
Automatic Plant Leaf Classification for a Mobile
Field Guide

An Android Application

David Knight
knightd@stanford.edu

James Painter
jpainter@stanford.edu

Matthew Potter
mpotter@stanford.edu

Stanford University

Department of Electrical Engineering
Stanford, California

Abstract—In this paper we describe the development of an

Android application that gives users the ability to identify plant

species based on photographs of the plant’s leaves taken with a

mobile phone. At the heart of this application is an algorithm that

acquires morphological features of the leaves, computes well-

documented metrics such as the angle code histogram (ACH),

then classifies the species based on a novel combination of the

computed metrics. The algorithm is first trained against several

samples of known plant species and then used to classify

unknown query species. Aided by features designed into the

application such as touchscreen image rotation and contour

preview, the algorithm is very successful in properly classifying

species contained in the training library.

I. INTRODUCTION

Historically, identifying an unknown plant species required
the consultation of a heavy field guide, where the user had to
make sometimes obscure observations of the plant’s features
and navigate a complex decision tree. The process was
nontrivial even for seasoned botanists, and carrying the guides
into the field was often impractical – particularly for hikers and
other casual users. The advent of highly-portable,
computationally-powerful smart phones with large storage
capacity presents an opportunity to not only replace and
improve the database and decision tree functions of the field
guide, but also to create automatic leaf classification
applications based on well-known image processing methods
currently becoming standardized on mobile platforms. A user-
friendly application on a popular mobile platform such as
Android that is capable of identifying a good number of plant
species could achieve widespread adoption, increasing the
public’s knowledge of and appreciation for their environment.

II. PRIOR AND RELATED WORK

The application of digital image processing techniques to
the problem of automatic leaf classification began two decades
ago and it has since been proceeding in earnest. In 1989, Petry
and Kühbauch were the first to extract digital morphological
features for use with identification models [1]. The technology
found some of its earliest applications in industrial agriculture,

where the desire was to separate crop species from weed
species, allowing for decreased use of pesticides [2]. The
problem is complicated in this application by complex
backgrounds that make image segmentation difficult, but
simplified by foreknowledge of one or two desirable crops
amongst unwanted weed species [3]. Color and texture
information is often sufficient to make this distinction, as
opposed to more general applications, where numerous shape
features must be acquired [4].

More recently, several groups have approached the

problem of automatic leaf classification. Though the groups
often use similar digital morphological features, e.g.
rectangularity, sphericity, eccentricity, etc., there is great
variation in how these measures are combined and used in
classification. Wang et al., for instance, used a two-tiered
system, eliminating grossly different samples on the basis of
eccentricity alone before making a finer judgment based on
the combination of the centroid-contour distance (CCD) curve,
ACH, and eccentricity [5]. Du et al. used roughly a dozen
morphological features and moments and defined a
classification method called the move median centers (MMC)
hypersphere classifier, achieving a correct classification rate of
over 90% [6]. Wu et al., on the other hand, achieved similar
results employing a probabilistic neural network [7]. Another
approach looks at a polygonal approximation of the leaf’s
shape. [8]

III. DESCRIPTION OF ALGORITHM

At the highest level, our algorithm for classifying plant
species proceeds as follows. An image of the leaf of interest is
acquired and preprocessed to obtain a binary image of the
leaf’s contour. For several samples of leaves from a given
species, morphological features are extracted from the contour
image. This data is used to train the algorithm by determining
the median value of each feature for a given species. As more
samples are added to the training set, the algorithm becomes
for effective at identifying a given species.

A. Image Acquisition

Currently, every mobile phone running the Android
operating system is equipped with a high-quality digital camera
with support for auto-focus and flash photography. The input to
our algorithm is a photograph of a leaf of unknown species
taken with the mobile phone’s camera. Because the user has an
interest in taking a picture which will provide useful
information, it is reasonable to assume a certain degree of
uniformity in the acquired images, i.e. the picture will be taken
at a reasonable distance, in decent lighting, roughly normal to
the surface, and against a background which provides sufficient
contrast.

B. Preprocessing

Before extraction of morphological features can begin, the
outline contour of the leaf must be found. The first step in this
process is to convert the acquired color image to a grayscale
image. Following this, image segmentation is performed to
identify leaf pixels and background pixels. After holes have
been closed and small regions removed, the segmented image
is converted to binary and the interior of the leaf is subtracted,
leaving an image of the leaf’s outline contour [Fig. 1].

