Nodal Sets of Solutions to Some Fouth Order Elliptic Equations

Long Tian

Department of Mathematics
Nanjing University of Science \& Technology
Joint work with Professor X. P. Yang.

Contents

(1) Introduction and main difficulties
(2) The equation in pure principal part
(3) Two eigenvalue equations

4 Further Works

Nodal sets for solutions of second order elliptic equations

- Nodal set of a function $u(x)$ is $N(u)=\{x \mid u(x)=0\}$.
- Yau's conjecture: If $\Delta u+\lambda u=0$ on an n dimensional C^{∞} compact manifold M without boundary, then

$$
c \sqrt{\lambda} \leq \mathcal{H}^{n-1}(N(u)) \leq c \sqrt{\lambda} .
$$

- J. Brüning and S. T. Yau: two dimensional analytic case, independently.
- H. Donnelly and C. Fefferman: upper bound for the compact higher dimensional analytic manifold without boundary (1988, Invent. Math.).
- F. H. Lin: upper bound for the compact analytic manifold without boundary (1991, Comm. Pure Appl. Math.).
- R. Hardt and L. Simon: upper bound for the n dimensional compact C^{∞} manifold without boundary is $C \lambda^{C \sqrt{\lambda}}(1989, \mathrm{~J}$. Diff. Geom.).
- H. Donnelly and C. Fefferman: upper bound for 2 dimensional C^{∞} compact manifold without boundary is $C \lambda^{3 / 4}$ (1990, J . Amer. Math. Soc.).
- R. T. Dong: upper bound for 2 dimensional C^{∞} compact manifold without boundary is $C \lambda^{3 / 4}$. By using a very different method (1992, J. Diff. Geom.).
- A. Logunov: upper bound for the 2 dimensional C^{∞} compact manifold without boundary is $C \lambda^{3 / 4-\epsilon}$ (2016, arXiv: 1605 . 02595).
- A. Logunov: upper bound for the n dimensional C^{∞} compact manifold without boundary is $C \lambda^{\beta}$ (2018 Annals of Math., 2016, arXiv: 1605. 02587v1).
- T. H. Colding and W. P. Minicozzi: lower bound for the C^{∞} compact manifold without boundary is $C \lambda^{(3-n) / 4}$ (2011, Comm. Math. Phys.).
- C. D. Sogge and S. Zelditch: lower bound for the C^{∞} compact manifold without boundary is $C \lambda^{(7-3 n) / 8}$ (2011, Math. Res. Lett.).
- A. Logunov: lower bound for Yau's conjecture. (2018 Annals of Math.).
-

Nodal sets for solutions of high order elliptic equations

- I. Kukavica: upper bound for eigenfunctions of high order linear analytic uniformly elliptic operator (1995, J. d'Analyse. Math.).
- L. Tian and X. P. Yang: upper bound for bi-harmonic and polyharmonic functions (2014, J. Diff. Equ.; 2018, Chinese Ann. Math.).
- L. Tian and X. P. Yang: upper bound for eigenfunctions of bi-harmonic operator on some connected bounded domain $\Omega \subseteq \mathbb{R}^{n}$ whose boundary is non-analytic (2017, arXiv: 1709 . 00153).
- ...

Difficulties

- If u is a solution of the second order uniformly elliptic equation $\mathcal{L} u=\left(a_{i j} u_{i}\right)_{j}=0$, then

$$
\operatorname{dim}(\{u=0,|\nabla u|=0\}) \leq n-2 ; \quad \text { singular } .
$$

- If u is a solution of the fourth order uniformly elliptic equation $\mathcal{L}^{2} u=0$, then

$$
\begin{aligned}
& \operatorname{dim}(\{u=0, \nabla u=0\}) \leq n-1, \quad \text { not singular. } \\
& \operatorname{dim}\left(\left\{u=0, \nabla u=0, \nabla^{2} u=0, \nabla^{3} u=0\right\}\right) \leq n-2, \quad \text { singular. }
\end{aligned}
$$

