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Cauchy problem for a 1-d viscous conservation law
O+ Ovf (u) = EOX(B(u)(?xu), xeR,t>0, (D
u(x,0) = up(x), xeR )

o ucRY
o f=1(fi, - ,fn) : R = R" smooth, Df (u) has n distinct eigenvalues,
@ B(u) > 0 : smooth matrix,

@ ¢ > 0 : viscosity.

Our concern:

up(x) = Riemann solution + Periodic perturbation.

i.e.  up(x) oscillates around different constants at initifinty x = +oc.
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Riemann solution

Self-similar solution u = U(7) to hyperbolic system (¢ = 0) :

O + Oxf (u) = 0.

Riemann initial data:

uj, x <0,
ug(x) = {

Uy, x> 0.

Riemann 1860, P. D. Lax 1957

@ Basic waves: Shock, Rarefaction Wave & Contact Discontinuity.

@ Riemann solution is the superposition of these basic waves.

Breakthrough: J. Glimm 1965
@ General N x N system, BV(R) solution.
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For inviscid conservation laws, Riemann solutions govern both large time
behavior if initial data tends to constant states at infinity,

uj as x — —oo,

Uy as x — +00;

uo(x) — {

and local structure (Building block, Riemann solver).

o E.Hopf 1950, Ilin-Oleinik 1960, T.P. Liu 1977/1978, - - -

o J. Glimm 1965, A. Bressan 1992, Bressan-LeFloch 1999, - - -
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For viscous conservation laws, the viscous version of Riemann solutions
characterize the large time behavior.

e.g. A viscous shock ¢°(x — s7) is a traveling wave solution to viscous
conservation law,

(—s¢° +£(6%)) (x) = e(B(¢°)(6°)") (%)

. c o . € e
xl}I—nood) (x) = xlgglooqs (x) = U

where u; > u, and s is the shock speed.
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o Stability of viscous shock
» Ilin-Oleinik 1960, Freistuhler - Serre 1998 (scalar, L> and L")

vV VY VY VY VY

Matsumura-Nishihara 1985; J. Goodman 1986 (zero mass),
T.P. Liu, M.AMS 1986, CPAM 1988, CPAM 1997
Xin-Sezepessy, ARMA 1993

Liu-Zeng, CMP 2010, M. AMS 2013

S.H.Yu, J.AMS 2011 (Boltzmann)

Zumbrun et al, - - -

@ Stability of rarefaction wave

>

>

Matsumura-Nishihara 1986; Liu-Xin 1988 (NS)
Matsumura-Nishihara 1992; Nishihara-Yang-Zhao 2004 (large
perturbation)

@ Stability of viscous contact discontinuity

v

v vy VvYyy

Xin 1994,

Liu-Xin 1997,

Huang-Matsumura-Shi 2004, free boundary problem (NS)
Huang-Matsumura-Xin 2005 (NS, zero mass)
Huang-Xin-Yang 2008
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Periodic solution to hyperbolic equations

Global existence with decay rate r~! :
o P. Lax 1957 (scalar): Lax-formula.
o Glimm - Lax 1970 (2 x 2): Glimm scheme, generalized characteristics
(characteristics or shocks).

@ C. Dafermos 1995 (2 x 2): generalized characteristics (Filippov’s sense;
divides).

Global existence is still open:

@ Non-isentropic Euler (3 x 3)
» Majda-Rosales 1984: resonance phenomenon (sound waves reflect
resonantly off entropy wave)
» Temple-Young 1996; Qu-Xin 2015: almost global existence

> ...
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Uniform decay for scalar equation

O + Of (uf) = ed*u®, xeR,1>0, )
u®(x,0) = up(x),

where up € L>°(R) is periodic with period p > 0 and average u.

Theorem 1.1 (Z. Xin - Lecture notes)
3C > 0 independent of either p or € > 0, s.t. for e > 0,
<

e C,1) = Bl ooy < TVjo,p) (w5 () < ==, 1> 0.

