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Introduction and main difficulties

Nodal sets for solutions of second order elliptic equations

@ Nodal set of a function u(x) is N(u) = {x|u(x) = 0}.

@ Yau’s conjecture: If Au+ Au = 0 on an n dimensional C*
compact manifold M without boundary, then

cVa<H™(N(u)) < CVa
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Introduction and main difficulties

@ J. Briining and S. T. Yau: two dimensional analytic case,
independently.

@ H. Donnelly and C. Fefferman: upper bound for the compact
higher dimensional analytic manifold without boundary (1988,
Invent. Math.).

@ F. H. Lin: upper bound for the compact analytic manifold
without boundary (1991, Comm. Pure Appl. Math.).
@ R. Hardt and L. Simon: upper bound for the n dimensional

compact C* manifold without boundary is cACV1 (1989, J.
Diff. Geom.).
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Introduction and main difficulties

@ H. Donnelly and C. Fefferman: upper bound for 2 dimensional
C* compact manifold without boundary is CA%/# (1990, J.
Amer. Math. Soc.).

@ R. T. Dong: upper bound for 2 dimensional C* compact
manifold without boundary is CA%/4. By using a very different
method (1992, J. Diff. Geom.).

@ A. Logunov: upper bound for the 2 dimensional C* compact
manifold without boundary is CA%/4~¢ (2016, arXiv: 1605.
02595).

@ A. Logunov: upper bound for the n dimensional C* compact
manifold without boundary is CA# (2018 Annals of Math.,
2016, arXiv: 1605. 02587v1).
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Introduction and main difficulties

@ T. H. Colding and W. P. Minicozzi: lower bound for the C*
compact manifold without boundary is CA®-"/4 (2011,
Comm. Math. Phys.).

@ C. D. Sogge and S. Zelditch: lower bound for the C* compact
manifold without boundary is CA(7-3"/8 (2011, Math. Res.
Lett.).

@ A. Logunov: lower bound for Yau’s conjecture. (2018 Annals
of Math.).
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Introduction and main difficulties

Nodal sets for solutions of high order elliptic equations

@ |. Kukavica: upper bound for eigenfunctions of high order
linear analytic uniformly elliptic operator (1995, J. d’Analyse.
Math.).

@ L. Tian and X. P. Yang: upper bound for bi-harmonic and
polyharmonic functions (2014, J. Diff. Equ.; 2018, Chinese
Ann. Math.).

@ L. Tian and X. P. Yang: upper bound for eigenfunctions of
bi-harmonic operator on some connected bounded domain
Q € R" whose boundary is non-analytic (2017, arXiv: 1709.
00153).
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Introduction and main difficulties

Difficulties

@ If uis a solution of the second order uniformly elliptic equation
Lu = (aju;); = 0, then

dim({fu=0,|Vu| =0}) <n-2; singular.

@ If uis a solution of the fourth order uniformly elliptic equation
L2u =0, then

dim({fu=0,Vu=0})<n-1, not singular.
dim({u=0,Vu=0,v2u=0,v®u=0})<n-2, singular.
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Introduction and main difficulties

@ If u satisfies the equation Lu = 0, then

2NCONTCjy) 2

lullL2(B,(x0)) < Br/2(x0))>

where N(xo, r) is the frequency function of u centered at xq
with radius r;

@ If uis a solution of the fourth order uniformly elliptic equation
L2u =0, then it is hard to find a suitable quantity to describe
the above doubing condition.
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The equation in pure principal part

Let u satisfy the equation
L2u=0, (1)
where
Lw = (a;w;);

is a linear elliptic operator of second order in principal part. Also
assume that

NTIER < ajéiég < NEPR, Y E e R,
llajllce < K.

(@)
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The equation in pure principal part

Theorem (T - X. P. Yang)
Let u be a solution of (1) in B1(0) and satisfy (2). Assume that

ulli2(8,(x)) < 2MUlli2(8,(x))- 3)
for any B;(xo) € B1(0). If N > O large enough, then

H™" {x € By2(0) : u(x) =0} < (CN)°N, (4)

where C is a positive constant depending on n, A and K.
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The equation in pure principal part

Nodal sets comparison lemmas

Lemma (R. Hardt, L. Simon, 1989)

There exists a positive constant ng < 1/2 such that for any

ne (0, 7]0) and wy, Wo € C1’1/2(Bg(0)), if||W1||C1,1/2, [lwallg1az <1
and |\wy — wallc1 < 7°/8, then

H"™" (Bay(0) N {wy = 0, [Yw1| = 7})
< (1 +cyp)H™" (B2(0) N {wa = 0, [Vwa| > 7/2}).

