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Abstract—In this paper we describe the development of an 

Android application that gives users the ability to identify plant 

species based on photographs of the plant’s leaves taken with a 

mobile phone. At the heart of this application is an algorithm that 

acquires morphological features of the leaves, computes well-

documented metrics such as the angle code histogram (ACH), 

then classifies the species based on a novel combination of the 

computed metrics. The algorithm is first trained against several 

samples of known plant species and then used to classify 

unknown query species. Aided by features designed into the 

application such as touchscreen image rotation and contour 

preview, the algorithm is very successful in properly classifying 

species contained in the training library. 

I.  INTRODUCTION 

Historically, identifying an unknown plant species required 
the consultation of a heavy field guide, where the user had to 
make sometimes obscure observations of the plant’s features 
and navigate a complex decision tree. The process was 
nontrivial even for seasoned botanists, and carrying the guides 
into the field was often impractical – particularly for hikers and 
other casual users. The advent of highly-portable, 
computationally-powerful smart phones with large storage 
capacity presents an opportunity to not only replace and 
improve the database and decision tree functions of the field 
guide, but also to create automatic leaf classification 
applications based on well-known image processing methods 
currently becoming standardized on mobile platforms. A user-
friendly application on a popular mobile platform such as 
Android that is capable of identifying a good number of plant 
species could achieve widespread adoption, increasing the 
public’s knowledge of and appreciation for their environment. 

II. PRIOR AND RELATED WORK 

The application of digital image processing techniques to 
the problem of automatic leaf classification began two decades 
ago and it has since been proceeding in earnest. In 1989, Petry 
and Kühbauch were the first to extract digital morphological 
features for use with identification models [1]. The technology 
found some of its earliest applications in industrial agriculture, 

where the desire was to separate crop species from weed 
species, allowing for decreased use of pesticides [2]. The 
problem is complicated in this application by complex 
backgrounds that make image segmentation difficult, but 
simplified by foreknowledge of one or two desirable crops 
amongst unwanted weed species [3]. Color and texture 
information is often sufficient to make this distinction, as 
opposed to more general applications, where numerous shape 
features must be acquired [4]. 

 
More recently, several groups have approached the 

problem of automatic leaf classification. Though the groups 
often use similar digital morphological features, e.g. 
rectangularity, sphericity, eccentricity, etc., there is great 
variation in how these measures are combined and used in 
classification. Wang et al., for instance, used a two-tiered 
system, eliminating grossly different samples on the basis of 
eccentricity alone before making a finer judgment based on 
the combination of the centroid-contour distance (CCD) curve, 
ACH, and eccentricity [5]. Du et al. used roughly a dozen 
morphological features and moments and defined a 
classification method called the move median centers (MMC) 
hypersphere classifier, achieving a correct classification rate of 
over 90% [6]. Wu et al., on the other hand, achieved similar 
results employing a probabilistic neural network [7]. Another 
approach looks at a polygonal approximation of the leaf’s 
shape. [8] 

III. DESCRIPTION OF ALGORITHM 

At the highest level, our algorithm for classifying plant 
species proceeds as follows. An image of the leaf of interest is 
acquired and preprocessed to obtain a binary image of the 
leaf’s contour. For several samples of leaves from a given 
species, morphological features are extracted from the contour 
image. This data is used to train the algorithm by determining 
the median value of each feature for a given species. As more 
samples are added to the training set, the algorithm becomes 
for effective at identifying a given species. 



A. Image Acquisition 

Currently, every mobile phone running the Android 
operating system is equipped with a high-quality digital camera 
with support for auto-focus and flash photography. The input to 
our algorithm is a photograph of a leaf of unknown species 
taken with the mobile phone’s camera. Because the user has an 
interest in taking a picture which will provide useful 
information, it is reasonable to assume a certain degree of 
uniformity in the acquired images, i.e. the picture will be taken 
at a reasonable distance, in decent lighting, roughly normal to 
the surface, and against a background which provides sufficient 
contrast. 