- If u satisfies the equation $\mathcal{L} u=0$, then

$$
\|u\|_{L^{2}\left(B_{r}\left(x_{0}\right)\right)} \leq 2^{C N\left(x_{0}, r\right)+C}\|u\|_{L^{2}\left(B_{r / 2}\left(x_{0}\right)\right)},
$$

where $N\left(x_{0}, r\right)$ is the frequency function of u centered at x_{0} with radius r;

- If u is a solution of the fourth order uniformly elliptic equation $\mathcal{L}^{2} u=0$, then it is hard to find a suitable quantity to describe the above doubing condition.

Let u satisfy the equation

$$
\begin{equation*}
\mathcal{L}^{2} u=0 \tag{1}
\end{equation*}
$$

where

$$
\mathcal{L} w=\left(a_{i j} w_{i}\right)_{j}
$$

is a linear elliptic operator of second order in principal part. Also assume that

$$
\left\{\begin{array}{l}
\Lambda^{-1}|\xi|^{2} \leq a_{i j} \xi_{i} \xi_{j} \leq \Lambda|\xi|^{2}, \quad \forall \xi \in \mathbb{R}^{n} \tag{2}\\
\left\|a_{i j}\right\|_{C^{4}} \leq K
\end{array}\right.
$$

Theorem (T - X. P. Yang)

Let u be a solution of (1) in $B_{1}(0)$ and satisfy (2). Assume that

$$
\begin{equation*}
\|u\|_{L^{2}\left(B_{r}\left(x_{0}\right)\right)} \leq 2^{N}\|u\|_{L^{2}\left(B_{r}\left(x_{0}\right)\right)} \tag{3}
\end{equation*}
$$

for any $B_{r}\left(x_{0}\right) \subseteq B_{1}(0)$. If $N>0$ large enough, then

$$
\begin{equation*}
\mathcal{H}^{n-1}\left\{x \in B_{1 / 2}(0): u(x)=0\right\} \leq(C N)^{C N}, \tag{4}
\end{equation*}
$$

where C is a positive constant depending on n, Λ and K.

Nodal sets comparison lemmas

Lemma (R. Hardt, L. Simon, 1989)

There exists a positive constant $\eta_{0}<1 / 2$ such that for any $\eta \in\left(0, \eta_{0}\right)$ and $w_{1}, w_{2} \in C^{1,1 / 2}\left(B_{2}(0)\right)$, if $\left\|w_{1}\right\|_{C^{1,1 / 2}},\left\|w_{2}\right\|_{C^{1,1 / 2}} \leq 1$ and $\left\|w_{1}-w_{2}\right\|_{C^{1}} \leq \eta^{5} / 8$, then

$$
\begin{aligned}
& \mathcal{H}^{n-1}\left(B_{2-\eta}(0) \cap\left\{w_{1}=0,\left|\nabla w_{1}\right| \geq \eta\right\}\right) \\
\leq & (1+c \sqrt{\eta}) \mathcal{H}^{n-1}\left(B_{2}(0) \cap\left\{w_{2}=0,\left|\nabla w_{2}\right| \geq \eta / 2\right\}\right)
\end{aligned}
$$

Here c is a positive constant depending only on n.

Lemma

There exists a positive constant $\eta_{0}<1 / 2$ such that for any $\eta \in\left(0, \eta_{0}\right)$ and $w_{1} \in C^{2,1 / 2}\left(B_{2}(0)\right)$, if

$$
\left\{\begin{array}{l}
\left\|w_{1}\right\|_{C^{2,1 / 2}},\left\|w_{2}\right\|_{C^{2,1 / 2}} \leq 1 \\
\left\|w_{1}-w_{2}\right\|_{C^{2}} \leq \eta^{5} / 8
\end{array}\right.
$$

where w_{2} is a polynomial of degree d, then

$$
\mathcal{H}^{n-1}\left(B_{2-\eta}(0) \cap\left\{w_{1}=0,\left|\nabla w_{1}\right| \leq \kappa \eta^{5},\left|\nabla^{2} w_{1}\right| \geq \eta\right\}\right) \leq C d,
$$

where η_{0}, C and κ are positive constants depending only on n.