Remark 1.2

Ife >0,
4 (-, 1) = @l| oo (m) Se €™, t>0.
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Our concern

7 Asymptotic behavior of solution when initial data tends to different
periodic functions at infinity:

Lt()(

) u; + periodic function asx — —oo,
X) —
u, + periodic function as x — +o0.

i.e. Do the periodic oscillations at infinity influence stability of shock and
rarefaction wave?

Difficulties:
@ Perturbation is not integrable on R.

@ Problem cannot be studied on a bounded period, and the perturbation is
not periodic any more for ¢t > 0.
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© 1-d scalar convex conservation law
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@ Viscous Case
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§2.1. Inviscid scalar equation

Ou+0f(u) =0, xeRt>0

u ) < _N7
lx.0) = wo() = 110
ur +wor(x), x>N,

where u;, u, and N > 0 are constants, and wy;(x) € L, i = [, r are periodic
with period p; > 0, satisfying

1 "Di

— woi(x)dx =0 (w.l.o.g.).

Pi Jo
Remark 2.1 (T.P. Liu 1978)

If wo; = wor = 0, then u — u®(x — xo,t) (resp. uR(x, t) or ;) in L (R) if
u; > u, (resp. u; < u, or u; = u,) as t — +oo. Here x is given by

fR(uo — uS(x, O))dx'

X0 = — —
up — uy
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Theorem 2.2 (Xin-Y.-Yuan SIAM; Y.-Yuan JDE)

o Ifu; > u,, then 3X(t) € Lip|0, +00), which is unique after a finite time,
S.1.
1X(1) — st — Xoo| S 171,
sup |u(x,1) — |+ sup |u(x,t) —a@,| Sl
x<X(1) x>X(1)
with Xoo = —— (Xoo,l + Xoo,z) given by

u—uy

0 400
Xoo1 = / (Lt() —u— W()l)dx aF / (Lt() — Uy — W()r)dx,
0

—00

X X
Xoop = — min/ wor(y)dy + min/ wor(y)dy.
x€R 0 xeR 0

Remark 2.3 (Comparison with integrable perturbations)

New shift X » is generated due to the periodic oscillations at infinity, which
vanishes as periods tend to zero.
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Theorem 2.4 (Xin-Y.-Yuan SIAM; Y.-Yuan JDE)
e Ifu; < uy, then
_1
[oe, 1) = (-, )| oo gy S 172
In particular, without localized perturbations, i.e.
uo(x) = uf(x,0) + wo(x)
with wy € L being periodic with zero average, it holds that
=

[Ju(-,7) - MR("t)HLOO(]R) St

o Ifu; = u,, then
_ _1
(- 2) = Tl ooy S 172

15/55



Sketch of proof (Generalized characteristics)

Definition 2.5 (C. Dafermos 1989)

A generalized characteristic of an entropy solution u(x, 7) on the time interval
[0, 7] C [0, 4+00) is a Lipschitz function £ : [o, 7] — R, satisfying the
differential inclusion

(1) € [f(uE@®)+,1), fuEn—1n)] ae o]

Remark 2.6

A generalized characteristic composes of either classical characteristics or
shocks (same with Glimm-Lax 1970).

16/55




Lemma 2.7 (Divides, C. Dafermos 1995)

Let u(x,t) be the periodic entropy solution satisfying a periodic initial data
uo(x) with period p and average .
Then 3z € [0,p) s.t.

u(z+f (e t)=u vVt >0, (6)
if and only if

%

A (o (y) — uldy = min ' /0 x[uo(y) — uldy

o /x[uo(y) —ddy>0 Vxe R.)

/N
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Lemma 2.8 (Comparison principle, Dafermos’ book)

Let u and u be two entropy solutions. Assume that
u(x,0) < u(x,0) fora.e. xe(y,y).

Let (1) and 1) (t) be the generalized characteristic curves of u and i issuing
from (y,0) and (3,0), respectively. Then for any t > 0, if {)(t) < 1(t), then

u(x,t) < it(x,1) fora.e.x € (Y1), V().

(2

(»,0)  (5,0)
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Proposition 2.9

There exist two Lipschitz continuous curves X7 and X7, s.t.

u(x, 1), x<Xj(1),

ux,1) = ur(x, 1), x> Xj5(t).

