_{r}} \int_{0}^{p_{r}} \int_{0}^{x} w_{0r}(y) dy dx, \end{split}$$

where  $u_{l,r}^{\varepsilon}(x,t)$ : periodic solution with  $u_{l,r}^{\varepsilon}(x,0) = \overline{u}_{l,r} + w_{0l,0r}(x)$ .

### Remark 2.13

- 1) Compared to localized perturbations:  $X_{\infty,2}^{\varepsilon}$  is new, due to the periodic oscillations at infinity.
- 2) Compared to inviscid case:  $X_{\infty,2}^{\varepsilon}$  depends more on the flux and viscosity (and time maybe), which also vanishes as periods tend to zero.

# $X_{\infty,2}^{\varepsilon} \neq 0$ vs. $X_{\infty,2} = 0$

When oscillations at  $x = \pm \infty$  coincide, i.e.  $w_{0l} = w_{0r}$ ,

- Recall that for inviscid case  $\varepsilon = 0, X_{\infty,2} = 0.$ e.g.  $u_0(x) = u^{S}(x) + w_0(x) \Rightarrow u(x,t) \to u^{S}(x-st).$
- However, for viscous case  $\varepsilon > 0$ ,  $X_{\infty,2}^{\varepsilon} \neq 0$  in general. e.g.  $u_0(x) = \phi^{\varepsilon}(x) + w_0(x) \implies u^{\varepsilon}(x,t) \to \phi^{\varepsilon}(x - st - X_{\infty,2}^{\varepsilon})$ .

#### Theorem 2.14 (Xin-Y.-Yuan)

Assume that  $w_{0l} = w_{0r} := w_0$ . Then

- 1) if  $f(u) = u^2/2$ , then  $X_{\infty,2}^{\varepsilon} = 0$ ;
- 2)  $\forall$  periodic perturbation  $w_0 \in L^{\infty}(\mathbb{R})$  with zero average, if  $0 < \|w_0\|_{L^{\infty}} < (\overline{u}_l - \overline{u}_r)/2$ , then  $\exists$  a smooth and strictly convex flux  $f(u), s.t. X_{\infty,2}^{\varepsilon} \neq 0$ .

Proof. 1) By Hopf's formula.

2) Note that  $\sup_{x} u_r^{\varepsilon}(x,t) < \inf_{x} u_l^{\varepsilon}(x,t) \quad \forall t \ge 0.$ 



Figure: Construction of flux f

$$\begin{aligned} X_{\infty,2}^{\varepsilon} &= \int_{0}^{+\infty} \frac{1}{p} \int_{0}^{p} (u_{l}^{\varepsilon} - \overline{u}_{l})^{2} dx dt - \frac{1}{n} \int_{0}^{+\infty} \frac{1}{p} \int_{0}^{p} (u_{r}^{\varepsilon} - \overline{u}_{r})^{2} dx dt \\ &\neq 0, \qquad \text{if } n \text{ is large enough?} \end{aligned}$$

- Method 1: Energy estimates  $\Rightarrow X_{\infty,2}^{\varepsilon} > 0$  if n > 0 is large enough.
- Method 2: For  $f(u) = \frac{1}{n}u^2$ , Hopf-Cole transformation yields that

#### Lemma 2.15 (Xin-Y.-Yuan)

Let  $u^{\varepsilon}$  be the periodic solution with periodic initial data  $u_0(x)$ , which has period p > 0 and average  $\overline{u}$ , then

$$\int_{0}^{+\infty} \frac{1}{p} \int_{0}^{p} (f(u^{\varepsilon}) - f(\overline{u})) dx dt = \frac{1}{p} \int_{0}^{p} \int_{0}^{x} (u_{0}(y) - \overline{u}) dy dx + \varepsilon n \log \left(\frac{1}{p} \int_{0}^{p} \exp\left\{-\frac{1}{\varepsilon n} \int_{0}^{x} (u_{0}(y) - \overline{u}) dy\right\} dx\right).$$
(11)

Then L'Hopital rule  $\Rightarrow$  RHS of (11) tends to zero as  $n \rightarrow +\infty$ .