B. Preprocessing 

Before extraction of morphological features can begin, the 
outline contour of the leaf must be found. The first step in this 
process is to convert the acquired color image to a grayscale 
image. Following this, image segmentation is performed to 
identify leaf pixels and background pixels. After holes have 
been closed and small regions removed, the segmented image 
is converted to binary and the interior of the leaf is subtracted, 
leaving an image of the leaf’s outline contour [Fig. 1]. 

C. Morphological Feature Extraction 

After an extensive review of literature and experimentation 
with various combinations of digital morphological features, 
we decided to include the following features in our final 
algorithm: aspect ratio, rectangularity, convex area ratio, 
convex perimeter ratio, sphericity, circularity, eccentricity, 
form factor, regional moments of inertia, and angle code 
histogram. The latter two features are based on invariable 
moments while the rest are geometrical. Each of the features, 
along with a helper feature, the centroid-contour distance curve 
is described below. 

1) Centroid-contour Distance Curve: The CCD describes 
the distance from the leaf centroid to the leaf contour as the 
contour is traced in either a clockwise or counter-clockwise 
direction. In [5] Wang, et al. use CCD as a comparison metric 
between leaves; but, for a number of reasons, this is unsuited 
for our leaf comparison implementation. Although the CCD is 

translation-invariant and can be made scale-invariant by 
normalization, it requires accurate rotational alignment. Wang 

et al. further describe a leaf rotation algorithm, but its high 
complexity, along with high dimensionality in feature space, 
make real-time Android implementation impractical. Non-
rotationally-aligned, unnormalized CCDs, however, are still 
useful for calculating parameters useful in calculating 
sphericity and circularity, as below. 

 
2) Aspect Ratio (AR): The aspect ratio is the ratio between 

the maximum length Dmax and the minimum length Dmin of the 
minimum bounding rectangle (MBR) [Fig. 2a] 

 AR = Dmax / Dmin. (1) 

3) Rectangularity (R): Rectangularity is defined as the 
ratio between the region-of-interest (ROI) area and the MBR 
area 

 R = AROI / (Dmax / Dmin) (2) 

4) Convex Area Ratio (CAR): The convex area ratio is the 
ratio of the ROI area and the convex hull area (AC) [Fig. 2b] 

 CAR = AROI / AC (3) 

5) Convex Perimeter Ratio (CPR): The convex perimeter 
ratio is the ratio of the ROI perimeter (PROI) and the convex 
hull perimeter (PC)  

 CPR = PROI / PC. (4) 

6) Sphericity (S): Sphericity is the ratio of the radius of the 
incircle of the ROI (ri) and the radius of the excircle of the 
ROI (rc) [Fig. 2c] 

 S = ri / rc. (5) 

7) Circularity (C): Circularity is based on the bounding 
points of the ROI and is the ratio of the mean distance between 
the center of the ROI and all of the bounding points (µR)and 
the quadratic mean deviation of the mean distance (σR)  

 C = µR / σR. (6) 

8) Eccentricity (E): Eccentricity is the ratio of the length 
of the main inertia axis of the ROI (EA) and the length of the 
minor inertia axis of the ROI (EB)  

Figure 1.   Sample leaf before and after preprocessing Figure 2.   a) MBR, b) Convex Hull, c) Incircle and Excircle 



 E = ΕΑ / ΕΒ. (7) 

9) Form Factor (FF): Form factor is a well-known shape 
description characteristic given by  

 FF = 4πAROI / P
2

ROI. (8) 

10) Regional Moments of Inertia (RMI): Regional moments 
of inertia (RMI) capture spatial information about the weight 
distribution of the leaf at different positions along its vertical 
axis. Because our leaves maintain constant orientation and are 
generally symmetric about their vertical axis, Ixx quantities for 
four different regions are used as a descriptor. In order to 
make these descriptions scale-invariant, leaf area images are 
first cropped with a bounding box and uniformly resized to a 
height of 240 pixels before calculations are performed. After 
cropping and resizing, the four regions are defined as 
successive 60-pixel tall bands (Fig. 3). Ixx quantities are 
calculated independently for the area mass in each region  

  (9) 

N: the number of points in the region R. 