)

Moreover, if u; > u,, then X and X5 coincide after a finite time.

Here u; »(x, 1) is the periodic solution with u; »(x,0) = @, + wor0r(X).
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Proof of Shock

r¥) N N TX(0) z

° Ff and I'X : divides of u; and u,, respectively.

e Integrating O;u + Oyf (1) = 0 over trapezium

= |X(f) —st —Xoo| ST, 1 >T.
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Proof of Rarefaction wave and Constant

Set

P(t) == li i — 1) dy <0
(¢) = lim min /F ‘o (u(y, 1) — ) dy <0,

k—+o0 xeR

Iy (1)
Q(t) ;== lim max/ (u(y, 1) —u,)dy > 0.

With the aid of divides, we can prove that

Proposition 2.10 (Two time-invariants)

Ifu; < Uy, then 3 xp,xg € [['K(0),T5(0)] s.2. P(t) = P(0) and O(1)

®)

= 0(0). J

= X)) >f(@)t—Cr and Xi(t) <f(@)t+Crr, 1t>0.

Then similar to [T. P. Liu, 1978], one can finish the proof.
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§2.2. Viscous scalar equation

O + Of (uf) = ed*u®, xeR,t>0
u®(x,0) = up(x) € L°(R),
u + woi(x) asx — —oo,

where uo(x) — exponentially fast,
iy + wo(x) asx — 400,

where u;, u, are constants, and for i = [, r, wy; € L™ is periodic with period
pi > 0and zero average.

Remark 2.11 (Ilin—Oleinik 1960)

If wo; = wor = 0, then u® — ¢ (x — st — xo) (or uf(x, 1)) if
u; > U, (oru <uy)in L°(R) as t — +oo. Here x is determined by the

initial excessive mass f ( ) (0)d
uo —_— .x .x
%o — IR ) )

u; — Uy
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Theorem 2.12 (Xin-Y. -Yuan, preprint in Indiana. Univ. Math. J.)

o Ifu; < u,, then t_l)iinoo Hug(-,t) — MR('yt)”Loo(]R) =0.

o Ifu; > u,, then da. > 0, s.t.

(1) = ¢°(- = st = X5, Do) Se €™, £>0,  (10)

Uuj—uy 00,1

where the shift X5 = = < S+ X§O72> is given by

0 400
ol = / (up — ¢° — wor) dx + / (up — ¢° — woy) dx,
0

—00

- -+ ( to continue)
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Theorem (Continuing)

- (continuing)

Son = / ol / ’ — f(@)] dxd

+°° 1
/0 Uy (x, 1)) — f(4,)] dxdt

pl Pr
- — / woi(y)dydx —|— / wor(y)dydx,

where uj (x,1) : periodic solution with u . (x,0) = U, + woy,0r(x).

Remark 2.13

1) Compared to localized perturbations: XZ_ , is new, due to the periodic
oscillations at infinity.

2) Compared to inviscid case: XZ_ , depends more on the flux and viscosity
(and time maybe), which also vanishes as periods tend to zero.
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X5 #0Vvs. Xogr =0
When oscillations at x = 400 coincide, i.e. wo; = wy,,

@ Recall that for inviscid case € = 0, X5 2 = 0.
eg. up(x) =uS(x) +wo(x) = ulx,t) = uS(x — st).

@ However, for viscous case ¢ > 0, X , = 0 in general.
e.g. up(x) = ¢°(x) +wolx) = wu(xt) = ¢ (x —st — X _,).

Theorem 2.14 (Xin-Y.-Yuan)
Assume that wo; = wg, := wyg. Then
1) if f(u) = u*/2, then Xeo2 =0;
2) V periodic perturbation wy € L>(R) with zero average, if
0 < ||wol|ze < (# — u,)/2, then 3 a smooth and strictly convex flux

f(u),s.t. X5, #0.