Vanishing viscosity of  $X_{\infty,2}^{\varepsilon}$ 

Theorem 2.16 (Xin-Y.-Yuan) As  $\varepsilon \rightarrow 0+$ ,

$$X_{\infty,2}^{\varepsilon} \to X_{\infty,2} = -\min_{x \in \mathbb{R}} \int_0^x w_{0l}(y) dy + \min_{x \in \mathbb{R}} \int_0^x w_{0r}(y) dy.$$

Additionally, if both  $TV_{[0,p_l]}(w_{0l})$  and  $TV_{[0,p_r]}(w_{0r})$  are finite, then

$$\left|X_{\infty,2}^{\varepsilon}-X_{\infty,2}\right|\lesssim \varepsilon^{\frac{1}{5}}.$$

Proof. Ingredients of proof:

- uniform decay rate  $t^{-1}$  of periodic, solutions
- divides of inviscid periodic solutions,
- Kruzhkov's theory.

# Proof of viscous shock

For brevity, we omit  $\varepsilon > 0$  in the proof.

Ingredients of proof:

- Construction of an ansatz to make anti-derivative method available
- Comparison principle

### Construction of ansatz

For the viscous shock  $\phi(x - st)$ , inspired by

$$\phi(x) = \overline{u}_l g(x) + \overline{u}_r (1 - g(x)), \quad \text{where } g(x) \triangleq \frac{\phi(x) - \overline{u}_r}{\overline{u}_l - \overline{u}_r}.$$

the ansatz is constructed as

 $\psi_{\xi}(x,t) \triangleq u_l(x,t) g(x-\xi(t)) + u_r(x,t) \left[1 - g(x-\xi(t))\right],$ 

where  $\xi(t)$  is a  $C^1$  curve to be determined.

Remark 2.17

$$\begin{aligned} \|\psi_{\xi}(\cdot,t) - \phi(\cdot - \xi(t))\|_{L^{\infty}(\mathbb{R})} &\lesssim e^{-\alpha t}, \\ |u(x,t) - \psi_{\xi}(x,t)| \lesssim_{t} e^{-\beta|x - \xi(t)|} \end{aligned}$$

• Error of  $\psi_{\xi}$  :

$$\begin{split} h_{\xi} &\triangleq \partial_{t}\psi_{\xi} + \partial_{x}f(\psi_{\xi}) - \partial_{x}^{2}\psi_{\xi} \\ &= \partial_{x}\Big[(f(\psi_{\xi}) - f(u_{l})) \ g_{\xi} + (f(\psi_{\xi}) - f(u_{r})) \ (1 - g_{\xi}) - 2(u_{l} - u_{r}) \ g_{\xi}'\Big] \\ &+ (f(u_{l}) - f(u_{r})) \ g_{\xi}' - (u_{l} - u_{r}) \ g_{\xi}' \ \xi'(t) + (u_{l} - u_{r}) \ g_{\xi}'', \end{split}$$

where red terms vanish as  $|x| \to \infty$ , blue terms are integrable on  $\mathbb{R}$ .

• Choose 
$$\xi = X(t)$$
, s.t.  

$$\begin{cases}
\frac{d}{dt} \int_{\mathbb{R}} (u - \psi_{X(t)})(x, t) dx = -\int_{\mathbb{R}} h_X(x, t) dx = 0, \\
\int_{\mathbb{R}} (u - \psi_{X(0)})(x, 0) dx = 0,
\end{cases}$$

$$\Rightarrow \int_{\mathbb{R}} (u - \psi_{X(t)})(x, t) dx \equiv 0,$$

$$\Rightarrow \text{ anti-derivative method works.}$$
(12)

# Determine shift curve X(t)

 $\int_{\mathbb{R}}$  (blue terms above) dx = 0

$$\Rightarrow \quad X'(t) = \frac{\int_{\mathbb{R}} \left[ (u_l - u_r) g_X'' + (f(u_l) - f(u_r)) g_X' \right] dx}{\int_{\mathbb{R}} (u_l - u_r) g_X' dx}, \quad t > 0,$$
(13)

The initial data  $X(0) = X_0$  is the unique point satisfying

$$\int_{\mathbb{R}} (u_0 - \psi_{X_0})(x, 0) dx$$
  
= 
$$\int_{\mathbb{R}} [u_0 - (\overline{u}_l + w_{0l})g_{X_0} - (\overline{u}_r + w_{0r})(1 - g_{X_0})] dx = 0.$$

X(t) ∈ C<sup>1</sup>(0, +∞) exists and is unique (Cauchy-Lipschitz theorem)
|X'(t) - s| ≤ e<sup>-αt</sup>, t > 0.