Sketch of the proof:

- Step 1. Let $S=\left\{w_{1}=0,\left|\nabla w_{1}\right| \leq \kappa \eta^{5},\left|\nabla^{2} w_{1}\right| \geq \eta\right\}$. Let v_{j} be the direct such that

$$
\left|\nabla_{v_{j} v_{j}} w_{j}(y)\right|=\max _{v \in \partial \mathrm{~B}_{1}}\left|\nabla_{\nu v} w_{j}(y)\right|, \quad j=1,2,
$$

such that $v_{1} \cdot v_{2} \geq 0$. For $x^{*} \in S$, there are at most two nodal surfaces of w_{1} between the two hyperplanes $\left\{x_{n}=x_{n}^{*} \pm \eta^{4}\right\}$ in the ball $B_{\eta^{3}}\left(x^{*}\right)$. We use $\Psi_{x^{*}}^{k}(y)$ to denote them.

- Step 2. We also find that in $B_{\eta^{3}}\left(x^{*}\right)$, there exists a nodal surface $\nabla_{\nu_{1}} w_{2}$.
- Step 3. Let C be the collection of orthonormal bases of \mathbb{R}^{n} such that for any unit director v of \mathbb{R}^{n}, there exists an orthonormal basis $\left\{\tau_{1}, \cdots, \tau_{n}\right\}$, such that $\left|v-\tau_{j}\right| \leq c$ for some $j=1, \cdots, n$, where c is a positive constant depending only on n to be chosen.
- Step 4. Through some calculation, there exists $\Phi_{x} \in C^{1}\left(T_{x} \cap B_{\eta^{3}}(x)\right)$, such that

$$
B_{\eta^{3}}(x) \cap \operatorname{graph}_{T_{x}} \Phi_{x} \subseteq\left\{\nabla_{\tau_{j_{0}}} w_{2}=0\right\} \cap B_{\eta^{3}}(x),
$$

where $\tau_{j_{0}}$ is a direct of one of the basis contained in C. Moreover,

$$
\left|\nabla \Phi_{x}(y)-\nabla \Psi_{x}^{k}(y)\right| \leq C, \quad y \in B_{\eta^{3}}(x), \quad k=1,2
$$

- Step 5. Let S be the nodal set of w_{1}. Let $\left\{\phi_{j}\right\}_{j=1}^{D}$ be a partition of unity for $S_{1} \cap B_{2-\eta}(0)$, such that

$$
{\operatorname{supp} \phi_{j} \subseteq B_{\eta^{3}}\left(x_{j}\right), \quad \phi_{j} \geq c^{-1} \text { on } B_{\eta^{3} / 2}\left(x_{j}\right),\left|\nabla \phi_{j}\right| \leq c / \eta^{3}, ., ~}_{\text {, }}
$$

where the balls $\left\{B_{\eta^{3} / 2}\left(x_{j}\right)\right\}$ cover $S \cap B_{2-\eta}(0)$, and $\left\{B_{\eta^{3} / 4}(0)\right\}$ are pairwise-disjoint. Also define

$$
\left\{\begin{array}{l}
F_{j}^{k}(y)=\phi_{j}\left(y+\Psi_{x_{j}}^{k}(y) v_{1}\left(x_{j}\right)\right) \sqrt{1+\left|\nabla \Psi_{x_{j}}^{k}(y)\right|^{2}}, \\
G_{j}(y)=\phi_{j}\left(y+\Phi_{x_{j}}(y) v_{1}\left(x_{j}\right)\right) \sqrt{1+\left|\nabla \Phi_{x_{j}}(y)\right|^{2}},
\end{array}\right.
$$

for $j=1, \cdots, D$ and $k=1,2$.