Proof. 1) By Hopf’s formula.
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2) Note that sup u; (x, 1) < infuf(x,t) Vi >0.
X X

u,(z,t) w(w,t)

Figure: Construction of flux f

el 1[0
2 —/ / us — ;) dxdt — / / (us — @,) dxdt
nJo PJo

#£0, if n is large enough?
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© Method 1: Energy estimates = X2, > 0if n > 0 is large enough.
@ Method 2: For f(u) = —u , Hopf-Cole transformation yields that

Lemma 2.15 (Xin-Y.-Yuan)

Let u® be the periodic solution with periodic initial data uy(x), which has
period p > 0 and average u, then

/O+Ooll7/()p(f(u5)— ) dxdt = / / uo(y) — @)dydx
+ enlog (; /Opexp{—gn/o (o (y )—u)dy}dx).

Then L’Hopital rule = RHS of (11) tends to zero as n — +o0.

(11)
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Vanishing viscosity of X,

Theorem 2.16 (Xin-Y.-Yuan)
Ase — 0+,

X X
X, — Xoop = —mi d i dy.
2= Xeo = —min [ wab)dy-+ min [ wo o)y

Additionally, if both TV, (wor) and TV|q p,.1 (wor) are finite, then

1X55 — Xoop| S &5

Proof. Ingredients of proof:
e uniform decay rate t~! of periodic, solutions
@ divides of inviscid periodic solutions,
@ Kruzhkov’s theory.
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Proof of viscous shock

For brevity, we omit € > 0 in the proof.

Ingredients of proof:
@ Construction of an ansatz to make anti-derivative method available

@ Comparison principle
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Construction of ansatz

For the viscous shock ¢(x — st), inspired by

o) = 00) + (1 — g(a)), where g(x) £ AIEr,

the ansatz is constructed as

el 1) £ w(x, 1) g(x — (1)) + up(x, 1) [1 — g(x — ()],

where £(t) is a C! curve to be determined.
Remark 2.17

llebe(-, 1) — (- — f(ﬁ)”po(]g) Se ™,
) — (e )] 5 €0
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@ Error of ¢ :
he £ Bpe + Ouf (vhe) — e
= 0r|(f () = f ) ge + (F(¥) — f(ur)) (1 — ge) — 2w — ur) gk
+ (F(wr) = fur)) 8¢ — (wr — ur) 8¢ §(8) + (wr — uy) g,
where red terms vanish as |x| — oo, blue terms are integrable on R.

@ Choose { = X (1), s.t

{dt S (e = x(y) (x, t)dx = — [ hx(x, 1)dx = 0, 12

Jr(# = ¥x(0)) (x,0)dx = 0,

= Jp(u —Pxp)(x,0)dx = 0,

= anti-derivative method works.
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Determine shift curve X(¢)

Jz (blue terms above) dx = 0

fR[(uz—ur)gééJr(f(uz —f(ur)) 8] dx

= X(1)=
f]R u;— uy) gX dx

, t>0,

The initial data X(0) = X is the unique point satisfying

/ (0 — tbx,) (x, 0)dlx
R

_ /R o — (71 + wor)gxy — (& + wor) (1 — gx,)] d = 0

X(t) € C'(0, +00) exists and is unique (Cauchy-Lipschitz theorem)

o |X'(t) —s|Se ™ t>0.

(13)
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Anti-derivative variables

vt 2 [ w—v)ondy H0 2= [ oy

—0o0 —00

satisfy
U — U + a(u,vx)oU = H(x,1), x€R,t>0,

where a(v, w) fo flw+6(v—w))do.

Lemma 2.18
o |H(x,1)| S e e =X vxcR,;
@ J0o > 0,T; > 0,and Ny > 0, s.t. forall t > Ty,

a(u,x) — X' (1) > & Vx < X(t) — Ny,
a(u,vx) — X'(t) < =6 Vx> X(t) + Ny.
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Comparison principle with auxiliary functions in exponential forms
(similar to [A. M. Ilin - O. A. Oleinik 1960])

= UG )llzeom) e e,

= u(x, 1) — x(x, 1) o) Se e,

= Jlu(x,1) — p(x — st — Xoo) oo m) Se e,

where X = tlig_n X(t) — st.
— 400

The proof of rarefaction waves can follow from the theorem of shock profile
and comparison principle, similar to [Ilin - Oleinik 1960].
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Outline