# Anti-derivative variables

$$U(x,t) \triangleq \int_{-\infty}^{x} (u-\psi_X)(y,t)dy, \quad H(x,t) \triangleq -\int_{-\infty}^{x} h_X(y,t)dy.$$

satisfy

$$\partial_t U - \partial_x^2 U + a(u, \psi_X) \partial_x U = H(x, t), \quad x \in \mathbb{R}, t > 0,$$
  
where  $a(v, w) = \int_0^1 f'(w + \theta(v - w)) d\theta.$ 

Lemma 2.18

• 
$$|H(x,t)| \leq e^{-\alpha t} e^{-\beta |x-X(t)|} \quad \forall x \in \mathbb{R};$$

•  $\exists \delta_0 > 0, T_1 > 0, and N_1 > 0, s.t. for all t > T_1,$ 

$$a(u,\psi_X) - X'(t) > \delta_0 \quad \forall x < X(t) - N_1,$$
  
 $a(u,\psi_X) - X'(t) < -\delta_0 \quad \forall x > X(t) + N_1.$ 

Comparison principle with auxiliary functions in exponential forms (similar to [A. M. Ilin - O. A. Oleinik 1960])

$$\Rightarrow \|U(x,t)\|_{L^{\infty}(\mathbb{R})} \lesssim_{\varepsilon} e^{-\mu t}, \Rightarrow \|u(x,t) - \psi_X(x,t)\|_{L^{\infty}(\mathbb{R})} \lesssim_{\varepsilon} e^{-\mu t}, \Rightarrow \|u(x,t) - \phi(x - st - X_{\infty})\|_{L^{\infty}(\mathbb{R})} \lesssim_{\varepsilon} e^{-\mu t},$$

where 
$$X_{\infty} = \lim_{t \to +\infty} X(t) - st$$
.

The proof of rarefaction waves can follow from the theorem of shock profile and comparison principle, similar to [Ilin - Oleinik 1960].

# Outline

# Introduction

- 2 1-d scalar convex conservation law
  - Inviscid case
  - Viscous Case

### Viscous shock for 1-d Navier-Stokes equations

- A single shock with zero mass condition
- The combination of two shocks

#### 4) Planar rarefaction wave

# §3.1. A single shock with zero mass condition

• Isentropic Navier-Stokes equations read,

$$\begin{cases} \partial_t v - \partial_x u = 0, \\ \partial_t u + \partial_x p(v) = \partial_x \left(\frac{\mu(v)}{v} \partial_x u\right), & x \in \mathbb{R}, t > 0, \end{cases}$$
(14)

where  $p(v) > 0, \mu(v) > 0$  are smooth, and p'(v) < 0, p''(v) > 0.

• Initial data  $(v, u)(x, 0) = (v_0, u_0)(x)$  satisfies

$$(v_0, u_0)(x) \to \begin{cases} (\overline{v}_l, \overline{u}_l) + (\phi_{0l}, \psi_{0l})(x) & \text{as } x \to -\infty, \\ (\overline{v}_r, \overline{u}_r) + (\phi_{0r}, \psi_{0r})(x) & \text{as } x \to +\infty, \end{cases}$$
(15)

where

- $(\overline{v}_l, \overline{u}_l)$  and  $(\overline{v}_r, \overline{u}_r)$  generate a single 1-shock (or 2-shock),
- (\$\phi\_{0i}\$, \$\phi\_{0i}\$) for \$i = l, r\$, are periodic functions with period \$\pi\_i\$ > 0 and zero averages.

With a suitable ansatz  $(\tilde{v}, \tilde{u})$ , we can prove that

Theorem 3.1 (Huang-Y., preprint) Assume that  $\sum_{i=l,r} \|(\phi_{0i}, \psi_{0i})\|_{H^5([0,\pi_i])} << 1$ ,  $\left\|\int_{-\infty}^x (v_0(x) - \tilde{v}(x,0)) dx, \int_{-\infty}^x (u_0(x) - \tilde{u}(x,0)) dx\right\|_{H^3(\mathbb{R})} << 1$  and the zero-mass condition holds, then

$$\left\| (v,u)(\cdot,t) - (v^{S},u^{S})(\cdot - st - X_{\infty}) \right\|_{L^{\infty}(\mathbb{R})} \to 0 \quad as \ t \to +\infty.$$

Remark 3.2 (Matsumura-Nishihara, Goodman, Liu, Xin,  $\cdots$ ) Without the periodic perturbations, a viscous shock profile with a shift,

$$(v^S, u^S)(x - st - \delta),$$

govern the large time behavior of the solution in the  $L^{\infty}(\mathbb{R})$  space. Note that here  $\delta = 0$  under zero-mass condition.