C. Morphological Feature Extraction

After an extensive review of literature and experimentation
with various combinations of digital morphological features,
we decided to include the following features in our final
algorithm: aspect ratio, rectangularity, convex area ratio,
convex perimeter ratio, sphericity, circularity, eccentricity,
form factor, regional moments of inertia, and angle code
histogram. The latter two features are based on invariable
moments while the rest are geometrical. Each of the features,
along with a helper feature, the centroid-contour distance curve
is described below.

1) Centroid-contour Distance Curve: The CCD describes
the distance from the leaf centroid to the leaf contour as the
contour is traced in either a clockwise or counter-clockwise
direction. In [5] Wang, et al. use CCD as a comparison metric
between leaves; but, for a number of reasons, this is unsuited
for our leaf comparison implementation. Although the CCD is

translation-invariant and can be made scale-invariant by
normalization, it requires accurate rotational alignment. Wang

et al. further describe a leaf rotation algorithm, but its high
complexity, along with high dimensionality in feature space,
make real-time Android implementation impractical. Non-
rotationally-aligned, unnormalized CCDs, however, are still
useful for calculating parameters useful in calculating
sphericity and circularity, as below.

2) Aspect Ratio (AR): The aspect ratio is the ratio between

the maximum length Dmax and the minimum length Dmin of the
minimum bounding rectangle (MBR) [Fig. 2a]

 AR = Dmax / Dmin. (1)

3) Rectangularity (R): Rectangularity is defined as the
ratio between the region-of-interest (ROI) area and the MBR
area

 R = AROI / (Dmax / Dmin) (2)

4) Convex Area Ratio (CAR): The convex area ratio is the
ratio of the ROI area and the convex hull area (AC) [Fig. 2b]

 CAR = AROI / AC (3)

5) Convex Perimeter Ratio (CPR): The convex perimeter
ratio is the ratio of the ROI perimeter (PROI) and the convex
hull perimeter (PC)

 CPR = PROI / PC. (4)

6) Sphericity (S): Sphericity is the ratio of the radius of the
incircle of the ROI (ri) and the radius of the excircle of the
ROI (rc) [Fig. 2c]

 S = ri / rc. (5)

7) Circularity (C): Circularity is based on the bounding
points of the ROI and is the ratio of the mean distance between
the center of the ROI and all of the bounding points (µR)and
the quadratic mean deviation of the mean distance (σR)

 C = µR / σR. (6)

8) Eccentricity (E): Eccentricity is the ratio of the length
of the main inertia axis of the ROI (EA) and the length of the
minor inertia axis of the ROI (EB)

Figure 1. Sample leaf before and after preprocessing Figure 2. a) MBR, b) Convex Hull, c) Incircle and Excircle

 E = ΕΑ / ΕΒ. (7)

9) Form Factor (FF): Form factor is a well-known shape
description characteristic given by

 FF = 4πAROI / P
2

ROI. (8)

10) Regional Moments of Inertia (RMI): Regional moments
of inertia (RMI) capture spatial information about the weight
distribution of the leaf at different positions along its vertical
axis. Because our leaves maintain constant orientation and are
generally symmetric about their vertical axis, Ixx quantities for
four different regions are used as a descriptor. In order to
make these descriptions scale-invariant, leaf area images are
first cropped with a bounding box and uniformly resized to a
height of 240 pixels before calculations are performed. After
cropping and resizing, the four regions are defined as
successive 60-pixel tall bands (Fig. 3). Ixx quantities are
calculated independently for the area mass in each region

 (9)

N: the number of points in the region R.

11) Angle Code Histogram (ACH): In [5] Wang et al.
propose using the ACH to classify tree leaves. Points along the
leaf contour are joined to make line segments and angles
between adjacent line segments are measured. A histogram
consisting of five uniformly-sized angle bins, each designated
by a 1-5 angle "code," is populated with all angles measured
along the contour. The histogram is normalized and used as a
five-dimensional leaf classifier. Our test results show that
contour point resolution (contour distance between two points
on a line segment) plays a large role in ACH similarity
measurements, and in order to make the ACH scale-invariant,
we suggest the contour point resolution be a constant fraction
of the leaf perimeter, or contour length.