Here c is a positive constant depending only on n.
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The equation in pure principal part

Lemma

There exists a positive constant ng < 1/2 such that for any
n € (0,m0) and wy € C%'/2(B,(0)), if

lwillcaiz, |wellgaie <1,
llwy — wallge < 1°/8,

where w, is a polynomial of degree d, then

H"" (Bo—y(0) N {wy =0, [Vwy| < ki, [V2wy| 2 1) < Cd,

where 19, C and « are positive constants depending only on n.
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The equation in pure principal part

Sketch of the proof:

@ Step 1. LetS = {w1 =0, [Vwy| < «1°, |V2wy| > n}. Let v; be
the direct such that

|VVjv,V|/j(y)| = max |VWW/(Y)L j=1,2,
VE@B1

such that v1 - vo > 0. For x* € S, there are at most two nodal
surfaces of wy between the two hyperplanes {x, = x; % 7*} in

the ball B,3(x*). We use V. (y) to denote them.

@ Step 2. We also find that in B,s(x"), there exists a nodal
surface V,, ws.
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The equation in pure principal part

@ Step 3. Let C be the collection of orthonormal bases of R"
such that for any unit director v of R”, there exists an
orthonormal basis {r1,--- ,7p}, such that |y — 7;| < ¢ for some
j=1,---,n,where c is a positive constant depending only on
n to be chosen.

@ Step 4. Through some calculation, there exists
®, € C'(Tx N B,s(x)), such that

B,s(x) N graphr, ® C {V% Wy = 0} N Bys(x),

where 7, is a direct of one of the basis contained in C.
Moreover,

VOu(y) - VUE(Y)I < C, y € Bp(x), k=1,2.
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The equation in pure principal part

D
@ Step 5. Let S be the nodal set of wy. Let {¢j}j:1 be a partition
of unity for Sy N B>_,(0), such that

1

suppg; < B,Is(Xj), ¢j=c  on an/z(Xj), Vil < C/773,

where the balls {Bn3/2(Xj)} cover SN Bo_,,(0), and {Bn3/4(0)}
are pairwise-disjoint. Also define

Fi(v) = ¢i(y + V(i (x)) 1+ IVVE )R,

Gi(y) = ¢i(y + P (¥)v1(x)) 1 + V5 (¥)P,

forj=1,---,Dand k =1,2.

Long Tian Nodal Sets of Solutions to Some Fouth Order Elliptic Equations



The equation in pure principal part

@ Step 6. Then

2
H™(S N By, (0)) < f d
(SnBe n(o))<;‘; 085060 Ff(y)dy
D 2
< 22]; mB3 X] dij;; ]'l"x NB 3(X, j Gj)(y)dy
< C Z Z(}{n—1 (52 ﬂ{VTjWQ = 0})
{Tj}ECj:1
D
d Cd.
+ ]ZKZfB( G))dy =
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The equation in pure principal part

Lemma

There eixsts a positive constant ng < 1/2 depending only on n
such that for any n € (0,70), any wy € C>'/2 and any polynomial
w» of degree d, with

Iwillgarz, [[wallgaiz <1,
lwi — wallgs < 7°/8.

Then

H"™" (Bay(0) N {ws = 0, Vw4l < krp®, IVPws| < sap®, [V3ma| 2
< Cd.

~—

Here ng, C and k are positive constants depending only on n.
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The equation in pure principal part

Two other preparations

@ Approximate u by a bi-harmonic function.

Lemma

Let a;j(0) = 6j, |aj(x) — a;(0)| < €2N forp < 1, y € B;1(0) such that
B,(y) < B1(0), and L2u = 0 on B;(0) satisfies the assumption (3).
Then there exist ¢g > 0 depending only on n and bi-harmonic
polynomial ¢g of degree 2N + 3 such that

lug — ¢Blca(,(0) < (ce)",

where up(x) = (llull z(g)ll) " u(y + px), B = B,(y) € B1(0), and c
is a positive constant depending only on n.
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The equation in pure principal part

@ Quantitative estimate for the volume of the neighbor- hood to
the singular set of u.