### Ansatz and Zero-mass condition

**Notations.** Let  $(v_{l,r}, u_{l,r})(x, t)$  be the periodic solution with initial data  $(\overline{v}_{l,r}, \overline{u}_{l,r}) + (\phi_{0l,0r}, \psi_{0l,0r})(x)$ , and let

$$g(x) := \frac{v^S(x) - \overline{v}_l}{\overline{v}_r - \overline{v}_l} \quad \Big( = \frac{u^S(x) - \overline{u}_l}{\overline{u}_r - \overline{u}_l} \Big).$$

Ansatz is constructed as

$$\begin{cases} \tilde{v}(x,t) = v_l(x,t)[1 - g(x - st - X(t))] + v_r(x,t)g(x - st - X(t)), \\ \tilde{u}(x,t) = u_l(x,t)[1 - g(x - st - Y(t))] + u_r(x,t)g(x - st - Y(t)), \end{cases}$$

where X(t), Y(t) are two curves to be determined.

Errors of ansatz:

$$\begin{cases} \partial_t \tilde{v} - \partial_x \tilde{u} = -\partial_x F_1 - f_2, \\ \partial_t \tilde{u} + \partial_x p(\tilde{v}) - \partial_x \left( \frac{\mu(\tilde{v})}{\tilde{v}} \partial_x \tilde{u} \right) = -\partial_x F_3 - f_4, \end{cases}$$

• 
$$\int_{\mathbb{R}} f_2(x, t) dx \equiv 0 \Rightarrow \text{ODE of } X(t).$$
  
•  $\int_{\mathbb{R}} f_4(x, t) dx \equiv 0 \Rightarrow \text{ODE of } Y(t).$ 

Given initial data  $X(0) = X_0$  and  $Y(0) = Y_0$ , it holds that

 $\begin{aligned} X(t) &\to X_{\infty} = H_1(X_0), \\ Y(t) &\to Y_{\infty} = H_2(Y_0), \end{aligned}$  exponentially fast as  $t \to +\infty$ , (16)

where  $H'_1, H'_2 \sim 1$  if  $(\phi_{0i}, \psi_{0i})$  for i = l, r are small.

• Zero masses of perturbations require that

$$\int_{\mathbb{R}} (v_0(x) - \tilde{v}(x, 0)) \, dx = 0 \quad \text{and} \quad \int_{\mathbb{R}} (u_0(x) - \tilde{u}(x, 0)) \, dx = 0.$$
(17)

• Besides, note that

$$\left\| (\tilde{v}, \tilde{u})(\cdot, t) - \left( v^{S}(\cdot - st - X(t)), \ u^{S}(\cdot - st - Y(t)) \right) \right\|_{L^{\infty}(\mathbb{R})} \to 0.$$
  
Here the limit  $\left( v^{S}(\cdot - st - X_{\infty}), u^{S}(\cdot - st - Y_{\infty}) \right)$  is a solution if and only if

$$X_{\infty} = Y_{\infty}.$$
 (18)

**Contradiction**: Two free variables,  $X_0$  and  $Y_0$ , should satisfy three constrains.

### Zero-mass condition

For convenience, we pose an additional condition on initial data, which leads to the "zero-mass condition":

$$s \left\{ \int_{-\infty}^{0} \left( v_{0} - v^{S} - \phi_{0l} \right) (x) dx + \int_{0}^{+\infty} \left( v_{0} - v^{S} - \phi_{0r} \right) (x) dx - \frac{1}{\pi_{l}} \int_{0}^{\pi_{l}} \int_{0}^{x} \phi_{0l}(y) dy dx + \frac{1}{\pi_{r}} \int_{0}^{\pi_{r}} \int_{0}^{x} \phi_{0r}(y) dy dx \right\}$$