D. Training, Classification, and Matching

Fifteen samples of each leaf class were acquired for class
training. They were segmented from the background and their
contours were extracted in the same manner that query leaves
were pre-processed before matching. The fifteen scores for
each of the seventeen features within a class were averaged to
determine the feature vector for the class. The resulting point in
seventeen-dimensional space represents the class's identity.

Based on preliminary experimental results that showed non-
uniform effectiveness of each feature, feature weighting was
manually assigned. First, the four regional moments of inertia
were scaled to 1/4 each, and the five ACH bins were scaled to
1/5 each, since the regional moments of inertia and ACH
essentially describe one feature with multiple parts. However,
because each of these features, in particular the center bin
(zero-degree-range) of the ACH, proved to very accurately
predict the correct class match, they were further weighted 2X,
except for the ACH center bin, which was weighted 2.5X. The
eccentricity feature at times was the most accurate match
predictor, but other times was by far the worst, so its weight
was assigned 1/2X. Total weights for the ten features are
shown in Table 1.

To determine a query leaf's correct match, the query leaf's
feature vector is computed and its difference from each leaf
class represents its feature similarity vector.. The feature
similarity vectors are then normalized and weighted, and their
Euclidean distance is calculated in the high-dimensional space.
The order of the resulting vector of class distances represents
the order of similarity.

E. Android Implementation

The classification algorithm described above was initially
verified in MATLAB. The MATLAB algorithms were then
used as a guide to develop the Android implementation. Since
many of MATLAB's image processing toolbox functions are
not available in the standard Java or Android libraries, higher
level operations like convex hull, fill area, moments of inertia,
and others were written manually. Note also that because a
network connection might not be available while hiking, we
opted to store pre-generated training data and perform
classification calculations locally on the handset.

Figure 3. Regional moments of inertia Table 1. Feature Weights

The first screen presented to the user is a live viewfinder
with an overlay of the current leaf segmentation [Fig. 3a]. This
feature allows the user to review the results of the
segmentation algorithm and take the picture when the region is
acceptably highlighted. The second screen shows the region
extracted by the segmentation algorithm and presents a touch-
based rotation interface that lets the user orient the leaf shape
in an upright position [Fig. 3b]. Transforming all leaf images
into a uniform orientation can be a computationally intensive
process [5], so avoiding this process in a usable manner is
advantageous given the restricted processing resources
available on mobile phones. Additionally, the user’s
experience is improved through the interactivity of these
features.

Once the user corrects the leaf shape orientation, a busy
animation is displayed while the application generates a
feature vector and performs distance calculations against class
centers. Finally, the distance between the generated feature
vector and each of the six class centers is displayed in a list.
The class with the lowest reported distance is the class the
algorithm has identified as the likely species of the query leaf.

IV. EXPERIMENTAL RESULTS

A. MATLAB Implementation Results

In order to test our classification system, fifteen query
leaves for each of the six leaf classes were acquired and
queried against the trained classes. Average similarity scores to
each class are shown in Table 2. Every query class was
correctly matched on average, and few individual leaves were
incorrectly matched. Despite the strong visual similarity
between classes 1 and 2, they were never cross-matched. Class
6 performed similarly well when queried against the visually
similar class 3, but reversing the situation and querying class 3
against class 6 triggered the most false positives in the

experiment. In spite of this, the 80% success rate shows the
robustness of the chosen classifiers.

B. Android Field Test Results

As a field test of our Android application, we attempted to
classify five leaves from each of our six classes in nature. To
maintain statistical independence, a new set of leaves was
gathered for the field test, while the leaves used to generate the
offline MATLAB results were used to train the application.

Looking at Table 3, leaf classes 1, 2, and 6 had high rates of
successful classification, leaf classes 3, 4, and 5 faired
significantly worse than results obtained offline in MATLAB.
Leaf classes 3 and 4 were systematically classified as classes 6
and 5, respectively. This consistent behavior may be due to
poor representative class centers, in which case larger training
sets may offer improvement. Additionally, we discovered that
the Java implementation of the angle-code histogram was
unreliable, sometimes giving erratic results such as completely
empty bins. This malfunction likely affects classification
results since the angle-code histogram occupies five
dimensions of the feature space.