- Step 6. Then

$$
\begin{aligned}
& \mathcal{H}^{n-1}\left(S \cap B_{2-\eta}(0)\right) \leq \sum_{j=1}^{D} \sum_{k=1}^{2} \int_{T_{x_{j} \cap B_{\eta^{3}}\left(x_{j}\right)}} F_{j}^{k}(y) d y \\
\leq & 2 \sum_{j=1}^{D} \int_{T_{x_{j} \cap B_{\eta^{3}}\left(x_{j}\right)}} G_{j}(y) d y+\sum_{j=1}^{D} \sum_{k=1}^{2} \int_{T_{x_{j} \cap B_{\eta^{3}}\left(x_{j}\right)}}\left(F_{j}^{k}-G_{j}\right)(y) d y \\
\leq & C \sum_{\left\{\tau_{j}\right\} \in C} \sum_{j=1}^{n} \mathcal{H}^{n-1}\left(B_{2} \cap\left\{\nabla_{\tau_{j}} w_{2}=0\right\}\right) \\
+ & \sum_{j=1}^{D} \sum_{k=1}^{2} \int_{T_{x_{j}} \cap B_{\eta^{3}}\left(x_{j}\right)}\left(F_{j}^{k}-G_{j}\right)(y) d y \leq C d .
\end{aligned}
$$

Lemma

There eixsts a positive constant $\eta_{0}<1 / 2$ depending only on n such that for any $\eta \in\left(0, \eta_{0}\right)$, any $w_{1} \in C^{3,1 / 2}$ and any polynomial w_{2} of degree d, with

$$
\left\{\begin{array}{l}
\left\|w_{1}\right\|_{C^{3,1 / 2}},\left\|w_{2}\right\|_{C^{3,1 / 2}} \leq 1 \\
\left\|w_{1}-w_{2}\right\|_{C^{3}} \leq \eta^{5} / 8
\end{array}\right.
$$

Then

$$
\begin{aligned}
& \mathcal{H}^{n-1}\left(B_{2-\eta}(0) \cap\left\{w_{1}=0,\left|\nabla w_{1}\right| \leq \kappa \eta^{9},\left|\nabla^{2} w_{1}\right| \leq \kappa \eta^{5},\left|\nabla^{3} w_{1}\right| \geq \eta\right\}\right) \\
& \leq C d .
\end{aligned}
$$

Here η_{0}, C and κ are positive constants depending only on n.

Two other preparations

- Approximate u by a bi-harmonic function.

Lemma

Let $a_{i j}(0)=\delta_{i j},\left|a_{i j}(x)-a_{i j}(0)\right| \leq \epsilon^{2 N}$ for $\rho<1, y \in B_{1}(0)$ such that $B_{\rho}(y) \subseteq B_{1}(0)$, and $\mathcal{L}^{2} u=0$ on $B_{1}(0)$ satisfies the assumption (3). Then there exist $\epsilon_{0}>0$ depending only on n and bi-harmonic polynomial ϕ_{B} of degree $2 N+3$ such that

$$
\left|u_{B}-\phi_{B}\right|_{C^{3}\left(B_{2}(0)\right)} \leq(c \epsilon)^{N},
$$

where $u_{B}(x)=\left(\|u\|_{L^{2}(B)} \|\right)^{-1} u(y+\rho x), B=B_{\rho}(y) \subseteq B_{1}(0)$, and c is a positive constant depending only on n.

- Quantitative estimate for the volume of the neighbor- hood to the singular set of u.