Lemma

Let ¢ be a d degree bi-harmonic polynomial with d > 3. Assume
that sup |¢(x) — ¢(0)| = 1. Also assume that [V¢(0)|, [V2¢(0)],
B;

IV34(0)| are less than or equal to (6€)~", (6€)92, (He)°~3,
respectively. Then there exist positive constants 6 and ey
depending only on n, such that for any € € (0, &),

H" ({x € B1(0) |dist(x,{ V3¢ < (Qe)d‘s}) < e}) < Cd®"2elog e,

where C is also a positive constant depending only on n.
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The equation in pure principal part

The sketch of the measure estimates of nodal sets

The idea of the proof of the measure estimates of nodal sets.

@ Step 1. Assume that |a;(x) — a;(0)| < €2V in B;(0), and
aji(0) = 6j, where € is a positive constant to be chosen. Let
n=eV92.

@ Step 2. From the above lemmas, we have

H"" {ug' (0) N By N {[V3upl| = n/2}} < c(2N +3),

where B = B,(y) and y € u~'(0) n B;(0).
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The equation in pure principal part

@ Step 3. Let Qy = {B1(0)}. Assume thatQ;, j =0,1,---,/ -1
are already defined such that each ball in the collection Q; is
centered in By N u~'(0) with radius €', such that

Bi(0)N|V3ul'(0)nu'(0) CUgB, i=0,-,I-1.

For each B € Q,_1, cover u~'(0) N B with a collection QP of
balls with centers in u™"(0) N By (0) and radius €' such that
the balls of the same centers and 1/2 radius are pairwise
disjoint. Let Q) = UBEQI_1QIB.
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The equation in pure principal part

@ Step 4. Then by the dilation and iteration,

H{u(0)N By} < o(2N+38) ) (c(2N +3)*"*%eloge™)"
=1

IA

c(2N + 3),
if we choose € > 0 small enough such that
c(2N +3)*"2¢loge < 1/2.
@ Step 5. Choose € = ¢(2N + 3)~(4"4) py = ce?N, we have
H"" {x € B, (0)l u= 0} < c(2N +3)pj ",
and then

C
H {X € B1/2(0)| u= 0} < C(2N + 3)p8_1 —
0

< (CN)N,

provided that N is large enough.
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Two eigenvalue equations

Eigenvalue problem 1

(L+2)?u=0 in B;(0), (5)

where L is the second order uniformly elliptic operator of
divergence form as before.

Theorem (T - X. P. Yang)

Let u satisfy (5) in B1(0). Then for A > 0 large enough,

H™ (x € B2(0) : u(x) = 0) < (C)° V4, (6)

where C is a positive constant depending on n, K and A.
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Two eigenvalue equations

The doubling condition

Lemma

Let u be a solution of (5). Then for any r < ry/ VA with
B:(x0) € B1(0) and A > 0 large enough,

lull2(g,x0)) < 2 VAlUlL2(8, ()

where C and ry are positive constant depending on n, K and A.
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Two eigenvalue equations

Sketch of the proof.
@ Step 1.

Lu+Au=v,
Lv+Av=0.

Since v is an eigenfunction of £,
IVlle2(8,)00) < 26 VIVIL2(8 (0

provided that r < ry and B:(xg) < B1(0).

@ Step 2.
Through some interior estimates, for any r < ry/ V2,

C
IVilez(82(0)) < 72 11Ullez(8,000))-
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Two eigenvalue equations

@ Step 3.
For a given B:(Xp), let uy and u» satisfy the following two
equations respectively.

Luy 4+ Auy =0 in Bi(xp), ui=u on 4B (xp),
Lus + Aup = v in Bi(Xp), u2=0 on dB/(xp).