$$= -\int_{-\infty}^{0} \left( u_{0} - u^{S} - \psi_{0l} \right) (x) dx - \int_{0}^{+\infty} \left( u_{0} - u^{S} - \psi_{0r} \right) (x) dx + \frac{1}{\pi_{l}} \int_{0}^{\pi_{l}} \int_{0}^{x} \psi_{0l}(y) dy dx - \int_{0}^{+\infty} \frac{1}{\pi_{l}} \int_{0}^{\pi_{l}} \left[ p(v_{l}(x,t)) - p(\overline{v}_{l}) \right] dx dt - \frac{1}{\pi_{r}} \int_{0}^{\pi_{r}} \int_{0}^{x} \psi_{0r}(y) dy dx + \int_{0}^{+\infty} \frac{1}{\pi_{r}} \int_{0}^{\pi_{r}} \left[ p(v_{r}(x,t)) - p(\overline{v}_{r}) \right] dx dt + \sigma(\overline{v}_{l}) - \sigma(\overline{v}_{r}) - \frac{1}{\pi_{l}} \int_{0}^{\pi_{l}} \sigma(\overline{v}_{l} + \phi_{0l}(x)) dx + \frac{1}{\pi_{r}} \int_{0}^{\pi_{r}} \sigma(\overline{v}_{r} + \phi_{0r}(x)) dx.$$

### §3.2. The combination of two shocks

• Full Navier-Stokes equations read,

$$\begin{cases} \partial_t v - \partial_x u = 0, \\ \partial_t u + \partial_x p(v, \theta) = \mu \partial_x \left(\frac{\partial_x u}{v}\right), \\ \partial_t E + \partial_x \left(p(v, \theta)u\right) = \kappa \partial_x \left(\frac{\partial_x \theta}{v}\right) + \mu \partial_x \left(\frac{u \partial_x u}{v}\right), \end{cases}$$
(19)

where  $p = \frac{R\theta}{v}$ ,  $E = e + \frac{1}{2}u^2$  with  $e = \frac{R}{\gamma - 1}\theta + \text{const.}$ • Initial data  $(v, u, E)(x, 0) = (v_0, u_0, E_0)(x)$  satisfies

$$(v_0, u_0, E_0)(x) \to \begin{cases} (\overline{v}_l, \overline{u}_l, \overline{E}_l) + (\phi_{0l}, \psi_{0l}, w_{0l})(x) & \text{as } x \to -\infty, \\ (\overline{v}_r, \overline{u}_r, \overline{E}_r) + (\phi_{0r}, \psi_{0r}, w_{0r})(x) & \text{as } x \to +\infty, \end{cases}$$

where  $(\overline{v}_l, \overline{u}_l, \overline{E}_l)$  and  $(\overline{v}_r, \overline{u}_r, \overline{E}_r)$  generate a composite wave of 1-shock and 3-shock with the middle state  $(\overline{v}_m, \overline{u}_m, \overline{E}_m)$ . And  $(\phi_{0l,0r}, \psi_{0l,0r}, w_{0l,0r})$ is periodic with period  $p_{l,r} > 0$  and zero averages.

#### Remark 3.3 (Huang-Matsumura 2009)

Without the periodic perturbations, a composite wave of 1-viscous shock  $(v_1^S, u_1^S, E_1^S)(x - s_1 t)$  and 3-viscous shock  $(v_3^S, u_3^S, E_3^S)(x - s_3 t)$  with shifts,

$$\begin{aligned} & \left(v_1^S(x - s_1t - \delta_1) + v_3^S(x - s_3t - \delta_3) - \overline{v}_m, \\ & u_1^S(x - s_1t - \delta_1) + u_3^S(x - s_3t - \delta_3) - \overline{u}_m, \\ & E_1^S(x - s_1t - \delta_1) + E_3^S(x - s_3t - \delta_3) - \overline{E}_m \end{aligned} \right), \end{aligned}$$

governs the large time behavior of the solution in the  $L^{\infty}(\mathbb{R})$  space.