Lemma

Let ϕ be a d degree bi-harmonic polynomial with $d \geq 3$. Assume that sup $|\phi(x)-\phi(0)|=1$. Also assume that $|\nabla \phi(0)|,\left|\nabla^{2} \phi(0)\right|$, B_{1}
$\left|\nabla^{3} \phi(0)\right|$ are less than or equal to $(\theta \epsilon)^{d-1},(\theta \epsilon)^{d-2},(\theta \epsilon)^{d-3}$, respectively. Then there exist positive constants θ and ϵ_{0} depending only on n, such that for any $\epsilon \in\left(0, \epsilon_{0}\right)$,
$\mathcal{H}^{n}\left(\left\{x \in B_{1}(0) \mid \operatorname{dist}\left(x,\left\{\left|\nabla^{3} \phi\right| \leq(\theta \epsilon)^{d-3}\right\}\right)<\epsilon\right\}\right) \leq C d^{2 n+2} \epsilon^{2} \log \epsilon^{-1}$,
where C is also a positive constant depending only on n.

The sketch of the measure estimates of nodal sets

The idea of the proof of the measure estimates of nodal sets.

- Step 1. Assume that $\left|a_{i j}(x)-a_{i j}(0)\right| \leq \epsilon^{2 N}$ in $B_{1}(0)$, and $\mathrm{a}_{i j}(0)=\delta_{i j}$, where ϵ is a positive constant to be chosen. Let $\eta=\epsilon^{N / 9} / 2$.
- Step 2. From the above lemmas, we have

$$
\mathcal{H}^{n-1}\left\{u_{B}^{-1}(0) \cap B_{1} \cap\left\{\left|\nabla^{3} u_{B}\right| \geq \eta / 2\right\}\right\} \leq c(2 N+3)
$$

where $B=B_{\rho}(y)$ and $y \in u^{-1}(0) \cap B_{1}(0)$.

- Step 3. Let $Q_{0}=\left\{B_{1}(0)\right\}$. Assume that $Q_{j}, j=0,1, \cdots, I-1$ are already defined such that each ball in the collection Q_{j} is centered in $B_{1} \cap u^{-1}(0)$ with radius ϵ^{j-1}, such that

$$
B_{1}(0) \cap\left|\nabla^{3} u\right|^{-1}(0) \cap u^{-1}(0) \subseteq \cup_{Q_{i}} B, \quad i=0, \cdots, I-1 .
$$

For each $B \in Q_{l-1}$, cover $u^{-1}(0) \cap B$ with a collection Q_{l}^{B} of balls with centers in $u^{-1}(0) \cap B_{1}(0)$ and radius ϵ^{l-1} such that the balls of the same centers and 1/2 radius are pairwise disjoint. Let $Q_{l}=\cup_{B \in Q_{l-1}} Q_{l}^{B}$.

- Step 4. Then by the dilation and iteration,

$$
\begin{aligned}
\mathcal{H}^{n-1}\left\{u^{-1}(0) \cap B_{1}\right\} & \leq c(2 N+3) \sum_{l=1}^{\infty}\left(c(2 N+3)^{2 n+2} \epsilon \log \epsilon^{-1}\right)^{l-1} \\
& \leq c(2 N+3),
\end{aligned}
$$

if we choose $\epsilon>0$ small enough such that

$$
c(2 N+3)^{2 n+2} \epsilon \log \epsilon^{-1}<1 / 2
$$

- Step 5. Choose $\epsilon=c(2 N+3)^{-(4 n+4)}, \rho_{0}=c \epsilon^{2 N}$, we have

$$
\mathcal{H}^{n-1}\left\{x \in B_{\rho_{0}}(0) \mid u=0\right\} \leq c(2 N+3) \rho_{0}^{n-1}
$$

and then

$$
\mathcal{H}^{n-1}\left\{x \in B_{1 / 2}(0) \mid u=0\right\} \leq c(2 N+3) \rho_{0}^{n-1} \frac{C}{\rho_{0}^{n}} \leq(C N)^{C N}
$$

provided that N is large enough.

Eigenvalue problem 1

$$
\begin{equation*}
(\mathcal{L}+\lambda)^{2} u=0 \quad \text { in } \quad B_{1}(0), \tag{5}
\end{equation*}
$$

where \mathcal{L} is the second order uniformly elliptic operator of divergence form as before.