11) Angle Code Histogram (ACH): In [5] Wang et al. 
propose using the ACH to classify tree leaves. Points along the 
leaf contour are joined to make line segments and angles 
between adjacent line segments are measured. A histogram 
consisting of five uniformly-sized angle bins, each designated 
by a 1-5 angle "code,"  is populated with all angles measured 
along the contour. The histogram is normalized and used as a 
five-dimensional leaf classifier. Our test results show that 
contour point resolution (contour distance between two points 
on a line segment) plays a large role in ACH similarity 
measurements, and in order to make the ACH scale-invariant, 
we suggest the contour point resolution be a constant fraction 
of the leaf perimeter, or contour length. 

 

D. Training, Classification, and Matching 

Fifteen samples of each leaf class were acquired for class 
training. They were segmented from the background and their 
contours were extracted in the same manner that query leaves 
were pre-processed before matching. The fifteen scores for 
each of the seventeen features within a class were averaged to 
determine the feature vector for the class. The resulting point in 
seventeen-dimensional space represents the class's identity. 

Based on preliminary experimental results that showed non-
uniform effectiveness of each feature, feature weighting was 
manually assigned. First, the four regional moments of inertia 
were scaled to 1/4 each, and the five ACH bins were scaled to 
1/5 each, since the regional moments of inertia and ACH 
essentially describe one feature with multiple parts. However, 
because each of these features, in particular the center bin 
(zero-degree-range) of the ACH, proved to very accurately 
predict the correct class match, they were further weighted 2X, 
except for the ACH center bin, which was weighted 2.5X. The 
eccentricity feature at times was the most accurate match 
predictor, but other times was by far the worst, so its weight 
was assigned 1/2X. Total weights for the ten features are 
shown in Table 1. 

To determine a query leaf's correct match, the query leaf's 
feature vector is computed and its difference from each leaf 
class represents its feature similarity vector.. The feature 
similarity vectors are then normalized and weighted, and their 
Euclidean distance is calculated in the high-dimensional space. 
The order of the resulting vector of class distances represents 
the order of similarity. 

E. Android Implementation 

The classification algorithm described above was initially 
verified in MATLAB. The MATLAB algorithms were then 
used as a guide to develop the Android implementation. Since 
many of MATLAB's image processing toolbox functions are 
not available in the standard Java or Android libraries, higher 
level operations like convex hull, fill area, moments of inertia, 
and others were written manually.  Note also that because a 
network connection might not be available while hiking, we 
opted to store pre-generated training data and perform 
classification calculations locally on the handset. 

Figure 3. Regional moments of inertia Table 1.   Feature Weights 



The first screen presented to the user is a live viewfinder 
with an overlay of the current leaf segmentation [Fig. 3a]. This 
feature allows the user to review the results of the 
segmentation algorithm and take the picture when the region is 
acceptably highlighted. The second screen shows the region 
extracted by the segmentation algorithm and presents a touch-
based rotation interface that lets the user orient the leaf shape 
in an upright position [Fig. 3b]. Transforming all leaf images 
into a uniform orientation can be a computationally intensive 
process [5], so avoiding this process in a usable manner is 
advantageous given the restricted processing resources 
available on mobile phones. Additionally, the user’s 
experience is improved through the interactivity of these 
features. 

Once the user corrects the leaf shape orientation, a busy 
animation is displayed while the application generates a 
feature vector and performs distance calculations against class 
centers. Finally, the distance between the generated feature 
vector and each of the six class centers is displayed in a list. 
The class with the lowest reported distance is the class the 
algorithm has identified as the likely species of the query leaf. 

IV. EXPERIMENTAL RESULTS 

A. MATLAB Implementation Results 

In order to test our classification system, fifteen query 
leaves for each of the six leaf classes were acquired and 
queried against the trained classes. Average similarity scores to 
each class are shown in Table 2. Every query class was 
correctly matched on average, and few individual leaves were 
incorrectly matched. Despite the strong visual similarity 
between classes 1 and 2, they were never cross-matched. Class 
6 performed similarly well when queried against the visually 
similar class 3, but reversing the situation and querying class 3 
against class 6 triggered the most false positives in the 

experiment. In spite of this, the 80% success rate shows the 
robustness of the chosen classifiers. 