© Viscous shock for 1-d Navier-Stokes equations
@ A single shock with zero mass condition
@ The combination of two shocks
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§3.1. A single shock with zero mass condition

@ Isentropic Navier-Stokes equations read,

O — Ou = 0,
O+ Oxp(v) = 8x<@8xu

v

) xeR,t>0, (14)

where p(v) > 0, u(v) > 0 are smooth, and p’(v) < 0,p”(v) > 0.

o Initial data (v, u)(x,0) = (vo, up)(x) satisfies

Vi, 1) + (o1, o) (x) as x — —o0,

(vraﬁr) + (@0r7 1/)01‘)()6) as x — 409, (1

(vo, o) (x) — {

where

» (v, ) and (V,, 1) generate a single 1-shock (or 2-shock),
> (¢oi, 1o;) for i = L, r, are periodic functions with period 7; > 0 and zero
averages.
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With a suitable ansatz (v, 1), we can prove that

Theorem 3.1 (Huang-Y., preprint)
Assume that Z 1(0i, Yoi) | s o,y << 1,

i=Lr

17 o) = 90w, 00, J* (arox) = O))dme(R) << 1 and the

zero-mass condition holds, then

| (v, u)(-, 1) — (S, u5)(- — st _XOO)HLoo(R) —0 ast— +oo.

Remark 3.2 (Matsumura-Nishihara, Goodman, Liu, Xin, - - -)
Without the periodic perturbations, a viscous shock profile with a shift,

(5, uS)(x —st—9),

govern the large time behavior of the solution in the L>°(R) space. Note that
here § = 0 under zero-mass condition.
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Ansatz and Zero-mass condition

Notations. Let (v;,,u;,)(x,t) be the periodic solution with initial data
(Vi tpr) + (Gor,0rs Yoror) (x), and let

Ansatz is constructed as

{

where X (1), Y(¢) are two curves to be determined.

(x, 1) = vi(x,0)[1 — g(x — st = X(1))] + vr(x,1)g(x — st — X (1)),
(x, 1) = u(x,0)[1 — g(x — st = Y(2))] + ur(x,0)g(x — st — Y (1)),

S <R
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Errors of ansatz:

aﬁ/ — 8)517! = _8xFl _f27
Oiii + D () — 8)‘(“9) 8sz> — O F; — fi,

o [pf2(x,1)dx =0 = ODE of X(r).
o [pfa(x,1)dx =0 = ODE of Y ().
Given initial data X(0) = X and Y(0) = Yy, it holds that

X(l‘) — XOO = Hl(Xo),

exponentially fast as t — 400,
Y(t) — Yo = Hz(Y()),

where H}, H) ~ 1 if (¢, 10;) for i = [, r are small.

(16)
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@ Zero masses of perturbations require that

/omn—wxmyu_o and /@M@—a@ﬁ»w_o.an
R R
@ Besides, note that

H@m@g—@%—g—x@xﬁp—g—nm)

[,

Here the limit (v¥(- — st — Xoo), u’(- — st — Y&o)) is a solution if and
only if
Xoo = Yoo (18)

Contradiction: Two free variables, X, and Y, should satisfy three constrains.
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Zero-mass condition

For convenience, we pose an additional condition on initial data, which leads
to the “zero-mass condition’:

—+00

s{/o (vo—vs—qﬁol)()dx—i-/ (vo —v® — ¢o,) (x)dx

/0 / doi(y)dydx + / / o (y)dyes)

:—/_Oo(uo—u —¢oz)()dx—/ (10 — ™ = Vo) (x)dx

LT [Fowtiaac— [ L [ o) pim s
_1 / / Vor(y)dvdx + /m / P (x, ) — p(v,)] dxde

+o(v)) —o(v,) — 711/0 o(Vi + ¢or(x))dx + / o(Vy + ¢or(x))dx
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§3.2. The combination of two shocks

o Full Navier-Stokes equations read,

Oy — Oyt =
8,14 + axp(v 9 ( ), (19)
OE + Ok (p(v —/4;8 (8—) + poy (”8‘“),

where p = R—ve, E=e+ %uz with e = %0 + const.
o Initial data (v, u, E)(x,0) = (vo, uo, Ep)(x) satisfies