Theorem (T - X. P. Yang)

Let u satisfy (5) in $B_{1}(0)$. Then for $\lambda>0$ large enough,

$$
\begin{equation*}
\mathcal{H}^{n-1}\left(x \in B_{1 / 2}(0): u(x)=0\right) \leq(C \lambda)^{c \sqrt{\lambda}}, \tag{6}
\end{equation*}
$$

where C is a positive constant depending on n, K and \wedge.

The doubling condition

Lemma

Let u be a solution of (5). Then for any $r<r_{0} / \sqrt{\lambda}$ with $B_{r}\left(x_{0}\right) \subseteq B_{1}(0)$ and $\lambda>0$ large enough,

$$
\|u\|_{L^{2}\left(B_{r}\left(x_{0}\right)\right)} \leq 2^{C \sqrt{\lambda}}\|u\|_{L^{2}\left(B_{r / 2}\left(x_{0}\right)\right)}
$$

where C and r_{0} are positive constant depending on n, K and Λ.

Sketch of the proof.

- Step 1.

$$
\left\{\begin{array}{l}
\mathcal{L} u+\lambda u=v \\
\mathcal{L} v+\lambda v=0
\end{array}\right.
$$

Since v is an eigenfunction of \mathcal{L},

$$
\|v\|_{L^{2}\left(B_{r}\right)\left(x_{0}\right)} \leq 2^{C \sqrt{\lambda}}\|V\|_{L^{2}\left(B_{r / 2}\left(x_{0}\right)\right)}
$$

provided that $r \leq r_{0}$ and $B_{r}\left(x_{0}\right) \subseteq B_{1}(0)$.

- Step 2.

Through some interior estimates, for any $r \leq r_{0} / \sqrt{\lambda}$,

$$
\|v\|_{L^{2}\left(B_{r / 2}\left(x_{0}\right)\right)} \leq \frac{C}{r^{2}}\|u\|_{L^{2}\left(B_{r}\left(x_{0}\right)\right)} .
$$

- Step 3.

For a given $B_{r}\left(x_{0}\right)$, let u_{1} and u_{2} satisfy the following two equations respectively.

$$
\begin{cases}\mathcal{L} u_{1}+\lambda u_{1}=0 \text { in } B_{r}\left(x_{0}\right), & u_{1}=u \text { on } \partial B_{r}\left(x_{0}\right) \\ \mathcal{L} u_{2}+\lambda u_{2}=v \text { in } B_{r}\left(x_{0}\right), & u_{2}=0 \text { on } \partial B_{r}\left(x_{0}\right)\end{cases}
$$

Since u_{2} satisfies the homogeneous Dirichlet boundary condition,

$$
\begin{aligned}
\left\|u_{2}\right\|_{L^{2}\left(B_{r}\left(x_{0}\right)\right)} & \leq C r^{2}\|v\|_{L^{2}\left(B_{r}\left(x_{0}\right)\right)} \leq C r^{2} 2^{C \sqrt{\lambda}}\|v\|_{L^{2}\left(B_{r / 4}\left(x_{0}\right)\right)} \\
& \leq \operatorname{Cr}^{2} 2^{C \sqrt{\lambda}} \frac{C}{r^{2}}\|u\|_{L^{2}\left(B_{r / 2}\left(x_{0}\right)\right)} \\
& \leq 2^{C \sqrt{\lambda}\|u\|_{L^{2}\left(B_{r / 2}\left(x_{0}\right)\right)} .} .
\end{aligned}
$$

- Step 4.