#### Back to our problem, we first let

$$g_1(x) = \frac{v_1^S(x) - \overline{v}_l}{\overline{v}_m - \overline{v}_l} = \frac{u_1^S(x) - \overline{u}_l}{\overline{u}_m - \overline{u}_l}, \qquad h_1(x) = \frac{E_1^S(x) - \overline{E}_l}{\overline{E}_m - \overline{E}_l},$$
  
$$g_3(x) = \frac{v_3^S(x) - \overline{v}_m}{\overline{v}_r - \overline{v}_m} = \frac{u_3^S(x) - \overline{u}_m}{\overline{u}_r - \overline{u}_m}, \qquad h_3(x) = \frac{E_3^S(x) - \overline{E}_m}{\overline{E}_r - \overline{E}_m},$$

### Construction of ansatz

For three curves X(t), Y(t) and Z(t), and a constant  $\sigma \in \mathbb{R}$ , let

$$\begin{aligned} v^{\sharp} &= v_l(x,t)[1 - g_1(x - s_1t - X(t))] + v_r(x,t)g_3(x - s_3t - X(t) - \sigma) - \overline{v}_m, \\ u^{\sharp} &= u_l(x,t)[1 - g_1(x - s_1t - Y(t))] + u_r(x,t)g_3(x - s_3t - Y(t) - \sigma) - \overline{u}_m, \\ E^{\sharp} &= E_l(x,t)[1 - h_1(x - s_1t - Z(t))] + E_r(x,t)h_3(x - s_3t - Z(t) - \sigma) - \overline{E}_m. \end{aligned}$$

- $\int_{\mathbb{R}}$  "Errors of  $(v^{\sharp}, u^{\sharp}, E^{\sharp})$ "  $dx \equiv 0 \Rightarrow$  ODEs of X, Y and Z, respectively.
- Given  $X(0) = X_0$ ,  $Y(0) = Y_0$  and  $Z(0) = Z_0$ , it holds that

$$X(t) \to X_{\infty} = H_1(X_0, \sigma),$$
  

$$Y(t) \to Y_{\infty} = H_2(Y_0, \sigma),$$
 exponentially fast as  $t \to +\infty$ , (20)  

$$Z(t) \to Z_{\infty} = H_3(Z_0, \sigma),$$

where  $\partial_{X_0}H_1$ ,  $\partial_{Y_0}H_2$ ,  $\partial_{Z_0}H_3 \sim 1$ , if both periodic perturbations and two shock strengths are small.

### Construction of ansatz

• Similar to the case for one single shock, it must hold

$$X_{\infty} = Y_{\infty} = Z_{\infty}$$
, denoted by  $\boldsymbol{\xi}$ .

• Besides, ansatz needs to carry a diffusion wave with a constant mass, which propagates along the 2-family of characteristics  $\overline{r}_2 = r_2(\overline{v}_m, \overline{u}_m, \overline{E}_m).$ 

**Ansatz** is constructed as

$$(\tilde{v}, \tilde{u}, \tilde{E}) = (v^{\sharp}, u^{\sharp}, E^{\sharp}) + \Theta(x, t)\overline{r}_{2},$$
  
where  $\partial_{t}\Theta = \frac{\kappa(\gamma-1)}{R\gamma\bar{v}_{m}}\partial_{x}^{2}\Theta$  and  $\int_{\mathbb{R}}\Theta(x, t)dx \equiv \eta$ .

From above, six free variables  $\sigma$ ,  $X_0$ ,  $Y_0$ ,  $Z_0$ ,  $\xi$  and  $\eta$  satisfy six constrains

$$\xi = H_1(X_0, \sigma) = H_2(Y_0, \sigma) = H_3(Z_0, \sigma)$$
(21)

and

$$\int_{\mathbb{R}} \left( v_0 - \tilde{v}(x,0), u_0 - \tilde{u}(x,0), E_0 - \tilde{E}(x,0) \right) dx = 0,$$
(22)

where (22) are zero-mass constrains.

- The Jacobian of (21), (22) is away from zero if both the periodic perturbations and two shock strengths are small.
- Constants  $\sigma, X_0, Y_0, Z_0, \xi$  and  $\eta$  can be uniquely determined, thus the ansatz is well defined.

# Main result for two shocks

### Theorem 3.4 (Y.-Yuan, preprint)

If both the periodic perturbations and two shock strengths are small, then there exist unique shifts  $\delta_1, \delta_3 \in \mathbb{R}$  s.t.,

$$\|(v, u, E) - (V_1 + V_3 - \overline{v}_m, U_1 + U_3 - \overline{u}_m, E_1 + E_3 - \overline{E}_m)\|_{L^{\infty}(\mathbb{R})} \to 0,$$
  
where  $V_i = v_i^S(x - s_i t - \delta_i), U_i = u_i^S(x - s_i t - \delta_i)$  and  $E_i = E_i^S(x - s_i t - \delta_i)$   
for  $i = 1, 3$ .