(vo. o, Eo)(x) — (i, 1y, Er) + (¢or, thor, wor) (x)  asx — —oo0,
T (Vs Uy Er) 4 (dor, Yors wor) (x)  as x = +o0,

where (v}, %, E;) and (v,, %,, E,) generate a composne wave of 1-shock
and 3-shock with the middle state (V,,, @, Eyn). And (¢o1.0r, Yo1,0r Wor,0r)
is periodic with period p; , > 0 and zero averages.
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Remark 3.3 (Huang-Matsumura 2009)

Without the periodic perturbations, a composite wave of 1-viscous shock
(v, u3, ES)(x — s1¢) and 3-viscous shock (v3, u3, E5)(x — s3t) with shifts,

(vf(x— sit—01) + vg(x— s3t — 03) — Vp,
uf(x —sit—91) + ug(x — 53¢ — 03) — Up,

E.]S‘(x — st — (51) + Eg(x — §s3f — (53) = Em),

governs the large time behavior of the solution in the L>°(IR) space.

Back to our problem, we first let

)= i) = ui(x) — 7 i (x) = E}(x) — Ei
Vim — Vi Uy — U] E,—E ’

g3(x) = véi(x) O ugi(x) “n ) = M,
Vr — Vi U, — Uy, E,—E,

g1(x
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Construction of ansatz
For three curves X(z), Y(¢) and Z(t), and a constant o € R, let
Vi = vi(x, 0)[1 — g1 (x — 512 — X(2))] + vi(x, 1) g3(x — 53t — X(t) — 0) — Vp,
— U,

= w(x,0)[1 — gy (x — st — Y(0))] + uy(x,1)g3(x — 53t — Y(1) — 0)
E* = Ej(x,0)[1 — hy(x — 511 — Z(1))] + Ex(x, )h3(x — s3t — Z(t) — 0) — Ep.

o [, “Errors of (v¥,u*, E*)” dx = 0 = ODEs of X, Y and Z, respectively.
e Given X(0) = X, Y(0) = Yy and Z(0) = Zy, it holds that

X(t) — XOO = HI(X07 U)?
Y(t) = Yoo = Hy(Yp,0), exponentially fast as t — +o0o,  (20)
Z(t) — Zoo — H3(ZO7 0-)7

where Oy, H1, Oy,H>, 07,H3 ~ 1, if both periodic perturbations and two

shock strengths are small.
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Construction of ansatz

o Similar to the case for one single shock, it must hold
Xoo = Yoo =Z, denotedby €.

@ Besides, ansatz needs to carry a diffusion wave with a constant mass,
which propagates along the 2-family of characteristics

= rZ(vaﬁmafm)-
Ansatz is constructed as
(\7, it,E) = (vﬁ,uﬁ,Eﬁ) + O(x, 1)1,

where 9,0 = I(WV )62@ and [ O(x, t)dx = 1.
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From above, six free variables o, Xy, Yy, Zy, £ and n satisfy six constrains
¢ = H(Xo,0) = Hy(Yo,0) = H3(Zy, 0) (21

and
/ (vo — ¥(x,0), up — ii(x,0), Ey — E(x,0))dx = 0, (22)
R

where (22) are zero-mass constrains.

@ The Jacobian of (21), (22) is away from zero if both the periodic
perturbations and two shock strengths are small.

e Constants o, Xg, Yo, Zo, £ and 1 can be uniquely determined, thus the
ansatz is well defined.
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Main result for two shocks

Theorem 3.4 (Y.-Yuan, preprint)

If both the periodic perturbations and two shock strengths are small, then
there exist unique shifts 1,63 € R s.t.,

|(v,u,E) = (Vi + V3 =V, Ut + Us — i, E1 + E3 — Ep)| oo ) = O,

where V; = v§(x — sit — 8;), Ui = uj (x — s;t — &;) and E; = E5(x — sit — §;)
fori=1,3.
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Outline

@ Planar rarefaction wave
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§4.1. Scalar equation
Multi-d viscous convex conservation law read,

O+ 0y, fi(u) = Au,
=3

1

u(x,0) = ug(x) = ik (x1,0) + wo(x),

where f{" > 0 and
e i (x1, ) is a smooth rarefaction wave solving

iR + Oy, fi1(aR) = OF i,
iR (x1,0) = 2 4 B0 tanh xy,

xeR"t>0, (23)

where u; < u,.