Since u_{1} is an eigenfunction of \mathcal{L},

$$
\begin{aligned}
\left\|u_{1}\right\|_{L^{2}\left(B_{r}\left(x_{0}\right)\right)} & \leq 2^{C \sqrt{\lambda}}\left\|u_{1}\right\|_{L^{2}\left(B_{r / 2}\left(x_{0}\right)\right)} \\
& \leq C 2^{C \sqrt{\lambda}}\left(\|u\|_{L^{2}\left(B_{r / 2}\left(x_{0}\right)\right)}+\left\|u_{2}\right\|_{\left.L^{2}\left(B_{r}\left(x_{0}\right)\right)\right)}\right. \\
& \leq C 2^{C \sqrt{\lambda}}\left(\|u\|_{L^{2}\left(B_{r / 2}\left(x_{0}\right)\right)}+2^{C \sqrt{\lambda}}\|u\|_{\left.L^{2}\left(B_{r / 2}\left(x_{0}\right)\right)\right)}\right) \\
& \leq 2^{C \sqrt{\lambda}}\|u\|_{L^{2}\left(B_{r / 2}\left(x_{0}\right)\right)} .
\end{aligned}
$$

- Step 5.

Then from the above calculation,

$$
\|u\|_{L^{2}\left(B_{r}\left(x_{0}\right)\right)} \leq C\left(\left\|u_{1}\right\|_{L^{2}\left(B_{r}\left(x_{0}\right)\right)}+\left\|u_{2}\right\|_{\left.L^{2}\left(B_{r}\left(x_{0}\right)\right)\right)}\right) 2^{C \sqrt{\lambda}}\| \|_{L^{2}\left(B_{r \mid 2}\left(x_{0}\right)\right)} .
$$

Some extensions

- Measure estimates of nodal sets of solutions to the equation

$$
(\Delta+\lambda)^{2} u=0
$$

on a C^{∞} bounded compact mainifold without boundary.

- For the following equations, the same method can also be used.

$$
\text { 1. }\left(\mathcal{L}+\lambda_{1}\right)\left(\mathcal{L}+\lambda_{2}\right) u=0 \text {; }
$$

2. $\left(\mathcal{L}_{1}+\lambda_{1}\right)\left(\mathcal{L}_{2}+\lambda_{2}\right) u=0$;
3. $\mathcal{L} w=\left(a_{i j} w_{i}\right)_{j}+b_{i} w_{i}+c w$.

Eigenvalue problem 2

$$
\begin{equation*}
\mathcal{L}^{2} u=\lambda^{2} u \text { in } \Omega, \tag{7}
\end{equation*}
$$

where $\Omega \in C^{2}$. Also assume that one of the boundary condition is

$$
\begin{equation*}
a(\mathcal{L} u+\lambda u)+(\mathcal{L} u+\lambda u)_{v}=0 \text { on } \partial \Omega \tag{8}
\end{equation*}
$$

Theorem (T - X. P. Yang)

Let u be a solution of (7) in a bounded connected domain $\Omega \in C^{2}$ with (8) as one of its boundary codition. Then for $\lambda>0$ large enough,

$$
\begin{equation*}
\mathcal{H}^{n-1}\left(x \in \Omega^{\prime}: u(x)=0\right) \leq(C \lambda)^{C \sqrt{\lambda}} \tag{9}
\end{equation*}
$$

where $\Omega^{\prime}=\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)>c / \sqrt{\lambda}\}, C$ and c are positive constants depending only on n, K, Λ, a and Ω.

The doubling condition

Lemma

Let u be a solution of (7) and (8) is one of its boundary condition. Then for any $r<r_{0} / \sqrt{\lambda}$ with $B_{r}\left(x_{0}\right) \subseteq \Omega$ and $\lambda>0$ large enough,

$$
\|u\|_{L^{2}\left(B_{r}\left(x_{0}\right)\right)} \leq 2^{C\left(\sqrt{\lambda}+M\left(x_{0}, r\right)\right)}\|u\|_{L^{2}\left(B_{r / 2}\left(x_{0}\right)\right)}
$$

where C and r_{0} are positive constant depending on n, K and Λ. Here $M\left(x_{0}, r\right)$ is the frequency function of $v=\mathcal{L} u+\lambda u$ defined as follows.