B. Android Field Test Results 

As a field test of our Android application, we attempted to 
classify five leaves from each of our six classes in nature. To 
maintain statistical independence, a new set of leaves was 
gathered for the field test, while the leaves used to generate the 
offline MATLAB results were used to train the application. 

Looking at Table 3, leaf classes 1, 2, and 6 had high rates of 
successful classification, leaf classes 3, 4, and 5 faired 
significantly worse than results obtained offline in MATLAB. 
Leaf classes 3 and 4 were systematically classified as classes 6 
and 5, respectively. This consistent behavior may be due to 
poor representative class centers, in which case larger training 
sets may offer improvement. Additionally, we discovered that 
the Java implementation of the angle-code histogram was 
unreliable, sometimes giving erratic results such as completely 
empty bins. This malfunction likely affects classification 
results since the angle-code histogram occupies five 
dimensions of the feature space. 

V. CONCLUSIONS AND FUTURE WORK 

To improve usability, a welcome improvement would be to 
optimize the speed of the live viewfinder segmentation 
algorithm. The current implementation uses a large amount of 
iteration that might be avoidable, and the low framerate and 
slight delay of the current viewfinder overlay can make it 
difficult to point precisely at skinny leaf regions. 

At the morphological feature level, the latest 
implementation of the ACH feature is not scale invariant, due 
to the constant separation of points along the contour. Contour 
point separation should change proportionally with the total 
contour length (leaf perimeter size). Although this did not 
create a large problem between our trained set (contour images 
of 500-pixel length in max dimension) and query set (contour 
images of 400-pixel length in max direction), it could be 
problematic in other scenarios, especially when weighted as 
heavily as it is. 

Scale-wise, as the number of classes begins to increase, the 
feature space becomes more crowded, limiting the precision 
with which the classification system can distinguish between 
similar leaf classes. Additionally, because each query leaf will 
need to be queried against each class, computation time will 
increase with the number of classes. However, future 
refinement of the weighting used with the classifying features 
may show that certain feature vector components can be 
removed with little impact, thereby reducing the 
dimensionality of the feature space. 

Lastly, while it is possible for this classification method to 

Figure 4.   a) Contour preview b) touchscreen rotation UI Table 2.   Leaf class match scores (MATLAB) 



distinguish between leaf classes that are significantly different, 
performance may suffer when attempting to separate samples 
from plant species that are either related or have similar shape 
characteristics. However, if a hierarchy of leaf classes were 
constructed, with shape at the highest level, our method may 
function well as a first-stage algorithm, applying general 
labels to leaves (e.g. long and skinny, squat and wavy, fan-
like, etc.) before passing the sample off to a classifier that is 
more adept at distinguishing between leaves sharing the 
identified characteristics. 

We have described an Android mobile application, the core 
of which is an algorithm that uses digital morphological 
features to classify plant species based on the nearest neighbor 
distance of the query leaf’s features from the median features 
of each species in the training set. Our method proved quite 
robust under reasonable conditions. With further additions to 
the training set, the application can easily be tuned to 
recognize more plant species. This capability coupled with a 
polished user interface and hyperlinked information on the 
identified plant species could result in a very compelling 
mobile application, opening the surrounding environment to 
large numbers of users. 
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APPENDIX A: BREAKDOWN OF WORK 

A. David Knight 

Review of literature, algorithm research, preparation of 
final report, Android feature vectors, Android UI, Android 
classifier, leaf samples, moment of inertia feature. 

B. James Painter 

Review of literature, algorithm research, preparation of 
final report, MATLAB implementation, leaf training, 
Android preprocessing, poster layout, leaf samples. 

C. Matthew Potter 

Review of literature, algorithm research, preparation of 
final report. 

 

 

 

 

 

 

Table 3.   Leaf class match scores (Android) 

Figure 5.   Leaf classes 