# Outline

# Introduction

- 2 1-d scalar convex conservation law
  - Inviscid case
  - Viscous Case

### Viscous shock for 1-d Navier-Stokes equations

- A single shock with zero mass condition
- The combination of two shocks

### 4 Planar rarefaction wave

# §4.1. Scalar equation

Multi-d viscous convex conservation law read,

$$\begin{cases} \partial_t u + \sum_{i=1}^n \partial_{x_i} f_i(u) = \Delta u, & x \in \mathbb{R}^n, t > 0, \\ u(x,0) = u_0(x) = \tilde{u}^R(x_1,0) + w_0(x), \end{cases}$$
(23)

where  $f_1'' > 0$  and

•  $\tilde{u}^R(x_1, t)$  is a smooth rarefaction wave solving

$$\begin{cases} \partial_t \tilde{u}^R + \partial_{x_1} f_1(\tilde{u}^R) = \partial_{x_1}^2 \tilde{u}^R, \\ \tilde{u}^R(x_1, 0) = \frac{\overline{u}_l + \overline{u}_r}{2} + \frac{\overline{u}_r - \overline{u}_l}{2} \tanh x_1, \end{cases} \quad \text{where} \quad \overline{u}_l < \overline{u}_r.$$

• The perturbation  $w_0(x)$  is periodic on  $\mathbb{T}^n = [0, 1]^n$  with zero average,

$$\int_{\mathbb{T}^n} w_0(x) dx = 0.$$

- $\therefore$  The solution to (23) is periodic w. r. t.  $x_2, \dots, x_n$ , but not to  $x_1$ .
- : We should consider the unbounded domain

$$\Omega = \mathbb{R} \times \mathbb{T}^{n-1}.$$
 (24)

### Ansatz

Let  $u_{l,r}(x,t)$  be the periodic solution with initial data  $\overline{u}_{l,r} + w_0(x)$ , and let

$$g(x_1,t) = \frac{\tilde{u}^R(x_1,t) - \overline{u}_l}{\overline{u}_r - \overline{u}_l}.$$
(25)

#### • Ansatz is constructed as,

 $\tilde{u}(x,t) = u_l(x,t)(1 - g(x_1,t)) + u_r(x,t)g(x_1,t),$ (26)

which is periodic w.r.t.  $x_2, \dots, x_n$ , but not to  $x_1$ .

• Perturbation  $\phi = u - \tilde{u}$  satisfies

$$\begin{cases} \partial_t \phi + \sum_{i=1}^n \partial_{x_i} \left[ f_i(\tilde{u} + \phi) - f_i(\tilde{u}) \right] = \triangle \phi - h, \\ \phi(x, 0) = 0, \end{cases}$$
(27)

Lemma 4.1

$$\|h\|_{L^{p}(\mathbb{R}\times\mathbb{T}^{n-1})} \lesssim \|w_{0}\|_{H^{[\frac{n}{2}]+2}(\mathbb{T}^{n})} e^{-\alpha t}.$$
(28)

- $\therefore$  The n-d G-N inequality does not hold on the domain  $\mathbb{R} \times \mathbb{T}^{n-1}$  in general.
- $\therefore$  Gagliardo-Nirenberg type inequality on  $\Omega = \mathbb{R} \times \mathbb{T}^{n-1}$ :

Theorem 4.2 (Huang-Y., to appear in MAA)

There exists a decomposition  $u(x) = \sum_{k=0}^{n-1} u^{(k)}(x)$  s.t. each  $u^{(k)}$  satisfies the k + 1-d G-N inequality,

$$\left\|\nabla^{j} u^{(k)}\right\|_{L^{p}(\Omega)} \leq C \left\|\nabla^{m} u\right\|_{L^{r}(\Omega)}^{\theta_{k}} \left\|u\right\|_{L^{q}(\Omega)}^{1-\theta_{k}}, \quad 0 \leq j < m, 1 \leq p \leq +\infty,$$

where  $\frac{1}{p} = \frac{j}{k+1} + \left(\frac{1}{r} - \frac{m}{k+1}\right)\theta_k + \frac{1}{q}\left(1 - \theta_k\right)$  and  $\frac{j}{m} \le \theta_k \le 1$  hold. Hence,

$$\left\|\nabla^{j}u\right\|_{L^{p}(\Omega)} \leq C \sum_{k=0}^{n-1} \left\|\nabla^{m}u\right\|_{L^{r}(\Omega)}^{\theta_{k}} \left\|u\right\|_{L^{q}(\Omega)}^{1-\theta_{k}}.$$