$$
M\left(x_{0}, r\right)=r \frac{D\left(x_{0}, r\right)}{H\left(x_{0}, r\right)}=r \frac{\int_{B_{r}\left(x_{0}\right)}\left(a_{i j} v_{i} v_{j}+\lambda v^{2}\right) d x}{\int_{\partial B_{r}\left(x_{0}\right)} \mu v^{2} d \omega}
$$

where $\mu(x)=a_{i j} x_{i} x_{j} /|x|^{2}$.

The upper bound for $M\left(x_{0}, r\right)$

Lemma

Let v be a solution of the equation $\mathcal{L} v-\lambda v=0$ in Ω with the boundary condition av $+v_{v}=0$. Also assume that $\partial \Omega \in C^{2}$. Then for $0<r<r_{0}$ and $B_{r}\left(x_{0}\right) \subseteq \Omega$,

$$
M\left(x_{0}, r\right) \leq C,
$$

where C and r_{0} are positive constants depending on n, K, Λ, a and Ω.

Sketch of the proof.

- Step 1. Monotonicity formula.

$$
\frac{M^{\prime}\left(x_{0}, r\right)}{M\left(x_{0}, r\right)} \geq-C
$$

for $0<r<r_{0}$.

- Step 2. Doubling condition for v.

For $0<r_{1} \leq \frac{r_{2}}{\Gamma} \leq r_{2} \leq r_{0}$,

$$
\begin{aligned}
& \|v\|_{L^{2}\left(B_{r_{2}}\left(x_{0}\right)\right)} \leq\left(\frac{r_{2}}{r_{1}}\right)^{C M\left(x_{0}, r_{2}\right)+C}\|v\|_{L^{2}\left(B_{r_{1}}\left(x_{0}\right)\right)} \\
& \|v\|_{L^{2}\left(B_{r_{2}}\left(x_{0}\right)\right)} \geq\left(\frac{r_{2}}{r_{1}}\right)^{C^{\prime} M\left(x_{0}, r_{1}\right)-C^{\prime}}\|v\|_{L^{2}\left(B_{r_{1}}\left(x_{0}\right)\right)}
\end{aligned}
$$

- Step 3.

By the global estimate of v, we have

$$
\|v\|_{W^{1,2}(\Omega)} \leq C\|v\|_{L^{2}(\Omega)} .
$$

- Step 4.

From the global propagation of smallness,

$$
\|v\|_{L^{2}\left(B_{\left.r_{0} / \Gamma\left(x_{0}\right)\right)} \geq C .\right.}
$$

Then the upper bound of $M\left(x_{0}, r\right)$ comes from the doubling condition for v.

Propagation of smallness

Lemma (G. Alessandrini et al., 2009)
Let v satisfies the equation $\mathcal{L} v=0$. Then for any $B_{r_{0}}\left(x_{0}\right) \subseteq \Omega$,

$$
\|v\|_{L^{2}(\Omega)} \leq\|v\|_{W^{1,2}(\Omega)} \frac{C}{\left(\log \left(\frac{\|v\|_{W^{1,2}(\Omega)}}{\left.\|v\|_{L^{2}\left(B_{T_{0}} / \tau\left(x_{0}\right)\right)}\right)}\right)\right)^{\sigma}},
$$

where σ and C are positive constant depending on $n, K, \Lambda, \Omega, \Gamma$ and r_{0}.

Further Works

- Use Logunov's method to improve our results.
- Find a suitable quantity to describe the index of doubling condition for solution of the first equation (1).
- Find a method to give a global estimate of nodal sets for solutions of eigenvalue problems of the fourth order elliptic operator as in Section 3.
- Consider the corresponding Steklov problems and other higher order equations.

Introduction and main difficulties The equation in pure principal part

Two eigenvalue equations

¿/annavyon!