V. CONCLUSIONS AND FUTURE WORK

To improve usability, a welcome improvement would be to
optimize the speed of the live viewfinder segmentation
algorithm. The current implementation uses a large amount of
iteration that might be avoidable, and the low framerate and
slight delay of the current viewfinder overlay can make it
difficult to point precisely at skinny leaf regions.

At the morphological feature level, the latest
implementation of the ACH feature is not scale invariant, due
to the constant separation of points along the contour. Contour
point separation should change proportionally with the total
contour length (leaf perimeter size). Although this did not
create a large problem between our trained set (contour images
of 500-pixel length in max dimension) and query set (contour
images of 400-pixel length in max direction), it could be
problematic in other scenarios, especially when weighted as
heavily as it is.

Scale-wise, as the number of classes begins to increase, the
feature space becomes more crowded, limiting the precision
with which the classification system can distinguish between
similar leaf classes. Additionally, because each query leaf will
need to be queried against each class, computation time will
increase with the number of classes. However, future
refinement of the weighting used with the classifying features
may show that certain feature vector components can be
removed with little impact, thereby reducing the
dimensionality of the feature space.

Lastly, while it is possible for this classification method to

Figure 4. a) Contour preview b) touchscreen rotation UI Table 2. Leaf class match scores (MATLAB)

distinguish between leaf classes that are significantly different,
performance may suffer when attempting to separate samples
from plant species that are either related or have similar shape
characteristics. However, if a hierarchy of leaf classes were
constructed, with shape at the highest level, our method may
function well as a first-stage algorithm, applying general
labels to leaves (e.g. long and skinny, squat and wavy, fan-
like, etc.) before passing the sample off to a classifier that is
more adept at distinguishing between leaves sharing the
identified characteristics.

We have described an Android mobile application, the core
of which is an algorithm that uses digital morphological
features to classify plant species based on the nearest neighbor
distance of the query leaf’s features from the median features
of each species in the training set. Our method proved quite
robust under reasonable conditions. With further additions to
the training set, the application can easily be tuned to
recognize more plant species. This capability coupled with a
polished user interface and hyperlinked information on the
identified plant species could result in a very compelling
mobile application, opening the surrounding environment to
large numbers of users.

REFERENCES
[1] W. Petry and W. Kuhbauch, “Automated discrimination of weed species

with quantitative image analysis,” Journal of Agronomy & Crop
Science, vol. 163, pp. 345-351, 1989.

[2] R.D. Tillet, “Image analysis for agricultural processes: a review of
potential opportunities,” Journal of Agricultural Engineering Research,
vol. 12, pp. 247-258, 1991.

[3] J. Hemming and T. Rath, “Computer-vision based weed identification
under field conditions using controlled lighting,” Journal of Agricultural
Engineering Research, vol. 78-3, pp. 233-243, March 2001.

[4] B. Åstrand and A. Baerveldt, “An agricultural mobile robot with vision-
based perception for mechanical weed control,” Autonomous Robots,
vol. 13-1, pp. 21-35, July 2002.

[5] Z. Wang, Z. Chi, and D. Feng, “Shape based leaf image retrieval,” IEEE
Proceedings: Vision, Image, and Signal Processing, vol. 150-1, pp. 34-
43, February 2003.

[6] J. Du, X. Wang, and G. Zhang, “Leaf shape based plant species
recognition,” Applied Mathematics and Computation, vol. 185-2, pp.
883-893, February 2007.

[7] S. Wu, F. Bao, E. Xu, Y. Wang, Y. Chang, and Q. Xiang, “A leaf
recognition algorithm for plant classification using probabilistic neural
network,” in Proceedings of 2007 IEEE International Symposium on
Signal Processing and Information Technology, Giza, December 2007.

[8] C. Im, H. Nishida, and T.L. Kunil, “Recognizing plant species by leaf
shapes—a case study of the acer family,” in Proceedings of 1998 IEEE

International Conference on Pattern Recognition, Brisbane, August
1998.

APPENDIX A: BREAKDOWN OF WORK

A. David Knight

Review of literature, algorithm research, preparation of
final report, Android feature vectors, Android UI, Android
classifier, leaf samples, moment of inertia feature.

B. James Painter

Review of literature, algorithm research, preparation of
final report, MATLAB implementation, leaf training,
Android preprocessing, poster layout, leaf samples.

C. Matthew Potter

Review of literature, algorithm research, preparation of
final report.

Table 3. Leaf class match scores (Android)

Figure 5. Leaf classes