@ The perturbation wy(x) is periodic on T" = [0, 1]" with zero average,

/ wo(x)dx = 0.
*.* The solution to (23) is periodic w. 1. t. X2, - - - , X,, but not to xj.

.". We should consider the unbounded domain
Q=RxT" L (24)
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Ansatz
Let u; »(x, 1) be the periodic solution with initial data u; , + wo(x), and let

~R l’ —
g, 1) = LD — 8 (25)
U, — Uy
@ Ansatz is constructed as,
i(x,t) = u(x, 1) (1 — g(xy, 1)) + up(x,1)g(x1, 1), (26)
which is periodic w.r.t. xp, - - - , x;, but not to x;.
@ Perturbation ¢ = u — u satisfies
n
O+ Y Ox[fila+ ¢) — fi(@)] = Lo — b,
i=1 27
#(x,0) =0,
Lemma 4.1
id L’(RxT*1) S “WOHH[%]H(T") e o (28)
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- The n-d G-N inequality does not hold on the domain R x T"~! in
general.

*. Gagliardo-Nirenberg type inequality on Q = R x T"~ !

Theorem 4.2 (Huang-Y., to appear in MAA)

n—1

There exists a decomposition u(x) = 5. u® (x) s.t. each u™ satisfies the
k=0

k 4+ 1-d G-N inequality,

vau“)HU( < CIV"ulh oy Nl s 0 <j < m,1 < p < oo,

where - k+1 + ( k+1> Ok + = (1 —6k) and% < 0y < 1 hold. Hence,

[V7ul| g <cZvauu ) el ey
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Main result for scalar equation

Following [Kawashima-Nihibata-Nishikawa 2004], L method yields that

Theorem 4.3 (Huang-Y.)

If the initial periodic perturbation wo € H [%Hz(']I‘") has zero average, then

sup ‘u(x, 1) — iR (xy, t)| < 1. (29)
xeRn
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Navier-Stokes equations in 3 dimensions

@ Isentropic 3-d N-S equations read,

Oip + div(pu) = 0, xeR3 >0,
O(pu) + div(pu @ u) + Vp(p) = pASu + (1 + \)Vdiva,

where p— density, u— velocity, p(p) = p? withy > 1, and
> 0,A+ 31> 0.

@ Initial data
(107 pll) (x7 0) = (pRv pRullez 07 O) (xl ) O) + (W]: W())(X), X € R3-

where
R R _ . o
» (p®,uf)(x1,7)— smooth rarefaction wave connects (p~, u; ) and
(p*, @), and solves 1-d isentropic Euler equations.

> vo(x), wo(x) = (wo.1, Wo.2, wo.3)(x) are periodic on T? = [0, 1]" with zero
averages.
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Ansatz and main result
Let (pT, u?)(x, 7) be the periodic solution with initial data

(piv piui)(x7 0) = (pi7piﬁi) + (VO, WO)(X)'

And set
R — R —
PN (x1, 1) —p up(x1,t) —
glx,t) = —"———, hx,t)= —F—"—— (30)
(o) = EET e b = SR
Ansatz is constructed as
plxt) = p~ (x,0)(1 — g(x1, 1)) + p* (x, 1) g(x1, 1), a1
ﬁ(x7 t) =u (X, t)(l - h(xb t)) + u+(x, t) h(xlv t)'

Theorem 4.4 (Huang-Xu-Y., preprint)

Assume that both the amplitude of rarefaction wave, |p* — p~| << 1, and the
periodic perturbations, |[vo, wol| s 3y << 1, then

sup ’(p,u)(x, 1) — (p®,uf,0,0) (xl,t)’ —0 ast— +oo.
xER3
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Thank You!
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