Since u» satisfies the homogeneous Dirichlet boundary
condition,

IA

lu2llizg ) < CroIVIILe(, (o)) < Cr22° VAIVIILe(s, u(x0))

Cr22C VA

IA

C
2llulLa(82(x0))

IA

29 V31Ul 28, ()
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Two eigenvalue equations

@ Step 4.
Since uy is an eigenfunction of L,

luilliz oy < 25 VUillies, p00))

< G2Vl zq@ gy + 12l E(e )
< €2V (ullz(a, oy + 2 Vulz(e ) )
< 2°VUull2(g, 5 )

@ Step 5.
Then from the above calculation,

lullLz(B,(x)) < C(”U1“L2(B,(xo)) + ||U2||L2(B,(xo))) <2° ﬁ”U”LZ(Br/g(Xg))'

Long Tian Nodal Sets of Solutions to Some Fouth Order Elliptic Equations



Two eigenvalue equations

Some extensions

@ Measure estimates of nodal sets of solutions to the equation
(a+2)2%u=0,

on a C* bounded compact mainifold without boundary.

@ For the following equations, the same method can also be
used.

1. (L+4)(L+2)u=0;
2. (L1+4)(La+2)u=0;

3. Lw = (ajw;); + biw; + cw.
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Two eigenvalue equations

Eigenvalue problem 2

L2u=2%uin Q, (7)

where Q € C2. Also assume that one of the boundary condition is

a(Lu+ Au) + (Lu+ Au), =0 on Q. (8)

Theorem (T - X. P. Yang)

Let u be a solution of (7) in a bounded connected domain Q € C?
with (8) as one of its boundary codition. Then for A > 0 large
enough,

H™ (x e+ u(x) =0) < (CA)°CYA, (9)

where Q' = {x € Q: dist(x,09) > ¢/ \//_l} C and c are positive
constants depending only on n, K, A\, a and Q.
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Two eigenvalue equations

The doubling condition

Lemma

Let u be a solution of (7) and (8) is one of its boundary condition.
Then for any r < ro/ VA with B,(xo) € Q and A > 0 large enough,

| < 2C(\/71+M(X0,I’))||U”L2(Br/2(XO

lullL2(B, (x0) )

where C and ry are positive constant depending on n, K and A.
Here M(xo, r) is the frequency function of v = Lu + Au defined as
follows.

Mixe ) — 2001 rfB,(Xo)(afjv,-vj + Av®)dx
(XO’ ) = H(XO’ r) —

faBr(Xo)uvzdw

where u(x) = ajxix;/|x|?.
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Two eigenvalue equations

The upper bound for M(xo, r)

Lemma

Let v be a solution of the equation Lv — Av = 0 in Q with the
boundary condition av + v, = 0. Also assume that 9Q2 € C?. Then
for0 < r < ry and B;(xo) € €2,

M(Xo, r) < C,

where C and ry are positive constants depending on n, K, A, a and
Q.
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Two eigenvalue equations

Sketch of the proof.
@ Step 1. Monotonicity formula.
M/(Xo, r)

B S
M(Xo,r) - C’

forO<r<n.

@ Step 2. Doubling condition for v.
ForO<rn < <n<rn,

)CM(Xg,r2)+C

.
IVlle2(s,, (o)) < (f Vil (s, (x0)):

C'M(Xo,ﬁ )—C,
) IVlli2(8, (x0))-

2
Vil (B, (x0)) 2 (;
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Two eigenvalue equations

@ Step 3.
By the global estimate of v, we have

IVilwiz() < ClIVIlLz(q)-

@ Step 4.
From the global propagation of smaliness,

IVllL2(B, r(x0)) = C-

Then the upper bound of M(xo, r) comes from the doubling
condition for v.
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Two eigenvalue equations

Propagation of smallness

Lemma (G. Alessandrini et al., 2009)
Let v satisfies the equation Lv = 0. Then for any B, (xo) € Q,

C
IVIlL2(@) < [IVIiwiz() ™ =

M2

/7 (0))

where o~ and C are positive constant depending on n, K, A, Q, T
and rp.
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Further Works

Further Works

@ Use Logunov’s method to improve our results.

@ Find a suitable quantity to describe the index of doubling
condition for solution of the first equation (1).

@ Find a method to give a global estimate of nodal sets for
solutions of eigenvalue problems of the fourth order elliptic
operator as in Section 3.

@ Consider the corresponding Steklov problems and other
higher order equations.
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