# Main result for scalar equation

### Following [Kawashima-Nihibata-Nishikawa 2004], $L^p$ method yields that

Theorem 4.3 (Huang-Y.)

If the initial periodic perturbation  $w_0 \in H^{[\frac{n}{2}]+2}(\mathbb{T}^n)$  has zero average, then

$$\sup_{x\in\mathbb{R}^n} \left| u(x,t) - \tilde{u}^R(x_1,t) \right| \lesssim t^{-\frac{1}{2}}.$$
(29)

# Navier-Stokes equations in 3 dimensions

• Isentropic 3-d N-S equations read,

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0, & x \in \mathbb{R}^3, t > 0, \\ \partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\rho) = \mu \triangle \mathbf{u} + (\mu + \lambda) \nabla \operatorname{div} \mathbf{u}, \end{cases}$$

where  $\rho$ -density,  $\mathbf{u}$ - velocity,  $p(\rho) = \rho^{\gamma}$  with  $\gamma \ge 1$ , and  $\mu > 0, \lambda + \frac{2}{3}\mu \ge 0$ .

Initial data

$$(\rho, \rho \mathbf{u})(x, 0) = (\rho^R, \rho^R u_1^R, 0, 0)(x_1, 0) + (v_0, \mathbf{w}_0)(x), \quad x \in \mathbb{R}^3.$$

where

- ►  $(\rho^R, u_1^R)(x_1, t)$  smooth rarefaction wave connects  $(\overline{\rho}^-, \overline{u}_1^-)$  and  $(\overline{\rho}^+, \overline{u}_1^+)$ , and solves 1-d isentropic Euler equations.
- v<sub>0</sub>(x), w<sub>0</sub>(x) = (w<sub>0,1</sub>, w<sub>0,2</sub>, w<sub>0,3</sub>)(x) are periodic on T<sup>3</sup> = [0, 1]<sup>n</sup> with zero averages.

### Ansatz and main result

Let  $(\rho^{\pm}, \mathbf{u}^{\pm})(x, t)$  be the periodic solution with initial data

$$(\rho^{\pm}, \rho^{\pm}\mathbf{u}^{\pm})(x, 0) = (\overline{\rho}^{\pm}, \overline{\rho}^{\pm}\overline{\mathbf{u}}^{\pm}) + (v_0, \mathbf{w}_0)(x).$$

And set

$$g(x_1,t) = \frac{\rho^R(x_1,t) - \overline{\rho}^-}{\overline{\rho}^+ - \overline{\rho}^-}, \quad h(x_1,t) = \frac{u_1^R(x_1,t) - \overline{u}_1^-}{\overline{u}_1^+ - \overline{u}_1^-}.$$
 (30)

Ansatz is constructed as

$$\begin{cases} \tilde{\rho}(x,t) = \rho^{-}(x,t)(1-g(x_{1},t)) + \rho^{+}(x,t) g(x_{1},t), \\ \tilde{\mathbf{u}}(x,t) = \mathbf{u}^{-}(x,t)(1-h(x_{1},t)) + \mathbf{u}^{+}(x,t) h(x_{1},t). \end{cases}$$
(31)

#### Theorem 4.4 (Huang-Xu-Y., preprint)

Assume that both the amplitude of rarefaction wave,  $|\overline{\rho}^+ - \overline{\rho}^-| \ll 1$ , and the periodic perturbations,  $\|v_0, w_0\|_{H^5(\mathbb{T}^3)} \ll 1$ , then

$$\sup_{x\in\mathbb{R}^3} \left| (\rho, \boldsymbol{u})(x, t) - (\rho^R, u_1^R, 0, 0)(x_1, t) \right| \to 0 \quad \text{as } t \to +\infty.$$

# Thank You!